PROBLÈME 2 Les matrices de Kac

Notations

- Pour n ∈ N*, M_n(R) désigne l'ensemble des matrices carrées de taille n à coefficients réels et M_n(C) désigne l'ensemble des matrices carrées de taille n à coefficients complexes.
- Dans tout ce problème, les vecteurs de \mathbb{R}^n seront notés en colonnes.
- La lettre i désigne le nombre complexe usuel vérifiant $i^2 = -1$. On s'interdira d'utiliser cette lettre pour tout autre usage!

Objectifs

Le but de ce problème est d'étudier quelques propriétés spectrales de deux matrices $A_n \in \mathbf{M}_{n+1}(\mathbb{R})$ et $B_n \in \mathbf{M}_{n+1}(\mathbb{R})$ introduites par Mark Kac au milieu du XX° siècle. Ces liens ont été mis en évidence par Alan Edelman et Eric Kostlan au début des années 2 000.

Ce problème est divisé en quatre parties largement indépendantes. La **Partie I** introduit les matrices de Kac en taille 3 et met en évidence les propriétés qui seront démontrées en taille quelconque dans les **Parties II** et **III**. La **Partie IV** est une utilisation probabiliste d'une des deux matrices de Kac.

Partie I - La dimension 3

On considère les matrices :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & -1 & 0 \\ 2 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}.$$

- **Q15.** Déterminer le polynôme caractéristique $\chi_A = \det(XI_3 A)$ de A et le décomposer en facteurs irréductibles dans $\mathbb{R}[X]$.
- **Q16.** En déduire que la matrice A est diagonalisable sur \mathbb{R} . Donner la liste des valeurs propres de A et la dimension des espaces propres correspondants. On ne demande pas de déterminer les espaces propres de A dans cette question.
- **Q17.** Déterminer le polynôme caractéristique χ_B de B et le décomposer en facteurs irréductibles dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$. Vérifier que $\chi_A(X) = i\chi_B(iX)$.
- **Q18.** La matrice B est-elle diagonalisable sur \mathbb{R} ? Est-elle diagonalisable sur \mathbb{C} ? Donner la liste des valeurs propres réelles puis complexes de B et la dimension des espaces propres sur \mathbb{R} et \mathbb{C} correspondants. On ne demande pas de déterminer les espaces propres de B dans cette question.

On considère :

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -1 \end{pmatrix} \in \mathbf{M}_3(\mathbb{C}).$$

Q19. Exprimer $D^{-1}AD$ à l'aide de la matrice B.

Soit
$$\Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbf{M}_3(\mathbb{R}).$$

Q20. Calculer $\Delta^{-1}A\Delta$. En déduire à nouveau que la matrice A est diagonalisable sur \mathbb{R} .

Partie II - Étude d'un endomorphisme

Objectifs

Dans cette **partie**, on introduit la matrice B_n et on en étudie ses propriétés spectrales à l'aide d'un endomorphisme de dérivation.

Soit $n \in \mathbb{N}^*$ un entier naturel fixé. Pour $k \in [0, n]$, on note $f_k : \mathbb{R} \to \mathbb{C}$ la fonction définie par :

$$\forall x \in \mathbb{R}, f_k(x) = \cos^k(x) \sin^{n-k}(x).$$

On note V_n le \mathbb{C} -espace vectoriel défini par :

$$V_n = \operatorname{Vect}_{\mathbb{C}}(f_0, f_1, \dots, f_n) = \left\{ \sum_{k=0}^n \lambda_k f_k \mid (\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1} \right\}.$$

- **Q21.** Montrer que la famille (f_0, \ldots, f_n) est libre. En déduire la dimension de l'espace vectoriel complexe V_n .
- **Q22.** Pour $k \in [0, n]$, montrer que $f'_k \in V_n$. En déduire que :

$$\begin{array}{cccc} \varphi_n : & V_n & \to & V_n \\ & f & \mapsto & \varphi_n(f) = f' \end{array}$$

définit un endomorphisme de V_n et que sa matrice B_n dans la base (f_0, f_1, \ldots, f_n) est la matrice :

$$B_{n} = \begin{pmatrix} 0 & -1 & 0 & \cdots & \cdots & 0 \\ n & 0 & -2 & \ddots & & \vdots \\ 0 & n-1 & 0 & -3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & -n \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathbf{M}_{n+1}(\mathbb{R}).$$

Pour $k \in [0, n]$, on note $g_k : \mathbb{R} \to \mathbb{C}$ la fonction définie par : $\forall x \in \mathbb{R}, g_k(x) = e^{i(2k-n)x}$.

- **Q23.** Montrer que : $\forall x \in \mathbb{R}, \ g_k(x) = (\cos x + i \sin x)^k (\cos x i \sin x)^{n-k}$.
- **Q24.** En déduire, à l'aide de la formule du binôme de Newton, que : $\forall k \in [0, n], g_k \in V_n$.
- **Q25.** Pour $k \in [0, n]$, calculer g'_k . En déduire que φ_n est diagonalisable. Donner la liste des valeurs propres complexes de φ_n et décrire les espaces propres correspondants.
- **Q26.** Pour quelles valeurs de n l'endomorphisme φ_n est-il un automorphisme de V_n ?

Q27. Écrire la décomposition de g_n dans la base (f_0, \ldots, f_n) et en déduire que :

$$\operatorname{Ker}(B_n - i n I_{n+1}) = \operatorname{Vect} \begin{pmatrix} q_0 \\ q_1 \\ \vdots \\ q_n \end{pmatrix},$$

où pour tout $k \in [0, n]$, on note $q_k = i^{n-k} \binom{n}{k}$.

Partie III - Les matrices de Kac de taille n + 1

Objectifs

Dans cette **partie**, on introduit la matrice A_n . On utilise les résultats de la **Partie II** pour étudier les propriétés spectrales de la matrice A_n .

Soit $n \in \mathbb{N}^*$ un entier naturel fixé. On note A_n la matrice tridiagonale suivante :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ n & 0 & 2 & \ddots & & \vdots \\ 0 & n-1 & 0 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & n \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathbf{M}_{n+1}(\mathbb{R}).$$

Le terme général a_{kl} de la matrice A_n vérifie donc

- $a_{k,k+1} = k \text{ si } 1 \le k \le n$,
- $a_{k,k-1} = n k + 2 \text{ si } 2 \le k \le n + 1$,
- $a_{kl} = 0$ pour tous les couples $(k, l) \in [1, n+1]^2$ non couverts par les formules précédentes.

On note enfin $D_n \in \mathbf{M}_{n+1}(\mathbb{C})$ la matrice diagonale dont le k-ième terme diagonal d_{kk} vérifie $d_{kk} = i^{k-1}$.

- **Q28.** Soient $M = (m_{kl})_{1 \le k,l \le p} \in \mathbf{M}_p(\mathbb{C})$ une matrice de taille p et $D = (d_{kl})_{1 \le k,l \le p} \in \mathbf{M}_p(\mathbb{C})$ une matrice diagonale de taille p. Exprimer le terme général de la matrice DM en fonction des m_{kl} et des d_{kl} , puis exprimer le terme général de la matrice MD en fonction des m_{kl} et des d_{kl} .
- **Q29.** Montrer que $D_n^{-1}A_nD_n = -iB_n$ où B_n est la matrice déterminée dans la **Partie II**. En déduire une relation simple entre $\chi_{A_n}(X)$ et $\chi_{B_n}(iX)$, où χ_{A_n} et χ_{B_n} sont les polynômes caractéristiques respectifs de A_n et B_n .
- **Q30.** En déduire, à l'aide de la **Partie II**, que A_n est diagonalisable sur \mathbb{R} , que les valeurs propres de A_n sont les entiers de la forme 2k n pour $k \in [0, n]$ et que :

$$\operatorname{Ker}(A_n - n I_{n+1}) = \operatorname{Vect} \begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{pmatrix},$$

où pour tout $k \in [0, n]$, on note $p_k = \binom{n}{k}$.