1 Endomorphismes et matrices orthogonales

1.1 Isométries vectorielles

Proposition 1

Soit E un espace euclidien et $f \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes

(i) f conserve le produit scalaire, c'est-à-dire

$$\forall x, y \in E, \qquad f(x)|f(y) = x|y$$

(ii) f conserve la norme, c'est-à-dire que

$$\forall x \in E, \qquad ||f(x)|| = ||x||$$

- (iii) Il existe une base orthonormée de E dont l'image par f est une base orthonormée.
- (iv) L'image de toute base orthonormée de E est une base orthonormée de E.

(Définition 1)

Un endomorphisme de E vérifiant l'une de ces propriétés est appelée une isométrie vectorielle (ou endomorphisme orthogonal). L'ensemble des isométries vectorielles de E est noté $\mathcal{O}(E)$ et appelé le groupe orthogonal.

Exemple 1

- Les applications Id_E et $-\mathrm{Id}_E$ sont des isométries vectorielles. Ce sont les seules homothéties de $\mathcal{O}(E)$.
- Pour tout espace euclidien E de base (e_1, \ldots, e_n) et toute permutation σ de [1; n], l'endomorphisme de E tel que

$$\forall i \in [1; n], \qquad f(e_i) = e_{\sigma(i)}$$

est un élément de $\mathcal{O}(E)$.

\bigcap Remarque 1

Toute application qui conserve le produit scalaire est linéaire. Ce n'est pas le cas d'une application qui conserve la norme comme par exemple

$$\varphi: \quad \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (\sqrt{x^2 + y^2}, 0)$$

(Corollaire 1)

Toute symétrie orthogonale est une isométrie vectorielle.

(Proposition 2)

L'ensemble $\mathcal{O}(E)$ est un sous-groupe de $\mathcal{G}_{\ell}(E)$ muni de la composition. On l'appelle le groupe orthogonal.

Remarque 2

Un projecteur orthogonal n'est pas un élément de $\mathcal{O}(E)$ sauf si c'est l'identité.

Proposition 3

Les seules valeurs propres possibles d'un élément de $\mathcal{O}(E)$ sont 1 et -1. De plus, $\operatorname{Ker}(f-\operatorname{Id})^{\perp}$ et $\operatorname{Ker}(f-\operatorname{Id})^{\perp}$ sont stables par f, et plus généralement, si G est un sous-espace vectoriel de E stable par f, son orthogonal est également stable par f.

Remarque 3

- Le polynôme caractéristique de $f \in \mathcal{O}(E)$ peut très bien avoir des racines non réelles. On peut justifier toutefois qu'elles sont alors de module 1.
 - Par exemple, une rotation de \mathbb{R}^2 d'angle θ admet pour valeurs propres les complexes $e^{i\theta}$ et $e^{-i\theta}$.
- Les endomorphismes induits sur $\operatorname{Ker}(f-\operatorname{Id})^{\perp}$ et $\operatorname{Ker}(f+\operatorname{Id})^{\perp}$ conservent toujours la norme donc sont eux aussi orthogonaux.

1.2 Matrices orthogonales

(Définition 2)

Un élément M de $\mathcal{M}_n(\mathbb{R})$ est dit orthogonal si l'endomorphisme de \mathbb{R}^n canoniquement associé à M est un endomorphisme orthogonale de \mathbb{R}^n pour son produit scalaire canonique.

Proposition 4

- Toute matrice orthogonale est inversible.
- L'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ est un sous-groupe de $\mathcal{G}\ell_n(\mathbb{R})$ appelé le groupe orthogonale et noté $\mathcal{O}_n(\mathbb{R})$.
- L'application qui à $f \in \mathcal{O}_n(\mathbb{R})$ associe sa matrice respectivement à la base canonique est un isomorphisme de groupes.

Proposition 5

On muni $\mathcal{M}_{n,1}(\mathbb{R})$ et $\mathcal{M}_{1,n}(\mathbb{R})$ de leurs structures euclidiennes usuelles. Soit $M \in \mathcal{M}_n(\mathbb{R})$. On a équivalence de

- (i) $M \in \mathcal{O}_n(\mathbb{R})$
- (ii) Les colonnes de M forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$.
- (iii) Les vecteurs lignes de M forment une base orthonormée de $\mathcal{M}_{1,n}$.
- (iv) $M^T M = M M^T = I_n$.

Proposition 6

Si $M \in \mathcal{O}_n(\mathbb{R})$, alors son déterminant appartient à $\{-1,1\}$. L'ensemble des matrices de déterminant 1 de $\mathcal{O}_n(\mathbb{R})$ est un sous-groupe de $\mathcal{O}_n(\mathbb{R})$, noté $\mathcal{SO}_n(\mathbb{R})$ et appelé groupe spécial orthogonal.

1.3 Caractérisation par les matrices

Proposition 7

Soit E un espace euclidien de dimension n et \mathcal{B} une base orthonormée de E. Une base \mathcal{B}' de E est orthonormée si et seulement si la matrice de passage de \mathcal{B} à \mathcal{B}' est élément de $\mathcal{O}_n(\mathbb{R})$.

Définition 3

- Soit \mathcal{B} une base orthonormée de \mathbb{R}^n pour le produit scalaire canonique. Alors \mathcal{B} est appelée une base orthonormée directe si et seulement si det $P_{\operatorname{Can},\mathcal{B}} = 1$, indirecte si det $P_{\operatorname{Can},\mathcal{B}} = -1$.
- \bullet Plus généralement, soit E un espace euclidien quelconque et $\mathbb B$ l'ensemble des bases orthonormées de E.
 - Deux bases \mathcal{B} et \mathcal{B}' sont dites de mêmes sens lorsque det $P_{\mathcal{B},\mathcal{B}'}=1$
 - o L'ensemble \mathbb{B} est alors la réunion disjointe de deux sous-ensembles \mathbb{B}_1 et \mathbb{B}_2 où tous les éléments de \mathbb{B}_1 (resp \mathbb{B}_2) sont de même sens, et de sens opposé à tout élément de \mathbb{B}_2 (resp. \mathbb{B}_1).

Une orientation de E consiste à choisir soit \mathbb{B}_1 , soit \mathbb{B}_2 comme l'ensemble des bases orientées directes, tandis que l'autre famille est celle des bases orientées indirectes. Il y a donc deux choix d'orientation possibles pour tout E. Si $E = \mathbb{R}^n$, les bases orientées directes sont les éléments qui sont de même sens que la base canonique.

Proposition 8

Si E est un espace euclidien et f un endomorphisme de E, les propriétés suivantes sont équivalentes

- (i) f est une isométrie vectorielle.
- (ii) Il existe une base orthonormée de E dans laquelle la matrice de f est orthogonale.
- (iii) La matrice de f dans n'importe quelle base orthonormée est orthogonale.

(Corollaire 2)

Une isométrie vectorielle a pour déterminant 1 ou -1. Une réflexion (c'est-à-dire une symétrie orthogonale par rapport à un hyperplan) a pour déterminant -1.

Exercice 1

Montrer que toute matrice inversible M de $\mathcal{M}_n(\mathbb{R})$ s'écrit de manière unique $M = T \cdot O$ avec O orthogonale et T triangulaire supérieure avec des coefficients strictement positifs sur la diagonale.

1.4 Isométries vectorielles d'un plan euclidien

Proposition 9

Si
$$n=2$$
, on a

$$\mathcal{O}_2(\mathbb{R}) = \left\{ \begin{pmatrix} \cos \theta & -\epsilon \sin \theta \\ \sin \theta & \epsilon \cos \theta \end{pmatrix}, \quad \theta \in \mathbb{R}, \epsilon \in \{-1, 1\} \right\}$$

et

$$\mathcal{SO}_2(\mathbb{R}) = \left\{ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \quad \theta \in \mathbb{R} \right\}$$

De plus, $\mathcal{SO}_2(\mathbb{R})$ est commutatif et l'application suivante un morphisme de groupes

$$\varphi: \ (\mathbb{R}, +) \longrightarrow (\mathcal{SO}_2(\mathbb{R}), \circ)$$
$$\theta \longmapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$\{Définition 4\}$

Soit E un plan euclidien orienté.

- On appelle rotation de E tout élément de $\mathcal{O}(E)$ de déterminant 1 dans une base orientée directe quelconque.
- Soient u et v deux vecteurs non nuls de E. On appelle angle orienté $\widehat{(u,v)}$ l'angle d'une rotation quelconque qui envoie u/||u|| sur v/||v||.

2 Endomorphismes autoadjoints d'un espace euclidien

2.1 Définitions et propriétés

Définition 5

Un endomorphisme f de E est dit autoadjoint (ou symétrique) s'il vérifie

$$\forall x, y \in E, \qquad x|f(y) = f(x)|y$$

Exemple 2

- Toute homothétie est un endomorphisme autoadjoint.
- Un projecteur, une symétrie orthogonale sont des endomorphismes autoadjoints.

Proposition 10

Soit $u \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes :

- (i) f est un endomorphisme autoadjoint.
- (ii) Il existe une base orthonormée de E dans laquelle la matrice de f est symétrique.
- (iii) La matrice de f dans n'importe quelle base orthonormée est symétrique.

Remarque 4

Bien entendu, la matrice d'un endomorphisme autoadjoint dans une base quelconque peut très bien ne pas être symétrique.

(Corollaire 3)

Soit E euclidien de dimension n. L'ensemble des endomorphismes autoadjoints de $\mathcal{L}(E)$ est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension n(n+1)/2. On le note $\mathcal{S}(E)$.

Remarque 5

La composée de deux endomorphismes autoadjoints f, g (resp. le produit de deux matrices $A, B \in \mathcal{S}_n(\mathbb{R})$) est autoadjoint si et seulement si f et g (resp. A et B) commutent.

Remarque 6

Soit $f \in \mathcal{L}(E)$. On appelle adjoint de E l'unique endomorphisme $f^* \in \mathcal{L}(E)$ tel que

$$\forall x, y \in E, \qquad x|f(y) = f^*(x)|y$$

Si \mathcal{B} est une base orthonormée quelconque, alors c'est l'unique endomorphisme tel que $\operatorname{Mat}_{\mathcal{B}}(f^*) = \operatorname{Mat}_{\mathcal{B}}(f)^T$. En particulier, un endomorphisme autoadjoint est un endomorphisme qui est égal à son adjoint.

2.2 Réduction des endomorphismes autoadjoints et des matrices symétriques réelles

Lemme 1

Soit E un espace euclidien et $q \in \mathcal{S}(E)$. Alors, le polynôme caractéristique de q est scindé sur \mathbb{R} .

Remarque 7

- La preuve n'utilise que la propriété $(\overline{A})^T = A$. Il est donc vrai pour tout élément de $\mathcal{M}_n(\mathbb{C})$ vérifiant cette propriété (on parle de matrice hermitienne).
- Avec une preuve similaire, on prouve que le spectre d'une matrice anti-symétrique réelle est imaginaire pur.

Théorème 1 (Théorème spectral)

- Si f est un endomorphisme autoadjoint d'un espace euclidien E, alors E est somme directe orthogonale des sous-espaces propres de f. En particulier, f est diagonalisable en base orthonormée, c'est-à-dire qu'il existe une base orthonormée dans laquelle la matrice de f est diagonale.
- Soit $A \in \mathcal{S}_n(\mathbb{R})$. Alors, \mathbb{R}^n est somme directe orthogonale des sous-espaces propres de A. En particulier, il existe $O \in \mathcal{O}_n(\mathbb{R})$ telle que $O^{-1}AO = {}^tOAO$ soit une matrice diagonale.

Remarque 8

Le résultat est faux pour une matrice symétrique complexe (il est vrai pour une matrice hermitienne). Par exemple, la matrice

$$\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$$

a pour polynôme caractéristique X^2 donc son spectre est réduit à $\{0\}$. Elle n'est donc pas diagonalisable car elle n'est pas nulle.

Exemple 3

Diagonaliser en base orhonormée la matrice dont tous les coefficients valent 1.

2.3 Applications

Proposition 11

Soit p un projecteur d'un espace euclidien. On a équivalence entre les 3 propriétés suivantes :

- p est un projecteur orthogonal.
- \bullet p est un endomorphisme autoadjoint.
- Pour tout $x \in E$, $||p(x)|| \le ||x||$.

Pour une symétrie s, on a équivalence entre les 3 propriétés suivantes :

- \bullet s est une symétrie orthogonale.
- ullet s est un endomorphisme autoadjoint.
- s est une isométrie vectorielle.

Exercice 2 (Théorème de Courant-Fisher)

Soit $A \in \mathcal{S}_n(\mathbb{R})$. Les valeurs propres de A étant toutes réelles, on peut les ordonner par ordre croissant $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$. Alors si on note pour tout $k \in [1; n]$,

$$\mathcal{F}_k = \{ F \text{ sev de } \mathbb{R}^n, \quad \dim F = k \}$$

on a les deux égalités

$$\lambda_k = \min_{F \in \mathcal{F}_k} \left(\max_{X \in F \setminus \{0\}} \frac{{}^t X A X}{||X||^2} \right)$$
$$= \max_{F \in \mathcal{F}_{n+1-k}} \left(\min_{X \in F \setminus \{0\}} \frac{{}^t X A X}{||X||^2} \right)$$

Remarque 9

En particulier, ces égalités permettent un encadrement des valeurs propres :

$$\lambda_{1} = \min \operatorname{Sp}(A) = \min_{X \in E \setminus \{0\}} \frac{{}^{t}XAX}{||X||^{2}} \quad \text{et} \quad \lambda_{n} = \max \operatorname{Sp}(A) = \max_{X \in E \setminus \{0\}} \frac{{}^{t}XAX}{||X||^{2}}$$

2.4 Endomorphismes autoadjoints et matrices symétriques positives et définies positives

Proposition 12

Si f est un endomorphisme autoadjoint, on a équivalence des propriétés

- (i) $\forall x \in E$, $x|f(x) \ge 0$ (resp. x|f(x) > 0 pour tout $x \ne 0$).
- (ii) $\operatorname{Sp}(f) \subset \mathbb{R}_+$ (resp. $\operatorname{Sp}(f) \subset \mathbb{R}_+^*$).

(Définition 6)

Un endomorphisme autoadjoint de E vérifiant l'une des deux propriétés précédente est dit positif (resp. défini positif). L'ensemble des endomorphismes autoadjoints et positifs de E est noté $\mathcal{S}^+(E)$ (resp $\mathcal{S}^{++}(E)$).

Proposition 13

Soit $A \in \mathcal{S}_n(\mathbb{R})$. On a équivalence entre les propriétés

- (i) $\forall X \in \mathbb{R}^n$, $X^T A X \ge 0$ (resp. $X^T A X > 0$ pour tout $X \ne 0$).
- (ii) $\operatorname{Sp}(A) \subset \mathbb{R}_+$ (resp. $\operatorname{Sp}(A) \subset \mathbb{R}_+^*$).

Définition 7

Une matrice symétrique réelle vérifiant l'une des deux propriétés précédente est dite positive (resp. défini positive). L'ensemble des matrices symétriques réelles positives est noté $\mathcal{S}_n^+(\mathbb{R})$ (resp $\mathcal{S}_n^{++}(\mathbb{R})$).

Remarque 10

- Soit $u \in \mathcal{S}(E)$. Alors $u \in \mathcal{S}^+(E)$ si et seulement si sa matrice dans une base orthonormée quelconque est dans $\mathcal{S}_n^+(\mathbb{R})$.
- Réciproquement, soit $A \in \mathcal{S}_n(\mathbb{R})$. Alors $A \in \mathcal{S}_n^+(\mathbb{R})$ si et seulement si l'endomorphisme f canoniquement associé à A est dans $\mathcal{S}^+(\mathbb{R}^n)$ lorsqu'on munit celui-ci de son produit scalaire canonique.

On a bien entendu des équivalences similaires pour les matrices et endomorphismes définis positifs.

(Exercice 3 Matrices de Gram)

Soit $n \in \mathbb{N}^*$. Pour tout $p \in \mathbb{N}^*$ et $x_1, \ldots, x_p \in \mathbb{R}^n$, on note

$$G(x_1, \dots, x_p) = ((x_i|x_j))_{i,j \in [1;p]}$$

où $(\cdot | \cdot)$ désigne le produit scalaire canonique de \mathbb{R}^n .

- 1. Monter que (x_1, \ldots, x_p) est libre si et seulement si $\det(G(x_1, \ldots, x_p)) \neq 0$.
- 2. Montrer que rg $\{x_1,\ldots,x_p\}=\operatorname{rg} G(x_1,\ldots,x_p)$.
- 3. Soit F un sous-espace vectoriel de \mathbb{R}^n de dimension p, e_1, \ldots, e_p une base quelconque de F et $x \in \mathbb{R}^n$. On rappelle que $d(x, F) = \inf \{||x y||, y \in F\}$. Montrer que

$$d(x, F)^2 = \frac{G(x, e_1, \dots, e_p)}{G(e_1, \dots, e_p)}$$

- 4. Montrer que $G \in \mathcal{S}_p^+(\mathbb{R})$.
- 5. Soit $S \in \mathcal{S}_p^+(\mathbb{R})$ de rang inférieur ou égal à n. Montrer qu'il existe $(x_1, \dots, x_p) \in (\mathbb{R}^n)^p$ tel que $S = G(x_1, \dots, x_p)$.

Exercice 4

- Soit $A \in \mathcal{M}_n(\mathbb{R})$. Justifier l'équivalence entre les deux propriétés suivantes :
- (ii) A est une matrice symétrique et positive.
- (i) Il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = {}^tBB$.
- Si A est une matrice symétrique réelle et positive, il existe une unique matrice B réelle symétrique et positive telle que $A = C^2$ (que l'on note \sqrt{A} par abus de notation).