Autres Écoles – PC

Algèbre

1590. [Navale] Pour $P \in \mathbb{R}_n[X]$, on note Q = f(P) le polynôme défini pour $x \in \mathbb{R}$ par $Q(x) = \int_x^{x+1} P(t) dt$.

- a) Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- b) Calculer son déterminant.

1591. [ENSEA] Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 0 & 4 \end{pmatrix}$$
.

- a) Trouver toutes les matrices M qui vérifient $M^2 = A$.
- \boldsymbol{b}) Trouver toutes les matrices qui commutent avec A.
- c) Cet ensemble est-il une sous-algèbre de $\mathcal{M}_3(\mathbb{C})$?

1592. [CCINP] Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer que $E = \operatorname{Im}(u) \oplus \operatorname{Ker}(u)$ si et seulement si $\operatorname{Im}(u) = \operatorname{Im}(u^2)$.

1593. [CCINP] *a*) On note (e_1, e_2) la base canonique de \mathbb{R}^2 . Soient $(a, b, c) \in \mathbb{R}^3$ et $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. Soit f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

- i) On suppose a=b=c=1. Montrer que $(e_1,f(e_1))$ est une base de \mathbb{R}^2 et calculer la matrice de f dans cette base.
- ii) On suppose $c \neq 0$. Montrer que $(e_1, f(e_1))$ est une base de \mathbb{R}^2 et que la matrice de f dans cette base a une diagonale nulle.
- **b**) On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Soit g un endomorphisme de \mathbb{R}^3 tel que, pour tout $x \in \mathbb{R}^3$, il existe $\lambda_x \in \mathbb{R}$ tel que $g(x) = \lambda_x x$.

- *i*) Montrer que $\lambda_{e_1+e_2} = \lambda_{e_1} = \lambda_{e_2}$.
- ii) Montrer que q est une homothétie.
- c) Soit $B \in \mathcal{M}_3(\mathbb{R})$, non colinéaire à I_3 et de trace nulle. Soit g l'endomorphisme de \mathbb{R}^3 canoniquement associé à B.
- i) Montrer qu'il existe $x \in \mathbb{R}^3$ tel que la famille (x, g(x)) est libre.
- *ii*) En déduire que B est semblable à une matrice de la forme $\begin{pmatrix} 0 & \alpha & \beta \\ 1 & a & b \\ 0 & c & -a \end{pmatrix}$ avec α, β, a, b et c dans \mathbb{R} .
- iii) Montrer que B est semblable à une matrice de diagonale nulle.

1594. [CCINP] Soit f un endomorphisme non nul de \mathbb{R}^3 tel que $f^3 = -f$.

- a) Montrer que $\operatorname{Im}(f) \subset \operatorname{Im}(f^2)$
- b) Montrer que $\operatorname{Ker}(f^2 + \operatorname{id}) \subset \operatorname{Ker}(f)$ et $\operatorname{Im}(f) \subset \operatorname{Ker}(f^2 + \operatorname{id})$.
- c) Montrer que $\operatorname{Im}(f) = \operatorname{Im}(f^2)$ et $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.
- d) Montrer que Im(f) est stable par f. Soit g l'endomorphisme induit par f sur $\text{Im}\, f$. Montrer que $g^2=-\operatorname{id}_{\operatorname{Im}(f)}$.
- e) À l'aide du déterminant, montrer que le rang de f est pair et que $\mathrm{Im}(f) \oplus \mathrm{Ker}(f) = \mathbb{R}^3$.
- f) En déduire qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
- **1595.** [IMT] On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ vérifie la propriété (\mathcal{P}) lorsque son polynôme caractéristique est donné par $\chi_M(X) = \prod_{k=1}^n (X m_{k,k})$. Étudier cette propriété sur les matrices suivantes :

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, M = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \text{ avec } a, b \in \mathbb{R}.$$

1596. [CCINP] Soient
$$(a,b) \in \mathbb{R}^2$$
 et $A = \begin{pmatrix} a & b & a & b \\ b & a & b & a \\ a & b & a & b \\ b & a & b & a \end{pmatrix}$.

- a) Déterminer le rang de A.
- b) La matrice A est-elle diagonalisable? Déterminer ses valeurs propres.

1597. [CCINP] Soit $n \in \mathbb{N}$ impair. Soit $\Phi : P \in \mathbb{R}_n[X] \mapsto P(1-X) + P(0)X^n$.

- a) Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$. Déterminer sa matrice A dans la base canonique de $\mathbb{R}_n[X]$.
- **b)** Montrer que $\Phi^2(1) = \sum_{k=1}^{n-1} \binom{n}{k} (-1)^k X^k$.

- c) Expliciter A^2 . Montrer que A^2 est triangulaire.
- d) Déterminer $\operatorname{Im}(\Phi)$ et $\operatorname{Ker}(\Phi)$.
- e) Déterminer les valeurs propres complexes de A^2 puis celles de A.
- f) La matrice A est-elle diagonalisable?

1598. [CCINP] *a*) Soit
$$A_0 = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 4 & 2 \\ 3 & -6 & -3 \end{pmatrix}$$
. Montrer que A_0 est diagonalisable.

Soit $A \in \mathcal{M}_3(\mathbb{R})$ diagonalisable avec un noyau de dimension 2. On pose $C = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ et

$$B = \begin{pmatrix} \alpha A & \gamma A \\ \beta A & 0 \end{pmatrix} \text{ avec } \alpha + \beta = \gamma, \alpha \neq 0, \beta \neq 0, \gamma \neq 0 \text{ et } \beta \neq -\gamma.$$

- b) Exprimer χ_C en fonction de χ_A et trouver les valeurs propres de C.
- c) Exprimer χ_B en fonction de χ_A et trouver les valeurs propres de B.
- d) Montrer que, si $X \in \text{Ker}(A)$, alors $\begin{pmatrix} X \\ 0 \end{pmatrix} \in \text{Ker}(B)$.
- e) Montrer que $\dim(\text{Ker}(B)) \ge 2\dim(\text{Ker}(A))$.
- f) Diagonaliser B pour $A = A_0$ avec $\alpha = -1$, $\beta = 2$ et $\gamma = 1$.

1599. [CCINP] *a*) Soit
$$M = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$
. Préciser les valeurs propres et les vecteurs

propres de M.

b) Montrer qu'il n'existe pas de fonction $\varphi: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ linéaire telle que, pour tout $M \in \mathcal{M}_n(\mathbb{C})$, le complexe $\varphi(M)$ soit valeur propre de M.

1600. [CCINP] Soit
$$A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$$
 telle que : $\forall i,j\in \llbracket 1,n
rbracket, \ a_{i,j}>0 \ \mathrm{et} \sum_{k=1}^n a_{i,k}=1.$

- a) Montrer que 1 est valeur propre de A.
- b) Montrer que si $\lambda \in \mathbb{C}$ est valeur propre de A alors $|\lambda| \leq 1$.
- c) Montrer que si $\lambda \in \mathbb{C}$ est valeur propre de A et si $|\lambda| = 1$ alors $\lambda = 1$.
- d) Montrer que le sous-espace propre $E_1(A)$ est une droite.

1601. [CCINP] *a*) Soient
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
 et f l'endomorphisme de \mathbb{R}^3 canoniquement

associé à A.

- i) Déterminer une base et préciser la dimension de Ker(f). Déterminer une base et préciser la dimension de Im(f).
- ii) Montrer que $\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = \mathbb{R}^3$.
- iii) Montrer que $X(X-1)^2$ annule f
- **b**) Soit $n \in \mathbb{N}$, $n \geqslant 2$. Soit $u \in \mathcal{L}(\mathbb{R}^n)$ non injectif tel que $\operatorname{Im}(u) \oplus \operatorname{Ker}(u) = \mathbb{R}^n$.
- i) Montrer qu'il existe une base de \mathbb{R}^n dans laquelle la matrice de u est de la forme

$$\begin{pmatrix} S & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} \text{ avec } S \in \mathrm{GL}_r(\mathbb{R}).$$

- le polynôme caractéristique de S. Montrer que $P_S(0) \neq 0$ et que $XP_S(X)$ annule u.
- c) Réciproquement, soit $u \in \mathcal{L}(\mathbb{R}^n)$ tel qu'il existe un polynôme P vérifiant $P(0) \neq 0$ et XP(X) annule u.
- i) Montrer que $Ker(u) \cap Ker(P(u)) = \{0\}.$
- *ii*) Montrer que $\operatorname{Im}(u) = \operatorname{Ker}(P(u))$, puis que $\operatorname{Im}(u) \oplus \operatorname{Ker}(u) = \mathbb{R}^n$.

1602. [IMT] Soient
$$j=e^{\frac{2i\pi}{3}}, X=\begin{pmatrix} 1\\ j\\ j^2 \end{pmatrix}$$
 et $A=\begin{pmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 1 & 0 & -1 \end{pmatrix}$.

- a) Montrer que 0 est valeur propre de A
- b) Montrer que X est un vecteur propre de A.
- c) En déduire le polynôme caractéristique de A.

1603. [CCINP] Soit $n \in \mathbb{N}^*$. Pour $P \in \mathbb{R}_n[X]$, on pose $T_n(P) = (nX+1)P + (1-X^2)P'$.

- a) Calculer $T_n(X^k)$ pour tout $k \in \{0, ..., n\}$.
- **b)** Montrer que T_n est un endomorphisme de $\mathbb{R}_n[X]$.
- c) Écrire la matrice de T_2 dans la base canonique de $\mathbb{R}_2[X]$. T_2 est-il diagonalisable?
- d) Soit λ une valeur propre de T_n . On considère $P \in \mathbb{R}_n[X]$ un vecteur propre de T_n associé

à
$$\lambda$$
. Pour $x \in]-1,1[$, on pose $g_{\lambda}(x)=\int_0^x \frac{nt+1-\lambda}{1-t^2}\,\mathrm{d}t.$

- e) Vérifier que $x \mapsto P(x)e^{g_{\lambda}(x)}$ est constante sur]-1,1[. f) Vérifier que $\frac{nt+1-\lambda}{1-t^2} = \frac{n+1-\lambda}{2} \frac{1}{1-t} + \frac{1-n-\lambda}{2} \frac{1}{1+t}$ et en déduire l'expression de $g_{\lambda}(x)$.
- g) Déterminer les éléments propres de T_n et montrer que T_n est diagonalisable.
- **1604.** [CCINP] Soient (E, \langle , \rangle) un espace euclidien et u un vecteur de E. Montrer que l'application $f: x \mapsto x - \langle x, u \rangle$ u est un endomorphisme de E. Étudier sa diagonalisabilité, ses éléments propres.

1605. [IMT] Soient
$$A=\begin{pmatrix}a&b&c\\c&a&b\\b&c&a\end{pmatrix}$$
 et $J=\begin{pmatrix}0&1&0\\0&0&1\\1&0&0\end{pmatrix}$ avec $(a,b,c)\in\mathbb{C}^3.$

- a) Exprimer A en fonction de I, J et J^2
- b) Déterminer le polynôme caractéristique de J. La matrice J est-elle diagonalisable?
- c) Diagonaliser A.

1606. [CCINP] Soient (E, \langle , \rangle) un espace euclidien et a un vecteur unitaire de E. Soit φ : $(x,y) \in E^2 \mapsto \langle x,y \rangle + k \langle x,a \rangle \langle y,a \rangle$. Donner une condition nécessaire et suffisante sur kpour que φ soit un produit scalaire.

1607. [CCINP] Soit E un espace euclidien. Soit $(a,b) \in E^2$ une famille libre de vecteurs unitaires. Soit $\varphi: E \to E, x \mapsto \langle a, x \rangle b + \langle x, b \rangle a$.

b) Déterminer $\operatorname{Im}(\varphi)$ et $\operatorname{Ker}(\varphi)$.

1608. [CCINP] Soient (E, \langle , \rangle) un espace vectoriel euclidien et (a, b) une famille de vecteurs de E. Soit $\varphi : x \in E \mapsto \langle x, a \rangle b - \langle x, b \rangle a$.

- a) Montrer que $\forall (x,y) \in E^2$, $\langle \varphi(x), y \rangle = -\langle x, \varphi(y) \rangle$.
- **b)** Montrer que $Ker(\varphi)^{\perp} = Im(\varphi)$.

1609. [CCINP] Soient $f, g \in \mathcal{L}(E)$ où E est un \mathbb{R} -espace vectoriel de dimension supérieure ou égale à 2. On suppose que $g = f + f^2 + f^3$.

- a) Montrer que, si f est diagonalisable, alors g l'est également.
- b) Montrer que si les valeurs propres de f sont deux-à-deux distinctes, celles de g aussi.
- c) Que dire d'une matrice symétrique réelle ? Trouver un contre-exemple avec une matrice symétrique complexe.

1610. [CCINP] Soient $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{S}_n(\mathbb{R}), \lambda_1,\ldots,\lambda_n$ ses valeurs propres. Montrer que $\operatorname{tr}(AA^T)=\sum_{i=1}^n\sum_{j=1}^na_{i,j}^2.$ Puis montrer que $\sum_{i=1}^n\sum_{j=1}^na_{i,j}^2=\sum_{i=1}^n\lambda_i^2.$

Analyse

1611. [CCINP] Pour $A \in \mathcal{M}_n(\mathbb{C})$, on pose $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$. On considère une norme $\| \| \sup \mathcal{M}_n(\mathbb{C})$ telle que $\|AB\| \leq \|A\| \cdot \|B\|$ pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{C})$.

- a) Donner un exemple de matrice non nulle dont l'unique valeur propre est 0. La fonction ρ est-elle une norme sur $\mathcal{M}_n(\mathbb{C})$?
- **b**) i) Pour $X \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$, calculer XX^T puis montrer que $||XX^T|| \neq 0$.
- ii) Pour $A \in \mathcal{M}_n(\mathbb{C})$, montrer que $\rho(A) \leqslant \|A\|$. Indication: pour $\lambda \in \operatorname{Sp}(A)$, on pourra montrer l'existence de $X \neq 0$ tel que $AXX^T = \lambda XX^T$.
- c) On pose, pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C}), \|A\| = \max_{1 \le i \le n} \sum_{j=1}^n |a_{i,j}|.$
- *i*) Montrer que $\| \|$ vérifie : $\|AB\| \le \|A\| \cdot \|B\|$ pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{C})$.
- ii) On définit $S=(s_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{C})$ en posant $s_{i,j}=1/2$ lorsque |i-j|=1 et $s_{i,j}=0$ sinon. Pour $\lambda\in\mathrm{Sp}(S)$, justifier l'existence de $\theta\in[0,\pi]$ tel que $\lambda=\cos\theta$.
- iii) Pour $k \in [1, n]$, on pose $\theta_k = \frac{k\pi}{n+1}$ et $X_k = (\sin(\theta_k) \sin(2\theta_k) \cdots \sin(n\theta_k))^T$. Calculer SX_k pour $k \in [1; n]$ et en déduire les valeurs propres de S.

1612. [IMT] Soit $(E, \| \|)$ un espace vectoriel normé. Soit $u \in \mathcal{L}(E)$ tel que, pour tout $x \in E$, $\|u(x)\| \leqslant \|x\|$. On définit, pour $n \in \mathbb{N}$, $v_n(x) = \frac{1}{n+1} \sum_{k=0}^n u^k(x)$ et $w_n = \frac{1}{n+1} \sum_{k=0}^n v_k(x)$.

- a) Calculer $v_n(x)$ et $w_n(x)$ dans le cas où $x \in \text{Ker}(u \text{id})$ et dans le cas où $x \in \text{Im}(u \text{id})$.
- **b**) Discuter de la convergence de $(v_n(x))$ et de $(w_n(x))$ en fonction des propriétés spectrales de u.
- c) Que dire si u est nilpotente?

1613. [CCINP] Pour
$$A \in \mathcal{M}_n(\mathbb{C})$$
, on pose $||A|| = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^n |a_{i,j}|$ et $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$.

- a) Soit $\theta \in \mathbb{R}$. Soit $A = \begin{pmatrix} 1 & 1+i \\ 0 & e^{i\theta} \end{pmatrix}$. Calculer ||A|| et $\rho(A)$.
- b) Montrer que $\forall (A,B) \in \mathcal{M}_n(\mathbb{C})^2, \ \|AB\| \leqslant \|A\| \ \|B\|.$ c) Soit λ une valeur propre de A et $X = (x_1 \cdots x_n)^T$ un vecteur propre associé. Montrer que, pour tout $i \in \{1, \ldots, n\}, \ |\lambda x_i| \leqslant \sum_{j=1}^n |a_{i,j} x_j|$. En déduire que $\rho(A) \leqslant \|A\|$.
- d) Montrer que $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall k \in \mathbb{N}, \ \rho(A^k) = \rho(A)^k.$ e) On suppose A diagonalisable. Montrer que $A^k \underset{k \to +\infty}{\longrightarrow} 0$ si et seulement si $\rho(A) < 1$.

1614. [CCINP] Soient $u_0 \in \mathbb{R}$ et, pour $n \in \mathbb{N}$, $u_{n+1} = e^{-u_n}$. Étudier la convergence de la suite. Chercher les deux termes suivants du développement asymptotique.

1615. [CCINP] Considérons la suite définie par $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n^2 + 1}{2}$. Posons $v_n = 1 - u_n$. On rappelle que $\sum_{k=0}^{n} \frac{1}{k} \leqslant \ln(n)$.

- a) Montrer que $\forall x \in [0,1], \frac{1}{2-x} \le \frac{1}{2} + \frac{x}{2}$.
- **b)** Montrer, par récurrence sur n, que $\forall n \in \mathbb{N}, \frac{1}{2} \leqslant u_n \leqslant 1$.
- c) Montrer que la suite (u_n) converge et déterminer sa limite que l'on notera ℓ .
 d) Montrer que $\forall k \in \mathbb{N}, \frac{1}{v_{k+1}} \frac{1}{v_k} = \frac{1}{2 v_k}$.
- e) Déterminer la limite de la suite $\left(\frac{1}{v_{k+1}} \frac{1}{v_k}\right)$.
- f) En utilisant le lemme de Cesàro, déterminer la limite de $\left(\frac{n}{v_n}\right)$, puis un équivalent $u_n \ell$.

1616. [CCINP] a) Calculer $\sup\{n^{\frac{1}{n}}, n \in \mathbb{N}^*\}$.

b) Comparer e^{π} et π^e .

1617. [CCINP] Soit $E = \{(x, y) \in]0, +\infty[^2, x^y = y^x\}.$

- a) Montrer que $(x,y) \in E$ si et seulement si $\frac{\ln x}{x} = \frac{\ln y}{y}$.
- **b)** Déterminer les x > 0 tels que $(x, x^2) \in E$.
- c) Dresser le tableau de variation de $\varphi: x \mapsto \frac{\ln x}{x}$.
- d) Soit $x \in]0,1]$. Montrer qu'il n'existe pas de y > x tel que $(x,y) \in E$.
- e) Soit $x \in]1, e[$. Montrer qu'il existe un unique y > x tel que $(x,y) \in E$. On note $\psi(x)$ cet unique y.
- f) Montrer que $\psi:]1, e[\rightarrow]0, 1/e[$ est continue et strictement décroissante.
- g) Déterminer tous les $(x,y) \in \mathbb{N}^* \times \mathbb{N}^*$ tels que x < y et $(x,y) \in E$.

1618. [IMT] Soit $f: x \mapsto xe^{x^2}$. Montrer que f est une bijection de \mathbb{R} sur \mathbb{R} et déterminer un DL à l'ordre 5 de f^{-1} en 0.

1619. [CCINP] On pose f(0) = 0 et, pour $x \in \mathbb{R}^*$, $f(x) = \frac{1}{x^2} e^{-\frac{1}{x}}$.

- a) Trouver une primitive de $x\mapsto \frac{2x-1}{x^2}\sup]-\infty,0[$ et $\sup]0,+\infty[$. b) Montrer que f est de classe $\mathcal{C}^\infty\sup\mathbb{R}^*$. Montrer par récurrence que, pour tout $n\in\mathbb{N}$, il
- **b**) Montrer que f est de classe C^{∞} sur \mathbb{R}^* . Montrer par récurrence que, pour tout $n \in \mathbb{N}$, il existe un polynôme $P_n \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}^*$, $f^{(n)}(x) = P_n\left(\frac{1}{x}\right)e^{-\frac{1}{x}}$.
- c) En posant $x = \frac{1}{u}$, donner la limite à droite et à gauche en 0 de f, et étudier la continuité à droite et à gauche en 0, puis la dérivabilité à droite et à gauche en 0.
- d) Résoudre $x^2y' + (2x 1)y = 0$ sur \mathbb{R}^{+*} et sur \mathbb{R}^{-*} .
- e) On admet que $P_1(X) = 1 2X$, $P_2(X) = 1 6 + 6X^2$, $P_3(X) = 1 12X + 36X^2 24X^3$. Déterminer le degré et le coefficient dominant de P_n pour tout $n \in \mathbb{N}$.
- f) La fonction f est-elle développable en série entière au voisinage de 0?
- **1620.** [CCINP] Soient $a, b \in \mathbb{R}$ avec $a < b, f, g \in C^{\infty}([a, b], \mathbb{R})$. On suppose que g ne s'annule pas. On pose $F: x \mapsto \int_a^x f(t)g(t)dt$ et $G: x \mapsto \int_a^x g(t)dt$.
- a) Énoncer le théorème de Rolle
- **b)** Montrer que F et G sont de classe C^{∞} .

Montrer que $\int_a^b f(t)g(t)dt = G(b)f(b) - \int_a^b G(t)f'(t)dt$.

- c) On pose $h: x \mapsto F(b)G(x) F(x)G(b)$. Montrer qu'il existe $c \in [a,b]$ tel que F(b)G'(c) = F'(c)G(b) puis montrer que $\int_a^b f(t)g(t)\mathrm{d}t = f(c)\int_a^b g(t)\mathrm{d}t$.
- d) On suppose que f' ne s'annule pas. En appliquant la question précédente, montrer que $\int_a^b f(t)g(t)\mathrm{d}t = f(a)\int_a^c g(t)\mathrm{d}t + f(b)\int_c^b g(t)\mathrm{d}t.$
- e) On suppose f positive et décroissante. Montrer qu'il existe $c \in [a,b]$ tel que $\int_a^b f(t)g(t)dt = f(a) \int_a^c g(t)dt$.
- **1621.** [CCINP] Existence et calcul de $\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^2}$.
- **1622.** [ENSEA] *a*) Soit (g_n) une suite de fonctions de \mathbb{R} dans \mathbb{C} , soit g une fonction de \mathbb{R} dans \mathbb{C} et soit X une partie de \mathbb{R} . Que signifie : « la suite de fonctions (g_n) converge uniformément vers g sur X »?

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $f_n(x) = \frac{n+2}{n+1}e^{-nx^2}\cos(\sqrt{n}x)$.

- **b**) Étudier la convergence simple de la suite (f_n) .
- c) La suite (f_n) converge-t-elle uniformément sur $[0, +\infty[$?

d) Soit a > 0. La suite (f_n) converge-t-elle uniformément sur $[a, +\infty[$?

e) La suite (f_n) converge-t-elle uniformément sur $]0, +\infty[?]$

1623. [CCINP] On considère, pour $n \in \mathbb{N}$, la fonction $f_n : x \in [-1, 1] \mapsto \sin(nx)e^{-nx^2}$.

a) Montrer que (f_n) converge simplement vers une fonction F que l'on déterminera.

b) Montrer que (f_n) converge uniformément sur [a, 1] avec $a \in]0, 1[$.

c) Y a-t-il convergence uniforme sur [-1,1]?

1624. [CCINP] Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = \frac{\sin(nx)}{n!}$.

a) Étudier les modes de convergence (simple, normale, uniforme) de la série $\sum u_n$.

b) Calculer $S(x) = \sum_{n=0}^{+\infty} u_n(x)$ pour tout réel x.

1625. [CCINP] Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{n=1}^{\infty} k^n$.

a) Montrer que $S_n \to +\infty$.

b) Pour $k \in \mathbb{N}^*$, on pose $f_k(x) = \begin{cases} e^{-k} & \text{si} \quad x = 0 \\ (1 - kx)^{\frac{1}{x}} & \text{si} \quad 0 < x < \frac{1}{k} \\ 0 & \text{si} \quad x \geqslant \frac{1}{k} \end{cases}$.

Montrer que f_k est continue sur \mathbb{R}^+ .

c) Montrer que l'application $F: x \mapsto \sum_{k=1}^{\infty} f_k(x)$ est continue sur \mathbb{R}^+ .

d) Montrer que, pour tout $n \in \mathbb{N}^*$, $F\left(\frac{1}{n}\right) = \frac{S_n}{n^n}$.

e) Trouver C > 0 tel que $S_n \sim_{n \to +\infty} Cn^n$.

1626. [CCINP] Soit $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. Soient $f_0 \in E$ et, pour $n \in \mathbb{N}$, $f_{n+1} : x \mapsto \int_0^x f_n(t) dt$.

a) Préciser le rayon de convergence et la somme de la série entière $\sum_{n\geq 0} \frac{x^n}{n!}$.

b) Montrer que, pour $n \ge 1$, f_n est de classe C^1 et préciser f'_n . Montrer que f_n est de classe

c) On suppose pour l'instant la propriété (*) : pour tout r > 0, il existe K > 0 tel que, pour tout $x \in [-r, r], |f_n(x)| \leq K \frac{|x|^n}{n!}$. Montrer alors l'existence de $F(x) = \sum_{n=0}^{+\infty} f_n(x)$ sur \mathbb{R} puis montrer que F est de classe C^1 .

d) Toujours sous l'hypothèse (*), montrer que, pour tout $x \in \mathbb{R}$, $F'(x) - F(x) = f_0(x)$. En déduire que, pour tout x, $F(x) = e^x \int_0^x f_0(t)e^{-t}dt$.

e) Montrer l'hypothèse (*).

1627. [CCINP] Rayon de convergence et somme de la série entière $\sum_{n=0}^{\infty} \frac{\operatorname{ch}(n)}{n} x^n$

1628. [CCINP] Soit $\theta \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on pose $a_n = e^{n\theta}$ et $b_n = \sum_{k=0}^n e^{k\theta}$. Rayon de convergence et somme des séries entières $\sum a_n x^n$ et $\sum b_n x^n$?

1629. [IMT] *a*) Montrer que, pour $x \in]-1,1]$, $\ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}x^n}{n}$.

b) Calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ en précisant le domaine de convergence, et s'il y a convergence au

c) Même question avec $\sum_{n=0}^{+\infty} \frac{x^{2n+2}}{2n+2}.$

1630. [CCINP] a) Montrer qu'il existe un unique $\alpha \in \mathbb{R}$ tel que $\operatorname{sh}(\alpha) = 1$.

b) Montrer que $ch(\alpha) = \sqrt{2}$.

c) Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^\alpha \operatorname{sh}^n(t) dt$. Montrer que la suite (I_n) est décroissante.

c) Calculer I_0 et I_1 .

d) Montrer que, pour $n \in \mathbb{N}$, $(n+2)I_{n+2}+(n+1)I_n=\sqrt{2}$. e) Montrer que $I_n \sim \frac{1}{n\sqrt{2}}$ quand $n \to +\infty$.

f) On considère $f: x \mapsto \sum_{n \ge 0} I_n x^n$. Préciser le domaine de définition.

g) Montrer que $f(x) = \int_0^{\alpha} \frac{1}{1 - r \sinh(t)} dt$.

1631. [CCINP] Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

a) Calculer $\lim_{n\to +\infty}\cos^n(t)$ selon les valeurs de $t\in \left[0,\frac{\pi}{2}\right]$.

b) Montrer que $\lim_{n \to +\infty} \int_{-\pi}^{\pi} \cos^n(t) dt = 0$.

c) Grâce à une intégration par parties, montrer que $u_{n+2} = \frac{n+1}{n+2}u_n$.

d) Montrer que, pour tout $n \in \mathbb{N}$, $u_{2n+1} \neq 0$ et en déduire le rayon de convergence de $g: x \mapsto \sum_{n \geqslant 0} u_{2n+1} x^{2n+1}.$

e) Montrer que, pour tout $x \in]-1, 1[, (x^2-1)g''(x) + 3xg'(x) + g(x) = 0.$

f) Montrer que, pour tout $x \in]-1,1[,g(x)=\int_0^{\frac{\pi}{2}}\frac{x}{1-x\cos(t)}\mathrm{d}t.$

1632. [CCINP] Justifier l'existence de $\int_0^1 \frac{\ln(t)}{1-t^2} dt$ et l'exprimer comme somme d'une série.

1633. [IMT] Soit $F: x \mapsto \int_0^{+\infty} e^{-xt} \frac{\sin t}{t} \mathrm{d}t$. Préciser le domaine de définition de F. Montrer que F est de classe \mathcal{C}^1 et calculer F'. En déduire F.

1634. [IMT] Soit
$$\varphi: x \mapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$$
.

- a) Montrer que $x \mapsto \int_0^{+\infty} \cos(xt)e^{-t} dt$ est bien définie sur \mathbb{R} .
- **b)** Montrer l'existence de $K \in \mathbb{R}$ tel que, pour tout $x \in \mathbb{R}$, $\int_0^{+\infty} \cos(xt)e^{-t} dt = \frac{K}{1+x^2}$.
- c) Montrer que φ est définie sur \mathbb{R} .
- d) Montrer que φ est de classe \mathcal{C}^1 et exprimer $\varphi'(x)$ avec une intégrale, en déduire φ .

1635. [CCINP] Étudier
$$x \mapsto \int_1^{+\infty} \frac{\ln t}{t^x} dt$$
.

1636. [CCINP] Soit
$$f: x \mapsto \int_0^{+\infty} \frac{1}{(1+t^2)^x} dt$$
.

- a) Préciser le domaine de définition de f.
- **b)** Montrer que, pour $n \in \mathbb{N}^*$, f(n) = 2n(f(n) f(n+1)).
- c) En déduire que $f(n) = \frac{(2n-2)! \pi}{2^{2n-1}(n-1)!}$
- d) Étudier la monotonie de f.
- e) Montrer que f est continue.
- f) Préciser la nature de $\int_0^{+\infty} f(t) dt$.
- g) Trouver un équivalent de f en $+\infty$ et proposer une autre approche pour la question la précédente.

1637. [CCINP] *a*) Résoudre
$$y'(x) + 2\pi xy(x) = 0$$
 et $y(0) = 1$.

On donne
$$\int_0^{+\infty} \exp(-t^2) dt = \frac{\sqrt{\pi}}{2}.$$

- **b)** Établir que, pour tout $n \in \mathbb{N}$, $b_n : t \mapsto t^n \exp(-\pi t^2)$ est intégrable sur \mathbb{R} .
- c) Calculer $\int_{-\infty}^{+\infty} b_0(t) dt$.

d) On pose pour
$$n \in \mathbb{N}$$
, $B_n(x) = \int_{-\infty}^{+\infty} b_n(t) \exp(2i\pi xt) dt$.

Montrer que B_n est définie et de classe C^1 sur \mathbb{R} .

- e) Montrer que $B_0(x) = \exp(-\pi x^2)$.
- f) Montrer que $\forall n \in \mathbb{N}, \ B_n \in E$, où E est le \mathbb{R} -espace vectoriel des fonctions f définies sur \mathbb{R} et de la forme $f(x) = P(x) \exp(-\pi x^2)$ où P est un polynôme.

1638. [CCINP] Solutions sur \mathbb{R} de l'équation différentielle $2x^2y' + y = 1$?

1639. [ENSEA] Résoudre $y'' - 5y' + 4y = e^t \sin t$.

1640. [IMT] Soit $f:[0,1] \to \mathbb{R}$ continue. On cherche les fonctions y de classe \mathcal{C}^2 sur [0,1] qui vérifient $(P):(y''-y=f,\ y'(0)=y(0),\ y'(1)=-y(1))$. On admet l'existence d'une solution g_0 de l'équation différentielle y''-y=f.

- a) Déterminer l'ensemble des solutions de l'équation différentielle y'' y = f en fonction de g_0 .
- **b**) Montrer que (P) admet une unique solution à déterminer en fonction de g_0 et g_0'
- c) Montrer que $x \mapsto -\frac{e^x}{2} \int_x^1 f(t)e^{-t} dt \frac{e^{-x}}{2} \int_0^x f(t)e^t dt$ est la solution de (P).

1641. [CCINP] Soit $f:(x,y)\mapsto x^2(1+y)^3-y^2$.

- a) Montrer que f possède un minimum local sur \mathbb{R}^2 .
- b) Ce minimum local est-il global?

1642. [CCINP] On considère $f:(x,y) \in \mathbb{R} \times \mathbb{R}^{+*} \mapsto x^2y + y(\ln(y))^2$.

- a) Déterminer les points critiques de f.
- b) Déterminer les extrema locaux et globaux de f.

1643. [CCINP] Soit $f:(x,y) \mapsto x \ln(y) - y \ln(x)$.

- a) Montrer que le point (e, e) est un point critique.
- **b)** Calculer, de deux manières différentes, un développement limité à l'ordre 2 de $x \mapsto f(x-e,x+e)$. Qu'en déduire?

1644. [CCINP] Soit $f:(x,y)\mapsto xe^y+ye^x$. Trouver les points critiques de f sur \mathbb{R}^2 . Préciser leur nature.

1645. [CCINP] Soient $h:(x,y) \in \mathbb{R}^2 \mapsto x^3 - y^2$ et $C = \{(x,y), \ h(x,y) = 0\}.$

- a) Montrer que h est une fonction de classe C^1 , puis montrer que (0,0) est le seul point critique de h. La fonction h admet-elle un extremum local en (0,0)?
- **b)** Soit $f: \mathbb{R}^2 \to \mathbb{R}$, une fonction de classe C^1 telle que f(x,y) = 0 pour tout (x,y) dans C.
- i) Justifier que, pour tout $t \in \mathbb{R}$, $f\left(t^2, t^3\right) = 0$. En déduire que $\frac{\partial f}{\partial x}(0, 0) = 0$.
- *ii*) Pour $t \in \mathbb{R}$, soit $\varphi_t : u \mapsto f(t^2, u)$. Justifier que φ_t est dérivable sur \mathbb{R} et montrer qu'il existe $\gamma(t) \in \left] -t^3, t^3 \right[$ tel que $\varphi_t'(\gamma(t)) = 0$
- iii) Conclure que (0,0) est un point critique pour f.
- c) Représenter dans un repère orthonormé l'ensemble C.

Probabilités

1646. [IMT] Un secrétaire réalise n appels vers des correspondants distincts, de manière indépendante. On note $p \in]0,1[$ la probabilité d'obtenir le correspondant appelé. On note X le nombre de correspondants obtenus après le premier appel. On rappelle ensuite les correspondants n'ayant pas répondu la première fois. On note Y le nombre de correspondants répondant au second appel. Soit Z = X + Y.

- a) Quelle est la loi de X? Justifier.
- **b)** Pour $i \in [0, n]$, pour $k \in \mathbb{N}$, calculer $\mathbf{P}(Y = k \mid X = i)$.
- c) Quelle est la loi de Z? Calculer son espérance et sa variance.

1647. [Navale] Soient X, Y deux variables indépendantes suivant la loi $\mathcal{G}(p)$. Trouver la loi de Z = |X - Y| puis calculer son espérance.

1648. [Saint-Cyr] On lance une pièce qui donne pile avec la probabilité $p \in]0,1[$.

- a) Calculer la probabilité que la séquence PF apparaisse pour la première fois avec P au (n-1)-ème lancer et F au n-ème.
- b) Calculer la probabilité que la séquence PF apparaisse au moins une fois.
- c) Calculer la probabilité que la séquence PP apparaisse pour la première fois sans être précédée par la séquence PF
- **1649.** Soient X et Y deux variables aléatoires indépendantes, à valeurs dans \mathbb{N} telles que : $\forall k \in \mathbb{N}$, $\mathbf{P}(X=k) = \mathbf{P}(Y=k) = pq^k$ où $p \in]0,1[$ et q=1-p. Soient $U=\sup(X,Y)$ et $V=\inf(X,Y)$.
- a) Déterminer la loi du couple (U, V), puis celle de U.

On admet que, pour $n \in \mathbb{N}$, $\mathbf{P}(V = n) = pq^{2n}(1+q)$.

- b) Prouver que W = V + 1 suit une loi géométrique. En déduire l'espérance de V.
- c) Les variables U et V sont-elles indépendantes?
- **1650.** [CCINP] *a*) La matrice $\begin{pmatrix} \pi & 1 \\ 0 & \pi \end{pmatrix}$ est-elle diagonalisable?
- **b**) Soient X_1, X_2, X_3, X_4 i.i.d. de loi $\mathcal{B}(1/2)$. Calculer la probabilité que $\begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$ soit diagonalisable.
- **1651.** [IMT] Soit $M = \begin{pmatrix} X_1 & 1 \\ 0 & X_2 \end{pmatrix}$ avec X_1, X_2 indépendantes suivant la loi $\mathcal{B}(n, p)$. Déterminer la probabilité que M soit diagonalisable.
- **1652.** [IMT] Soient X,Y des variables aléatoires indépendantes à valeurs dans $\mathbb N$ telles que, pour tout $k\in\mathbb N$, $\mathbf P(X=k)=\mathbf P(Y=k)=\frac{1+a^k}{4\times k!}$ où $a\in\mathbb R$.
- a) Déterminer a.
- b) Déterminer l'espérance de X.
- c) Déterminer la loi de X + Y.
- **1653.** [IMT] On lance indéfiniment une pièce faisant Pile avec une probabilité $p \in]0, 1[$. Pour $n \in \mathbb{N}^*$, on note A_n l'événement « obtenir deux Pile consécutifs pour la première fois au bout du nème lancer » et $a_n = P(A_n)$.
- a) Calculer a_1, a_2, a_3 et a_4 .
- **b)** Déterminer une relation entre a_{n+2}, a_{n+1} et a_n .

- c) Montrer qu'il est quasi-certain qu'on obtienne deux Pile consécutifs.
- **1654.** [CCINP] Soient $p, q \in]0,1$ [. Soient X,Y deux variables aléatoires indépendantes qui suivent respectivement les lois $\mathcal{G}(p)$ et $\mathcal{G}(q)$. On définit la variable aléatoire $U = \min(X,Y)$.
- a) Pour $k \in \mathbb{N}^*$, calculer $\mathbf{P}(U > k)$.
- b) Déterminer la loi de U.
- c) Calculer l'espérance et la variance de U.