Espaces préhilbertiens

1

_____(*) _____

Notons E l'ensemble de fonctions continues de [0;1] dans $\mathbb R$ et F le sous-espace vectoriel des éléments de E qui s'annulent en 0 et en 1. Déterminer F^{\perp} pour le produit scalaire

$$f|g = \int_0^1 f(t)g(t) \, \mathrm{d}t$$

 $\mathbf{2}$

(**)

Soient $a < b \in \mathbb{R}$. On munit $\mathbb{R}[X]$ du produit scalaire

$$P|Q = \int_{a}^{b} P(t)Q(t) \, \mathrm{d}t$$

- (a). Justifier l'existence et l'unicité d'une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes unitaires de $\mathbb{R}[X]$ telle que pour tout $n\in\mathbb{N}$, la famille (P_0,\ldots,P_n) est une base orthogonale de $\mathbb{R}_n[X]$.
- (b). Pour tout $n \in \mathbb{N}^*$, on définit les polynômes Q_1, \dots, Q_n par

$$Q_1(x) = \int_a^x P_n(t) dt \qquad \text{et} \qquad \forall k \in \llbracket 2; n \rrbracket \,, \quad Q_k(x) = \int_a^x Q_{k-1}(t) dt$$

Montrer que ces éléments sont divisibles respectivement par (X-a)(X-b), $(X-a)^2(X-b)^2$, ... $(X-a)^n(X-b)^n$.

(c). En déduire que pour tout entier n, il existe un réel k_n à déterminer tel que

$$P_n = k_n [(X - a)^n (X - b)^n]^{(n)}$$

3

__ (**)

CCP PC 2011

Soit $E = \mathcal{C}^2([0;1],\mathbb{R})$. On définit un produit scalaire sur E en posant

$$f|g = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$$

et on note $||\cdot||$ la norme euclidienne associée. On pose

$$\mathcal{V} = \{ f \in E, \ f'' = f \}$$
 $\mathcal{W} = \{ f \in E, \ f(0) = f(1) = 0 \}$ et $\mathcal{H} = \{ f \in E, \ f(0) = \text{ch}(1) \text{ et } f(1) = 1 \}$

- (a) Montrer que (ch, sh) est une base de \mathcal{V} .
- (b) Si $f \in \mathcal{V}$ et $g \in E$, montrer que

$$f|g = f'(1)g(1) - f'(0)g(0)$$

Calculer $\operatorname{ch}|\operatorname{sh}, ||\operatorname{ch}||^2 \operatorname{et} ||\operatorname{sh}||^2$.

- (c) Si $f \in \mathcal{V}$ et $g \in \mathcal{W}$, montrer que f|g = 0.
- (d) Soit $f \in \mathcal{H}$. Calculer f|ch et f|sh. En déduire les coordonnées dans la base (ch, sh) de la projection orthogonale de f sur \mathcal{V} .
- (e) Déterminer inf $\left\{ \int_0^1 (f'(t)^2 + f(t)^2) dt, f \in \mathcal{H} \right\}$.
- (f) Montrer que W est l'orthogonal de V.

Espaces euclidiens

4 .

_____(*) ___

Soit x et y deux vecteurs distincts d'un espace E euclidien de dimension supérieur ou égale à 2. On suppose que $(x|y) = ||y||^2$. Montrer qu'il existe un unique hyperplan H de E tel que la projection orthogonale de x sur H soit égale à y.

5 _

____ (**) _____

Soit E un espace euclidien et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Démontrer l'existence et l'unicité d'une base $\mathcal{B}' = (f_1, \dots, f_n)$ de E telle que

$$\forall 1 \le i, j \le n, \qquad (e_i | f_j) = \delta_{i,j} \tag{*}$$

6 | _

____ (**) _____

Soit E un espace euclidien et $u \in \mathcal{L}(E)$ 1-lipschitzienne. Montrer que $E = \operatorname{Im}(u - I_d) \bigoplus^{\perp} \operatorname{Ker}(u - I_d)$.

Soit E un espace euclidien de dimension n et (e_1, \ldots, e_n) une base orthonormale de E.

- (a). Soient $f_1, \ldots, f_n \in E$ tels que $\sum_{k=1}^n ||f_k||^2 < 1$. Montrer que la famille $(e_i + f_i)_{i \in [1,n]}$ est une base de E.
- (b). Soient v_1, \ldots, v_n des vecteurs unitaires tels que $\sum_{k=1}^n (v_k|e_k) > n \frac{1}{2}$. Montrer que $(v_i)_{i \in [\![1];n]\!]}$ est une base de E.

_____ (**) ______ X PC 2010

Soit $E = \mathbb{R}_2[X]$. Déterminer

$$\sup \left\{ \int_{-1}^{1} x P(x), \ P \in E / \int_{-1}^{1} P^{2}(t) \, \mathrm{d}t = 1 \quad \text{et} \quad \int_{-1}^{1} P(t) \, \mathrm{d}t = 0 \right\}$$

Endomorphismes et matrices orthogonales

Soit f un endomorphisme orthogonal de E euclidien.

- (a). Montrer que pour tout sous-espace vectoriel F de E, on a $(f(F))^{\perp} = f(F^{\perp})$.
- (b). Si $F = \text{Ker}(f I_d)$, montrer que $f(F^{\perp}) = F^{\perp}$.

10

_____(*) _____

Soit E un espace euclidien, a un élément non nul de E et enfin α un réel non nul. On note

$$f: \ E \longrightarrow E$$
$$x \longmapsto x + \alpha(a|x)a$$

- (a). Déterminer les valeurs propres et les vecteurs propres de f.
- (b). A quelle condition sur a et α l'endomorphisme f est-il orthogonal? Quelle est alors sa nature géométrique?

Soit $A \in \mathcal{M}_3(\mathbb{R})$ antisymétrique. On note

$$A = \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix} \quad \text{avec} \quad a, b, c \in \mathbb{R}$$

- (a). Montrer que $A + I_3$ est inversible, puis que $\Omega = (A + I_3)^{-1}(I_3 A)$ est orthogonale.
- (b). Justifier que -1 n'est pas valeur propre de Ω . Que peut-on dire de l'endomorphisme de \mathbb{R}^3 canoniquement associé à Ω ?
- (c). Réciproquement, toute élément de $\mathcal{O}_3(\mathbb{R})$ n'admettant pas le réel -1 pour valeur propre peut-il s'écrire sous forme $(A+I_3)^{-1}(I_3-A)$ avec A antisymétrique?

Endomorphismes symétriques

12

_____ (**) _____

Soit E un espace euclidien et $f \in \mathcal{S}(E)$. Montrer que f a une trace nulle si et seulement si il existe une base orthonormée dans laquelle f a une matrice dont la diagonale ne comporte que des 0.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique telle que $A^{10} = I_n$. Montrer que $A^2 = I_n$.

Soit E un espace euclidien et p,q deux projections orthogonales de E.

- (a). Montrer que le spectre de p + q est non vide.
- (b). Soit λ une valeur propre de p+q et x un vecteur propre associé. Montrer que Vect $\{x,p(x)\}$ est stable à la fois par p et par q. En déduire que E est somme directe de sous-espaces vectoriels de dimension 1 ou 2 stables par p et q.
- (c). Montrer que $p \circ q$ est diagonalisable.

_____ (**) _____

Soient a < b deux réels et f_1, \ldots, f_n des fonctions continues de [a; b] dans \mathbb{R} . On pose

$$A = (a_{i,j})_{i,j \in [1;n]} \quad \text{avec} \quad \forall i, j, \quad a_{i,j} = \int_a^b f_i(t) f_j(t) \, \mathrm{d}t$$

- (a). Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$ puis que $A \in \mathcal{S}_n^{++}(\mathbb{R})$ si et seulement si la famille (f_1, \dots, f_n) est libre.
- (b). En déduire que $(1/(i+j-1))_{i,j\in[1;n]} \in \mathcal{S}_n^{++}(\mathbb{R})$.

_____ Mines PC 2008

Soit $A \in \mathcal{S}_n(\mathbb{R})$. On pose $B = A^3 + A + I_n$. Justifier qu'il existe $P \in \mathbb{R}[X]$ tel que A = P(B).

_____(*) ___

Soit E un espace euclidien et $f,g\in\mathcal{S}(E)$. Montrer l'équivalence des propriétés suivantes

- (i) f et g commutent.
- (ii) $f \circ g \in \mathcal{S}(E)$.
- (iii) f et g admettent une base commune de vecteurs propres.

Soit n un entier. Notons $E = \mathbb{R}_n[X]$ et considérons $u: E \longrightarrow E$ définie par

$$u(P) = (1 + X^2)P' - nxP$$
 d'où $\forall x \in \mathbb{R}, \quad u(P)(x) = (1 + x^2)^{1 + n/2} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{P(x)}{(1 + x^2)^{n/2}} \right)$

(a). Vérifier que l'application suivante est bien définie et est un produit scalaire sur E

$$(R,S) \longrightarrow R|S = \int_{-\infty}^{\infty} \frac{R(t)S(t)}{(1+t^2)^{n+1}} dt$$

(b). Montrer que u est un endomorphisme antisymétrique pour le produit scalaire ci-dessus, c'est-à-dire que

$$\forall R, S \in E, \qquad (u(R)|S) = -(R|u(S))$$

Déterminer ses valeurs propres et les sous-espaces propres associés.

______ (**) ______ X PC 2010

Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique.

- (a) Montrer que les valeurs propres de A sont imaginaires pures.
- (b) Montrer que $\det(A + I_n) \ge 1$.
- (c) Montrer que pour toute matrice $S \in \mathcal{S}_n^{++}(\mathbb{R})$, $\det(A+S) \geq \det(S)$.

_____(**) _____

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$ et $U \in \mathcal{O}_n(\mathbb{R})$. Montrer que Tr $AU \leq \text{Tr } A$ avec égalité si et seulement si AU = A.

____ (*) ____

_____ CCP PC 2019

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A \cdot A^T \cdot A = I_n$. Montrer que A est diagonalisable puis que $A = I_n$.

Exercices supplémentaires non corrigés

_____(?) _____

_____ ENS PC 2024

Soient $n, k \in \mathbb{N}^*$ et (f_1, \dots, f_k) une famille de vecteurs de \mathbb{R}^n . On suppose que

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \quad \exists i \in [1; k], \quad (x|f_i) > 0$$

- (a). Donner un exemple de famille de \mathbb{R}^n vérifiant cette propriété.
- (b). Montrer que (f_1, \ldots, f_k) est une famille génératrice de \mathbb{R}^n .

______ (?) ______ Mines PC 2024

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M est antisymétrique si et seulement si pour tout matrice $P \in \mathcal{O}_n(\mathbb{R})$, la matrice P^TMP est à diagonale nulle.

24

______ (**) ______ ENS PC 2024

Soit E un espace euclidien, a un endomorphisme auto-adjoint et $u \in E$ non nul. On note $V = \text{Vect}\{a^k(u), k \in \mathbb{N}\}$. Montrer que l'endomorphisme induit par a sur V n'a que des valeurs propres simples.

25

_____ (**) ______ ENS PC 2024

- (a). Soit $S \in \mathcal{S}_n(\mathbb{R})$ inversible. Montrer que les assertions suivantes sont équivalentes :
 - (i) S admet k valeurs propres positives (comptées avec multiplicité).
 - (ii) Il existe des sous-espaces vectoriels F et G de E tels que $\dim F = k$, $\dim G = n k$ et

$$\forall X \in F, \quad X^T S X \ge 0 \quad \text{et} \quad \forall X \in G, \quad X^T S X \le 0$$

(b). Soit $P \in \mathcal{G}\ell_n(\mathbb{R})$. Montrer que P^TSP et S ont le même nombre de valeurs propres positives.

______ (*) ______ X PC 2024

Montrer que pour toute matrice symétrique $A \in \mathcal{S}_n(\mathbb{R})$, il existe un unique couple (B,C) de matrices symétriques positives telles que

$$A = B - C$$
 et $BC = CB = 0$

27

______ (**) ______ X PC 2024

Soient $A, B \in \mathcal{S}_n(\mathbb{R})$ dont les valeurs propres sont strictement supérieures à 1. Montrer que les valeurs propres de AB sont strictement supérieures à 1.

Soient $A \in \mathcal{S}_n(\mathbb{R})$ et $k \in \mathbb{N}^*$. Pour $H \in \mathcal{S}_n(\mathbb{R})$, on pose

$$\varphi_k(H) = \sum_{i=0}^{k-1} A^i H A^{k-1-i}$$

- (a). Montrer que φ_k est un endomorphisme de $\mathcal{S}_n(\mathbb{R})$.
- (b). A quelle condition φ_k est-elle injective? surjective? bijective?

29

______ (*) ______ Mines PC 2024

Soit E un espace euclidien et $u \in \mathcal{S}^{++}(E)$. Montrer qu'il existe m > 0 et un ouvert Ω dense dans E tel que

$$\forall x \in \Omega, \qquad \frac{\left|\left|u^{k+1}(x)\right|\right|}{\left|\left|u^{k+1}(x)\right|\right|} \xrightarrow[k \to +\infty]{} m$$

- Il s'agit de montrer que $F^{\perp} = \{0\}$. Soit $g \in F^{\perp}$. Choisir un élément f judicieux de F de sorte que f|g soit l'intégrale d'une fonction continue et positive.
- 2 (a) Pour l'existence, utiliser le procédé de Schmidt. Pour l'unicité, considérer deux familles $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ de polynômes convenant et montrer que $A_n=B_n$ pour tout entier n par récurrence.
 - (b) Pour montrer que $Q_k(b) = 0$ pour $k \leq n$, on pourra faire des intégrations par parties successives en utilisant que $Q|P_n$ est nul pour tout $P \in \mathbb{C}[X]$.
- 4 Un dessin permet de se rendre compte que sous réserve d'existence, H est nécessairement l'orthogonal de x-y. Justifier que ce dernier convient et que c'est le seul.
- $\fbox{\bf 5}$ Raisonner par analyse-synthèse en remarquant que $\left[\operatorname{Vect}\left\{e_i\right\}_{i\neq j}\right]^{\perp}$ est une droite vectorielle.
- Considérer x dans $\operatorname{Ker}(u I_d)$ et y dans $\operatorname{Im}(u I_d)$. Montrer que x et y sont orthogonaux en considérant la quantité $||u(a + \lambda x)||^2 ||a + \lambda x||^2$ où λ est un réel arbitraire et a est tel que $y = (u I_d)(a)$.
- (a) Etant donnés $(\lambda_1, \ldots, \lambda_n)$ tels que $\lambda_1 u_1 + \cdots + \lambda_n u_n = 0$, considérer de deux façons différentes la norme du vecteur $\lambda_1 e_1 + \cdots + \lambda_n e_n$.
 - (b) Utiliser le (a) avec une famille (f_1, \ldots, f_n) bien choisie.
- **8** Il s'agit de déterminer $\sup \{u|v, ||u|| = 1 \text{ et } u \in H\}$
 - où $(\cdot | \cdot)$ est un produit scalaire judicieusement choisi sur $\mathbb{R}_2[X]$ et H un hyperplan. Raisonner ensuite à l'aide du projeté orthogonal de v sur H et utiliser Cauchy-Schwarz.
- 10 Utiliser une base orthonormée de E judicieusement choisie.
- 11 (a) Calculer ${}^t\Omega \cdot \Omega$.
 - (b) On pourra montrer que si X vérifie $\Omega X = -X$, alors X = 0 et calculer $\det \Omega$.
 - (c) Commencer par calculer det Ω dans le cas b = c = 0 et $a = \tan \theta$ avec $|\theta| < \pi/2$.
- [12] Si f est de trace nulle, on pourra commencer par justifier l'existence d'un vecteur u unitaire tel que f(u) et u sont orthogonaux. A cet effet, introduire une base (e_1, \ldots, e_n) de diagonalisation de f, et considérer une combinaison linéaire judicieuse de ses éléments.
 - Démontrer ensuite le résultat en raisonnant par récurrence sur la dimension de E (il sera sans doute plus commode de raisonner matriciellement).
- 13 Remarquer que le polynôme $X^{10} 1$ n'admet que 1 et -1 comme racines réelles.
- **14** (a) Remarquer que p+q est symétrique.
 - (b) Utiliser le fait qu'un sous-espace stable par un endomorphisme u auto-adjoint a également son orthogonal stable par u. Pour la deuxième partie, raisonner par récurrence sur la dimension de E.
 - (c) A l'aide de ce qui précède, se ramener au cas de la dimension 1 ou 2 et vérifier le résultat par le calcul dans ces deux cas
- 15 | Ecrire pour tout X dans \mathbb{R}^n la quantité tXAX comme l'intégrale sur [a;b] du carré d'une fonction.
- **16** Diagonaliser A et utiliser le fait que $x \mapsto x^3 + x + 1$ est injective sur \mathbb{R} .
- Pour (i) \Rightarrow (iii), raisonner par récurrence sur dim E en utilisant la stabilité par g des sous-espaces propres de f.
- 18 (b) Utiliser des intégration par parties soigneuses.
- **19** Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique.
 - (a) Poser B = iA et remarquer que tB est la conjuguée de B. Justifier alors que le spectre de B est réel à l'aide d'une preuve similaire à celle du cours pour les matrices symétriques.
 - (b) On pourra trigonaliser A et utiliser le (a).
 - (c) Justifier l'existence de R symétrique et inversible telle que $S=R^2$ et remarquer alors que $R^{-1}AR^{-1}$ reste antisymétrique.
- 20 Pour l'inégalité, utiliser une diagonalisation en base orthogonale et une propriété de la trace.
- **21** Montrer que A est inversible puis que A est symétrique en l'exprimant en fonction de A^{-1} .