Dans tout le chapitre, les fonctions étudiées sont définies sur un intervalle I de \mathbb{R} contenant au moins deux points et sont à valeurs dans un espace vectoriel F de dimension finie (en pratique \mathbb{R}^n ou $\mathcal{M}_n(\mathbb{R})$, en sachant que l'on peut toujours s'y ramener à l'aide d'un isomorphisme). Par conséquent, toutes les propriétés vues dans le chapitre précédent sur les evn sont vérifiées pour ces fonctions, et les notions abordées dans ce nouveau chapitre sont valables indépendamment de la norme choisie sur F.

Exemple 1

$$f_1: \mathbb{R} \longrightarrow \mathbb{R}^2$$
$$t \longmapsto (\cos t, \sin t)$$

$$f_2: \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{R})$$

 $\theta \longmapsto (\cos(i \cdot j \cdot \theta))_{i,j \in \llbracket 1;n \rrbracket}$

$$f_3: \mathbb{R} \longrightarrow \mathbb{K}_n[X]$$

 $\alpha \longmapsto (X - \alpha)^n$

1 Dérivée d'une fonction vectorielle de la variable réelle

1.1 Définitions

Définition 1

Soit I un intervalle de \mathbb{R} . Une fonction $f: I \longrightarrow F$ est dite dérivable en $x_0 \in I$ si l'application

$$\tau_{x_0}: I \setminus \{x_0\} \longrightarrow F$$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

a une limite en x_0 . On l'appelle alors la dérivée de f en x_0 et on la note $f'(x_0)$.

On dit de même que f est dérivable à gauche (resp. à droite) en x_0 si la restriction de f à $]-\infty; x_0] \cap I$ (resp. $[x_0; +\infty[\cap I)$ est dérivable en x_0 . On la note alors $f'_q(x_0)$ (resp. $f'_d(x_0)$).

Proposition 1

Soit x_0 un point de I différent des bornes de I et $f:I\longrightarrow F$. On a équivalence de :

- (i) f est dérivable en x_0 .
- (ii) f est dérivable à gauche et à droite en x_0 et $f'_q(x_0) = f'_d(x_0)$.

(Définition 2)-

Une fonction $f: I \longrightarrow F$ est dite dérivable sur l'intervalle I si elle est dérivable en tout point de I. Dans ce cas, on appelle fonction dérivée de f et on note f' l'application

$$f': I \longrightarrow F$$
 $x \longmapsto f'(x)$

Exemple 2

- La fonction $x \mapsto |x|$ est dérivable sur \mathbb{R}^* , à gauche et à droite en 0, mais pas dérivable en 0.
- L'application $x \mapsto x^2 \sin(1/x)$ prolongée par continuité en 0 est dérivable sur \mathbb{R} , mais sa dérivée n'a pas de limite en 0.

Exercice 1 (Théorème de Darboux)

Si f est dérivable sur I et à valeurs réelles, alors f' vérifie la propriété des valeurs intermédiaires :

$$\forall a, b \in I, \quad \forall \lambda \in [f'(a); f'(b)] \text{ (ou } [f'(b); f'(a)] \text{ si } f'(a) > f'(b), \quad \exists c \in [a; b], \quad f'(c) = \lambda$$

1.2 Propriétés des fonctions dérivables

$\{Proposition 2\}$

Soit I un intervalle de \mathbb{R} . Toute fonction $f: I \longrightarrow F$ dérivable en un point x_0 est continue en x_0 . La réciproque est fausse.

Proposition 3

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de F et $f: I \longrightarrow F$. Alors f est dérivable en x_0 si et seulement chacune de ses fonctions coordonnées f_1, \dots, f_n dans la base \mathcal{B} l'est et alors

$$f'(x_0) = \sum_{k=1}^{n} f'_i(x)e_i$$

Exemple 3

Les fonctions f_1, f_2 et f_3 du premier exemple sont dérivables avec pour tout $t, \theta, \alpha \in \mathbb{R}$

$$f_1'(t) = (-\sin t, \cos t) \qquad \qquad f_2'(\theta) = \left(-i \cdot j \sin(i \cdot j \cdot \theta)\right)_{i,j \in \llbracket 1;n \rrbracket} \qquad \qquad f_3'(\alpha) = -n(X-\alpha)^{n-1}$$

Corollaire 1 (Cas des fonctions complexes)

Une application $f: I \longrightarrow \mathbb{C}$ est dérivable en x_0 si et seulement si Re f et Im f le sont et alors

$$f'(x_0) = (\text{Re } f)'(x_0) + i (\text{Im } f)'(x_0)$$

De même, f est dérivable si et seulement si \overline{f} l'est et alors

$$(\overline{f})'(x_0) = \overline{f'(x_0)}$$

Proposition 4

Soit $f: I \longrightarrow F$ une application dérivable. La fonction est constante si et seulement f' est nulle sur I.

Proposition 5

Si $f: I \longrightarrow F$ et $g: I \longrightarrow F$ sont dérivables en x_0 , alors pour tout $\lambda \in \mathbb{K}$, $\lambda f + g$ est dérivable en \mathbb{K} et

$$\left(\lambda f + g\right)'(x_0) = \lambda f'(x_0) + g(x_0)$$

Proposition 6

Soit $f: I \longrightarrow F$ dérivable en x_0 et $u \in \mathcal{L}(F, G)$ avec G un espace vectoriel de dimension finie. Alors $u \circ f$ est dérivable en x_0 et

$$(u \circ f)'(x_0) = u(f'(x_0))$$

Exemple 4

Considérons $A: I \longrightarrow \mathcal{M}_n(\mathbb{K})$ dérivable en x_0 et $P \in \mathcal{G}\ell_n(\mathbb{K})$. Alors, l'application $B: t \longmapsto P^{-1}A(t)P$ est dérivable en x_0 et

$$B'(x_0) = P^{-1}A'(t)P$$

Proposition 7

Soient $p \in \mathbb{N}^*$, F_1, \ldots, F_p et G des espaces vectoriels de dimensions finies et $B: F_1 \times \cdots \times F_p \longrightarrow G$ une application p-linéaire. Alors, si pour tout $i \in [1; p]$, l'application $f_i: I \longrightarrow F_i$ est dérivable en x_0 , alors l'application $t \longmapsto B(f_1(t), \ldots, f_p(t))$ est dérivable en x_0 et

$$(B(f_1,\ldots,f_p))'(x_0) = \sum_{k=1}^p B(f_1(x_0),\ldots,f_{i-1}(x_0),f_i'(x_0),f_{i+1}(x_0),\ldots,f_p(x_0))$$

Exemple 5

Etant donnés $A, B: I \longrightarrow \mathcal{M}_n(\mathbb{K})$ et $X: I \longrightarrow \mathbb{K}^n$ dérivables. Alors les application $A \cdot B$ et AX sont dérivables avec

$$(A \cdot B)'(t) = A'(t)B(t) + A(t)B'(t)$$
 et $(A \cdot X)'(t) = A'(t)X(t) + A(t)X'(t)$

De la même manière, étant donné $f: I \longrightarrow F$ et $\gamma: I \longrightarrow \mathbb{K}$, alors γf est dérivable et

$$(\gamma \cdot f)'(t) = \gamma'(t)f(t) + \gamma(t)f'(t)$$

Corollaire 2

Si X_1, \ldots, X_n sont des applications d'un intervalle I de \mathbb{R} dans \mathbb{K}^n dérivables en t_0 , alors l'application $\varphi : t \longmapsto \det(X_1(t), \ldots, X_n(t))$ est dérivable en t_0 et

$$\forall i \in [1; n], \qquad \varphi'(t_0) = \sum_{k=1}^n \det (X_1(t_0), \dots, X_{i-1}(t_0), X_i'(t_0), X_{i+1}(t_0), \dots, X_n(t_0))$$

Remarque 1

Attention à la non-commutativité du produit matriciel !! Par exemple, si $t \mapsto A(t)$ est dérivable en x_0 , il en est de même de $t \mapsto A(t)^2$ mais

$$(A^2)'(t) = A'(t)A(t) + A(t)A'(t) \neq 2A'(t)A(t)$$

si les matrices A(t) et A'(t) ne commutent pas. En revanche, si les deux matrices commutent, on prouve par une récurrence immédiate que pour tout entier $k, t \mapsto A(t)^k$ est dérivable en x_0 avec

$$(A^k)'(t) = kA'(t)A(t)^{k-1}$$

Exercice 2

Soit $A:t\longmapsto A(t)$ une application dérivable. On suppose que pour tout t, A(t) est une matrice inversible. Montrer que $A^{-1}:t\longmapsto A(t)^{-1}$ est dérivable et que pour tout t,

$$(A^{-1})'(t) = -A(t)^{-1}A'(t)A(t)^{-1}$$

Remarque 2

La formule de la remarque précédente reste à nouveau valide pour tout $k \in \mathbb{Z}$ dès lors que A'(t) et A(t) commutent.

Corollaire 3

Soit F un espace euclidien et $f, g: I \longrightarrow F$ des applications dérivables en t_0 . Alors la fonction $f|g: t \longmapsto f(t)|g(t)$ est dérivable en t_0 et

$$(f|g)'(t_0) = f'(t_0)|g(t_0) + f(t_0)|g'(t_0)$$

En particulier, l'application $t \longmapsto \left|\left|f(t)\right|\right|^2$ est dérivable en t_0 avec

$$(||f||^2)'(t_0) = 2f'(t_0)|f(t_0)$$

Remarque 3

On remarquera en particulier que le vecteur f(t) est de norme constante si et seulement si pour tout réel t, les vecteurs f(t) et f'(t) sont orthogonaux.

Proposition 8

Soit $\varphi: I \longrightarrow \mathbb{R}$ et $f: J \longrightarrow F$ avec $\varphi(I) \subset J$ et respectivement dérivables en $x_0 \in I$ et $\varphi(x_0) \in J$. Alors $f \circ \varphi: I \longrightarrow F$ est dérivable en x_0 et

$$(f \circ \varphi)'(x_0) = \varphi'(x_0) \cdot f'(\varphi(x_0))$$

Corollaire 4

Si F est un espace euclidien et $f: I \longrightarrow F$ une application dérivable en x_0 avec $f(x_0) \neq 0$, alors ||f|| est dérivable en x_0 et

$$(||f||)'(x_0) = \frac{f'(x_0)|f(x_0)}{||f(x_0)||}$$

Remarque 4

Ce résultat n'est plus vrai si la norme utilisée sur F n'est plus une norme euclidienne (ie qui découle d'un produit scalaire) car il utilise la bilinéarité du produit scalaire dont découle la norme.

1.3 Fonctions dérivées d'ordre supérieures

Définition 3

- Si la fonction dérivée f' d'une fonction $f : \longrightarrow F$ est dérivable sur I, on dit que f est 2 fois dérivable sur I et la dérivée de f' est appelée la dérivée seconde de f et notée f''.
- Par récurrence, on définit de la même manière la dérivée d'ordre k de f si elle existe et on la note $f^{(k)}$.

(Définition 4)-

La fonction $f: I \longrightarrow F$ est dite de classe \mathcal{C}^n si elle est n fois dérivable sur I et si sa dérivée n-ième est continue sur I. Elle est dite \mathcal{C}^{∞} si elle est n fois dérivable sur I pour tout entier n.

L'ensemble des fonctions de classe C^n (resp. C^{∞}) sur I et à valeurs dans F est noté $C^n(I, F)$ (resp. $C^{\infty}(I, F)$. Pour tout $n \geq 1$, on note également $D^n(I, F)$ l'ensemble des fonctions n fois dérivables sur I.

Remarque 5

Toutes les dérivées d'une fonction \mathcal{C}^{∞} sont elles-mêmes des fonctions \mathcal{C}^{∞} .

Proposition 9

Soit $p \in \mathbb{N} \cup \{\infty\}$. Une fonction $f: I \longrightarrow F$ est de classe C^p sur I si et seulement si elle est de classe C^p sur tout segment inclus dans I.

Proposition 10

Soit $p \in \mathbb{N} \cup \{\infty\}$. Une application $f: I \longrightarrow F$ est p fois dérivable sur I (resp. de classe C^p) si et seulement si ses fonctions coordonnées dans une base quelconque le sont.

En particulier, si $F = \mathbb{C}$, f est de classe \mathcal{C}^p si et seulement si Re f et Im f le sont.

Remarque 6

Entre le programme actuel et le précédent, la mention « opérations sur les fonctions de classe C^k » a disparu. Les propositions qui vont suivrent ne sont donc pas officiellement au programme, sauf pour des fonctions à valeurs réelles (voire complexes) puisqu'ils sont dans ce cas au programme de PCSI.

Proposition 11

Soit I un intervalle de \mathbb{R} et $p \in \mathbb{N} \cup \{\infty\}$. Les ensembles $D^p(I, F)$ et $\mathcal{C}^p(I, F)$ sont des sous-espaces vectoriels de F^I . Ils sont de plus stables par produit lorsque $F = \mathbb{K}$.

Proposition 12 (Formule de Leibnitz)

La formule de Leibnitz se généralise également de la manière suivante. Soit $p \in \mathbb{N} \cup \{\infty\}$ et $B: F_1 \times F_2 \longrightarrow G$ bilinéaire. Si F_1 et F_2 sont deux applications p fois dérivables sur I, alors $B(F_1, F_2)$ l'est également et pour tout $t \in I$,

$$(B(F_1, F_2))^{(p)}(t) = \sum_{k=0}^{p} {p \choose k} B(F_1^{(k)}(t), F_2^{(p-k)}(t))$$

Par conséquent, si f_1 et f_2 sont de classe \mathcal{C}^p , alors $B(f_1, f_2)$ l'est également.

Exemple 6

- \bullet Si $F = \mathbb{K}$, on retrouve le résultat connu sur le produit d'application de la variable réelle à valeurs dans \mathbb{K}
- Etant donné deux applications $A, B: I \longrightarrow \mathcal{M}_n(\mathbb{K})$ p fois dérivable sur I, leur produit matriciel est p fois dérivable sur I avec pour tout t,

$$(A \cdot B)^{(p)}(t) = \sum_{k=0}^{p} {p \choose k} A^{(k)}(t) \cdot B^{(p-k)}(t)$$

On prendra garde à nouveau au fait que le produit n'est pas nécessairement commutatif!

• Si F est un espace euclidien et si f, g sont deux applications de I dans F p fois dérivables, alors f|g l'est et pour tout réel t de I,

$$(f|g)^{(p)}(t) = \sum_{k=0}^{p} \binom{p}{k} f^{(k)}(t)|g^{(p-k)}(t)$$

Cette fois, la propriété de symétrie du produit scalaire autorise à permuter f et g.

Proposition 13

Pour $p \in \mathbb{N} \cup \{\infty\}$, si $f \in \mathcal{C}^p(I,R)$ et $g \in \mathcal{C}^p(J,F)$ avec J un intervalle de \mathbb{R} tel que $f(I) \subset J$, alors $g \circ f$ appartient à $\mathcal{C}^p(I,F)$.