Préliminaires

Noyaux itérés

- $[\mathbf{a}]$ Comme $f \in L(V)$, pour tout entier naturel k,
 - Ker f^k est bien un sous-espace vectoriel de V et
 - pour tout $x \in \text{Ker } f^k, f^{k+1}(x) = f(f^k(x)) = f(0) = 0$

d'où

$$\forall k \in \mathbb{N} \qquad \text{Ker } f^k \subset \text{Ker } f^{k+1}$$

b Supposons qu'il existe $p \in \mathbb{N}$ tel que Ker $f^p = \text{Ker } f^{p+1}$. On procède alors par récurrence: pour tout entier $q \geqslant p$, on note $\mathscr{P}(q)$ la propriété

$$\operatorname{Ker} f^{q+1} = \operatorname{Ker} f^q = \operatorname{Ker} f^p$$

- $\mathcal{P}(p)$ est vraie par hypothèse.
- $\underline{\mathscr{P}(q)} \Longrightarrow \underline{\mathscr{P}(q+1)}$: comme Ker $f^{q+1} = \text{Ker } f^p$ d'après $\underline{\mathscr{P}(q)}$, il reste à montrer que Ker $f^{q+1} = \text{Ker } f^{q+2}$. On procède par double inclusion.
 - D'après la question précédente, Ker $f^{q+1} \subset \text{Ker } f^{q+2}$.
 - Montrons l'inclusion réciproque. Soit $x \in \text{Ker } f^{q+2}$.

Par définition,
$$f^{q+2}(x)=0$$
 soit
$$f^{q+1}\circ f(x)=0$$
 ou encore
$$f(x)\in \operatorname{Ker} f^{q+1}=\operatorname{Ker} f^q \qquad (\operatorname{d'après} \mathscr{P}(q))$$
 Par suite,
$$f^q\circ f(x)=0$$

$$ie \qquad \qquad x\in \operatorname{Ker} f^{q+1}$$
 d'où
$$\operatorname{Ker} f^{q+2}\subset \operatorname{Ker} f^{q+1}$$

Finalement, on obtient l'égalité Ker $f^{q+2} = \text{Ker } f^{q+1} = \text{Ker } f^p$, c'est-à-dire que $\mathscr{P}(q+1)$ est vraie.

• Conclusion: $\mathcal{P}(q)$ est vraie pour tout $q \geqslant p$.

$$(\exists p \in \mathbb{N} \quad \text{Ker } f^p = \text{Ker } f^{p+1}) \quad \Longrightarrow \quad (\forall q \in \mathbb{N}, \, q \geqslant p \quad \text{Ker } f^q = \text{Ker } f^p)$$

Supposons que V soit de dimension finie $n \in \mathbb{N}$. D'après la question précédente, la suite $(\dim \operatorname{Ker} f^k)_{k \in \mathbb{N}}$ est bien définie, réelle et croissante. De plus, pour tout $k \in \mathbb{N}$, l'inclusion $\operatorname{Ker} f^k \subset V$ entraı̂ne l'inégalité $\dim \operatorname{Ker} f^k \leqslant n$: cette suite est majorée. Elle converge donc. En outre, étant à valeurs dans \mathbb{N} , elle est même constante à partir d'un certain rang $p \in \mathbb{N}$.

Montrons que ce rang p vérifie $p \leq n$. C'est bien le cas si p = 0. Supposons donc p non nul. D'après ce qui précède, p est le premier rang pour lequel on a l'égalité Ker $f^p = \text{Ker } f^{p+1}$, ce qui implique

$$\forall k \in \mathbb{N}, \ k \leqslant p-1 \qquad \text{Ker } f^k \subsetneq \text{Ker } f^{k+1}$$

$$\forall k \in \mathbb{N}, \ k \leqslant p-1 \qquad \dim \text{Ker } f^{k+1} \geqslant \dim \text{Ker } f^k+1$$

d'où

En sommant ces p relations, on obtient

$$\sum_{k=1}^{p} \dim \operatorname{Ker} f^{k} \geqslant \sum_{k=0}^{p-1} \dim \operatorname{Ker} f^{k} + p$$

soit, après simplification, dim Ker $f^p \geqslant \dim \operatorname{Ker} f^0 + p$

mais comme $f^0=\operatorname{id}_{\mathcal V}$ est injective, $\dim \operatorname{Ker} f^0=0$ et l'on obtient en définitive l'inégalité voulue :

$$p \leqslant \dim \operatorname{Ker} f^p \leqslant n$$

Ce rang p de convergence de la suite $(\dim \operatorname{Ker} f^k)_{k\in\mathbb{N}}$ est aussi celui de la suite $(\operatorname{Ker} f^k)_{k\in\mathbb{N}}$ de sous-espaces vectoriels de V puisque, comme $\operatorname{Ker} f^k \subset \operatorname{Ker} f^{k+1}$ pour tout $k \in \mathbb{N}$ d'après la question précédente, on a:

$$\forall k \in \mathbb{N}$$
 $(\dim \operatorname{Ker} f^k = \dim \operatorname{Ker} f^{k+1}) \iff (\operatorname{Ker} f^k = \operatorname{Ker} f^{k+1})$

Ainsi, pour tout entier $k \ge p$ et en particulier pour k = n, Ker $f^k = \text{Ker } f^{k+1}$.

 $\boxed{\mathbf{c}}$ Comme u^q est nul, pour tout entier naturel $k \geqslant q$, l'endomorphisme $u^k = u^q \circ u^{k-q}$ l'est également. Par suite,

$$\forall k \in \mathbb{N}, k \geqslant q$$
 dim Ker $u^k = \dim \operatorname{Ker} u^q = \dim \operatorname{Ker} 0_{L(V)} = n$

La suite $(\dim \operatorname{Ker} u^k)_{k\in\mathbb{N}}$ est constante de valeur n à partir du rang q. D'après la question précédente, le rang de convergence de cette suite est inférieur à n; d'où l'égalité $\dim \operatorname{Ker} u^n = n$. Par suite, $\operatorname{Ker} u^n = \operatorname{V}$, c'est-à-dire que $u^n = 0$.

Conclusion:
$$(\exists q \in \mathbb{N}^* \quad u^q = 0) \implies u^n = 0$$

Première partie

I-1 Une caractérisation des sous-espaces vectoriels stables par g

I-1.a

• En composant la relation $g^2 = \lambda \operatorname{id}_{E_n} + D_n$ à gauche par $g \in L(E_n)$, on obtient $g^3 = g \circ (\lambda \operatorname{id}_{E_n} + D_n) = \lambda g + g \circ D_n$. En composant maintenant cette même relation à droite, il vient $g^3 = (\lambda \operatorname{id}_{E_n} + D_n) \circ g = \lambda g + D_n \circ g$. On déduit des deux égalités ainsi obtenues que

$$g \circ D_n = D_n \circ g$$

• Montrons que $g(E_p) \subset E_p$.

Comme $E_p = \text{Ker } D_n^{p+1}$, il s'agit de montrer que pour tout polynôme P vérifiant $D_n^{p+1}(P) = 0$ on a nécessairement $D_n^{p+1}(g(P)) = 0$. Ceci provient du fait que g et D_n (et, par conséquent, toutes les puissances entières de D_n) commutent. En effet,

$$D_n^{p+1}(g(P)) = D_n^{p+1} \circ g(P) = g \circ D_n^{p+1}(P) = g(D_n^{p+1}(P)) = g(0) = 0$$
$$g(E_p) \subset E_p$$

• Soit g_p la restriction de g à E_p . Montrons $g_p^2 = \lambda \operatorname{id}_{E_p} + D_p$. Par hypothèse, pour tout élément x de E_n ,

$$g^2(x) = \lambda \operatorname{id}_{E_n}(x) + D_n(x)$$

Or l'inégalité $p \leqslant n$ implique l'inclusion $\mathcal{E}_p \subset \mathcal{E}_n$, et comme

$$\forall x \in \mathcal{E}_p \qquad \begin{cases} g_p(x) = g(x) \\ \mathrm{id}_{\mathcal{E}_n}(x) = x = \mathrm{id}_{\mathcal{E}_p}(x) \\ \mathcal{D}_n(x) = \mathcal{D}_p(x) \end{cases}$$

on obtient finalement

$$g_p^2 = \lambda \operatorname{id}_{\mathbf{E}_p} + \mathbf{D}_p$$

I-1.b Les démonstrations sont analogues à celles de la question précédente en remarquant que $E_n = \text{Ker } D^{n+1}$ pour tout entier naturel n et en utilisant la relation $g^2 = \lambda \operatorname{id}_E + D$ au lieu de $g^2 = \lambda \operatorname{id}_{E_n} + D_n$.

En pareil cas, le correcteur de votre copie s'attend à ce que vous ne refassiez pas tous les calculs. . .

I-1.c

(i) Soit $B = (e_0, \ldots, e_n)$ une base de F. Cette base comporte au moins un élément car dim $F = n + 1 \ge 1$. Notons $q' = \max\{d^{\circ}(P) \mid P \in B\}$. On a ainsi $B \subset E_{q'}$, d'où $F = \text{Vect } B \subset E_{q'} = \text{Ker } D^{q'+1}$. F étant stable par D, il l'est par $D^{q'+1}$ et $(D_F)^{q'+1} = \left(D^{q'+1}\right)_{\mid F} = 0$. En résumé, il existe un entier naturel non nul q = q' + 1 tel que $D_F{}^q = 0$. Ceci signifie que

Montrons que $F = E_n$. D_F étant nilpotent, $D_F^n = 0$ et par suite

$$F \subset \text{Ker } D_F^n \subset \text{Ker } D^n = E_n$$

D'autre part, F et E_n ont même dimension n+1. Ils sont donc égaux :

$$F = E_n$$

Déterminons les sous-espaces vectoriels de E stables par D.

- Cas de la dimension finie: pour tout $n \in \mathbb{N}^*$, l'unique sous-espace vectoriel G de E de dimension n stable par D est E_{n-1} . Ceci s'étend au cas trivial où n = 0 car l'unique sous-espace vectoriel de dimension nulle $\{0_{\rm E}\}$ est bien stable par dérivation.
 - Attention à ne pas oublier le cas où G est de dimension nulle.
- Cas de la dimension infinie: l'unique sous-espace vectoriel G de E de dimension infinie stable par D est l'espace E tout entier. Raisonnons par l'absurde et supposons le contraire, c'est-à-dire que G ≠ E. Il existe un polynôme P ∈ E de degré $d \in \mathbb{N}$ n'appartenant pas à G. Comme G est de dimension infinie, il ne peut pas être inclus dans E_d qui, lui, est de dimension finie d+1. G comporte donc un polynôme Q de degré r tel que $r \geqslant d$. Mais alors P ∈ $E_p \subset E_r = \text{Vect}\{D^i(Q) \mid i \in \mathbb{N}\} \subset G$ puisque G est stable par D... On aboutit à une contradiction.
- (ii) Soit G un sous-espace vectoriel de E. Montrons

$$g(G) \subset G \iff D(G) \subset G$$

- \Longrightarrow : pour tout polynôme P de G, D(P) = g^2 (P) − λ P est bien dans G en tant que combinaison linéaire d'éléments de G.
- <u>⇐</u>: d'après les résultats de la question (i), trois cas se présentent.
 - dim G = 0 et G = $\{0_{\rm E}\}$ est bien stable par $g \in {\rm L}({\rm E})$.
 - $-\dim G = n \in \mathbb{N}^*$ et $G = E_n$ est stable par g d'après la question I-1.b.
 - dim $G = +\infty$ et G = E, également stable par g.

En conclusion,

$$g(G) \subset G \iff D(G) \subset G$$

I-2 Une application immédiate : le cas $\lambda < 0$

I-2.a Supposons qu'il existe un endomorphisme g de E_0 tel que $g^2 = \lambda \operatorname{id}_{E_0} + D_0$.

- D'une part, le polynôme dérivé d'un polynôme constant ne peut être que nul ; d'où $D_0=0_{L(E_0)}.$
- D'autre part, comme dim $E_0 = 1$, dim $L(E_0) = (\dim E_0)^2 = 1$ et il existe une constante γ telle que $g = \gamma$ id E_0 .

En reportant ces deux résultats dans la relation $g^2 = \lambda \operatorname{id}_{E_0} + D_0$, on obtient

$$(\gamma^2 - \lambda) \mathbf{1}_{E_0} = \mathbf{0}_{E_0}$$

d'où la condition nécessaire

$$\lambda = \gamma^2 \geqslant 0$$

I-2.b Soit $\lambda < 0$. Par l'absurde, supposons qu'il existe un endomorphisme g de E (respectivement de E_n) tel que $g^2 = \lambda \operatorname{id}_E + D$ (resp. $g^2 = \lambda \operatorname{id}_{E_n} + D_n$). D'après le résultat obtenu à la question I-1.b (resp. I-1.a), l'endomorphisme g_0 induit par g sur E_0 vérifie la relation $g^2 = \lambda \operatorname{id}_{E_0} + D_0$, ce qui est impossible d'après la question I-2.a.

En conclusion: si $\lambda < 0$,

- il n'existe aucun endomorphisme g de E vérifiant la relation $g^2 = \lambda \operatorname{id}_E + D$;
- de même, il n'existe aucun endomorphisme g de E_n tel que $g^2 = \lambda \operatorname{id}_{E_n} + D_n$.

I-3 Une représentation matricielle simple de D_n

I-3.a Montrons qu'il existe un vecteur $y \in V$ tel que $B = (f^n(y), f^{n-1}(y), \dots, y)$ soit libre. Comme $f^n \neq 0$ par hypothèse, il existe un vecteur $y \in V$ tel que $f^n(y) \neq 0$. Montrons que ce vecteur convient, c'est-à-dire que B est libre.

Supposons qu'il existe $(\lambda_0, \ldots, \lambda_n) \in \mathbb{R}^{n+1}$ tel que

$$\sum_{k=0}^{n} \lambda_k f^k(y) = 0 \tag{1}$$

et montrons que tous les λ_k sont nuls. On procède par récurrence sur k. Pour tout entier $0 \le k \le n$, on note $\mathscr{P}(k)$ la propriété

$$\forall k \in \mathbb{N}, \forall j \in [0; k] \qquad \lambda_j = 0$$

- $\underline{\mathscr{P}(0)}$ est vraie: en prenant l'image de (1) par l'endomorphisme f^n et en remarquant que pour tout $m \ge n+1$, $f^m = f^{n+1} \circ f^{m-n-1} = 0$, on obtient $\lambda_0 f^n(y) = 0$. Comme $f^n(y) \ne 0$ par hypothèse, on en déduit que $\lambda_0 = 0$.
- Si $n \ge 1$ et $0 \le k \le n-1$, $\underline{\mathscr{P}(k)} \Longrightarrow \underline{\mathscr{P}(k+1)}$: en prenant l'image de (1) par f^{n-1-k} , on en déduit comme précédemment

$$\lambda_0 f^{n-1-k}(y) + \lambda_1 f^{n-k}(y) + \dots + \lambda_{k+1} f^n(y) = 0$$

Or, d'après $\mathscr{P}(k)$, les λ_j sont nuls pour $j \leq k$. Il ne reste donc que $\lambda_{k+1} f^n(y) = 0$ ce qui implique la nullité de λ_{k+1} . $\mathscr{P}(k+1)$ est vraie.

• Conclusion: $\mathcal{P}(k)$ est vraie pour tout $k \in \mathbb{N}$, $0 \le k \le n$.

Il existe
$$y \in \mathcal{V}$$
 tel que $\mathcal{B} = \left(f^n(y), f^{n-1}(y), \dots, y\right)$ soit libre.

La famille B est libre et comporte $n+1=\dim V$ éléments ; c'est une base de V dans laquelle la matrice de f s'écrit :

$$\operatorname{Mat}_{B}(f) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & \vdots \\ 0 & 0 & 0 & 1 & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix} = A_{0}$$

I-3.b Le résultat obtenu à la question précédente s'applique à $V = E_n$ (de dimension n+1) et $f = D_n$ ($(D_n)^n \neq 0$, $(D_n)^{n+1} = 0$). On pose alors $B_n = B$ et l'on obtient bien

$$\boxed{\operatorname{Mat}_{B_n}(D_n) = A_0} \tag{2}$$

Enfin,

$$\operatorname{Mat}_{B_n}(\lambda \operatorname{id}_{E_n} + D_n) = \lambda I_{n+1} + A_0 = A_{\lambda}$$

I-4 Un exemple

 $\boxed{\textbf{I-4.a}}$ On procède par analyse et synthèse et l'on utilise la base B_2 construite à la question I-3.b.

• Analyse: Soit h un endomorphisme de E_2 commutant avec D_2 . En notant $\operatorname{Mat}_{B_2}(h) = (h_{i,j})_{1 \leq i,j \leq 3}$ et en utilisant le résultat (2) de la question I-3.b, on peut exprimer la relation $h \circ D_2 = D_2 \circ h$ sous forme matricielle:

$$Mat_{B_2}(h) A_0 = A_0 Mat_{B_2}(h)$$

soit encore

$$\begin{pmatrix} 0 & h_{1,1} & h_{1,2} \\ 0 & h_{2,1} & h_{2,2} \\ 0 & h_{3,1} & h_{3,2} \end{pmatrix} = \begin{pmatrix} h_{2,1} & h_{2,2} & h_{2,3} \\ h_{3,1} & h_{3,2} & h_{3,3} \\ 0 & 0 & 0 \end{pmatrix}$$

d'où
$$h_{3,1} = h_{2,1} = h_{3,2} = 0$$
, $h_{1,1} = h_{2,2} = h_{3,3}$ et $h_{1,2} = h_{2,3}$

On obtient la forme générale de la matrice $\text{Mat}_{B_2}(h)$ (on pose $a=h_{1,1},\,b=h_{1,2}$ et $c=h_{1,3}$):

$$\mathrm{Mat\,}_{\mathrm{B}_{2}}(h) = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = a\,\mathrm{I}_{3} + b\,\,\mathrm{Mat\,}_{\mathrm{B}_{2}}(\mathrm{D}_{2}) + c\,\,\mathrm{Mat\,}_{\mathrm{B}_{2}}(\mathrm{D}_{2}^{2})$$

puisque

$$\operatorname{Mat}_{B_2}(D_2{}^2) = (\underbrace{\operatorname{Mat}_{B_2}(D_2)}_{=A_0})^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Tout endomorphisme h de \mathbf{E}_2 commutant avec \mathbf{D} vérifie donc nécessairement une relation du type

$$h = a \text{ id }_{E_2} + b D_2 + c (D_2)^2 \quad \text{ où } (a, b, c) \in \mathbb{R}^3$$
 (3)

- Synthèse: tous les endomorphismes h de E_2 vérifiant une relation du type (3) commutent bien avec D_2 .
- Conclusion: un endormorphisme h de E_2 commute avec D_2 si, et seulement si, il existe trois réels a, b et c tels que h puisse s'écrire h = a id $E_2 + b D_2 + c (D_2)^2$.

I-4.b Soit $g \in L(E_2)$. Montrons que g vérifie la relation

$$g^2 = \lambda \operatorname{id}_{E_2} + D_2 \tag{4}$$

si, et seulement si, il existe trois réels a, b et c solutions du système

(S)
$$\begin{cases} a^2 = \lambda \\ 2ab = 1 \\ 2ac + b^2 = 0 \end{cases}$$

tels que g puisse s'écrire

$$g = a \text{ id }_{E_2} + b D_2 + c (D_2)^2$$
 (5)

• \Longrightarrow : d'après la question I-1.a, on sait que g doit commuter avec D_2 . On déduit ensuite de la question I-4.a l'existence d'un triplet $(a, b, c) \in \mathbb{R}^3$ tel que g puisse s'écrire

$$g = a \text{ id } E_2 + b D_2 + c (D_2)^2$$

Comme, de plus, $(D_2)^n = 0$ dès que $n \ge 3$, l'expression de g^2 se développe :

$$g^2 = a^2 \operatorname{id}_{\mathbf{E}_2} + 2ab \, \mathbf{D}_2 + (2ac + b^2) \, (\mathbf{D}_2)^2$$

On en déduit (S) par identification avec l'expression (4) (en revenant à l'écriture matricielle).

• $\underline{\underline{\leftarrow}}$: En élevant l'expression g = a id $E_2 + b D_2 + c (D_2)^2$ au carré, en la développant puis en la simplifiant grâce à (S), on retrouve bien la relation (4).

En conclusion, deux cas se présentent:

- Si $\lambda \leq 0$, le système (S) n'admet pas de solutions réelles et il n'existe pas d'endomorphisme g de E_2 vérifiant (4).
- Si $\lambda > 0$, le système (S) admet deux solutions distinctes

$$a = \pm \sqrt{\lambda}, \quad b = \frac{1}{2a}, \quad c = -\frac{b^2}{2a} = -\frac{1}{8a^3}$$

et il n'existe que deux endomorphismes g distincts vérifiant la relation (4). Ceux-ci sont définis par la relation (5).

Afin de résoudre l'équation $G^2 = A_1$ dans $\mathcal{M}_3(\mathbb{R})$, on interprète G et $A_1 = I_3 + A_0$ comme les matrices respectivement associées aux endomorphismes g et id $E_2 + D_2$ de E_2 . D'après le résultat précédent (ici $\lambda = 1 > 0$),

Il existe exactement deux matrices $G\in \mathscr{M}_3(\mathbb{R})$ qui sont solutions de l'équation $G^2=A_1.$

$$\pm \begin{pmatrix} 1 & \frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

Deuxième partie

II-1 Existence d'un endomorphisme g tel que $g^2 = D_n$

II-1.a Soit $g \in L(E_2)$ vérifiant $g^2 = D_n$. Alors $(g^2)^{n+1} = (D_n)^{n+1} = 0$ et il existe $g = 2n + 2 \in \mathbb{N}^*$ tel que g^q soit nul. D'après les questions préliminaires,

$$\boxed{g \text{ est nilpotent}} \tag{question c}$$

et

$$Ker g \subset Ker g^2$$
 (question a)

Montrons que dim Ker $q^2 \ge 2$.

- D'une part, Ker $g \neq \{0\}$. Sinon, g serait un isomorphisme de E_n puisque ce dernier est de dimension finie. Il en serait donc de même de $g^2 = D_n$, ce qui est absurde (la dérivation n'est pas injective, puisque la primitive d'un polynôme est définie à une constante près). Ainsi, dim Ker $g \geqslant 1$.
- D'autre part, Ker $g \neq \text{Ker } g^2$. Raisonnons par l'absurde et supposons le contraire. Dans ce cas, d'après la question c des préliminaires,

$$\operatorname{Ker} g = \operatorname{Ker} g^2 = \dots = \operatorname{Ker} (g^2)^{n+1}$$

et comme

$$\text{Ker } (g^2)^{n+1} = \text{Ker } (D_n)^{n+1} = \text{Ker } 0 = E_n$$

on obtient $g^2 = 0$, ce qui est impossible car $D_n = g^2 \neq 0$. Par suite,

$$\dim \operatorname{Ker} g + 1 \leqslant \dim \operatorname{Ker} g^2$$

On déduit des deux points précédents que

$$\dim \operatorname{Ker} g^2 \geqslant \dim \operatorname{Ker} g + 1 \geqslant 2$$

 $\overline{\text{II-1.b}}$ En raisonnant par l'absurde, supposons l'existence d'un endomorphisme g de E_n vérifiant la relation $g^2 = D_n$.

• En utilisant le résultat établi à la question précédente, il vient

$$\dim \operatorname{Ker} D_n = \dim \operatorname{Ker} g^2 \geqslant 2$$

 $\bullet\,$ D'un autre côté, considérons la base canonique $(\mathbf{X}^0,\dots,\mathbf{X}^n)$ de $\mathbf{E}_n.$ Alors

$$\forall k \in [1; n] \qquad \mathbf{X}^{k-1} = \frac{1}{k} \mathbf{D}_n(\mathbf{X}^k) \in \mathbf{Im} \ \mathbf{D}_n$$

d'où

$$\operatorname{rg} D_n = \dim \operatorname{Im} D_n \geqslant n - 1$$

et d'après le théorème du rang, dim Ker $\mathbf{D}_n\leqslant 1.$

On aboutit à une contradiction.

Conclusion:

$$\nexists g \in \mathcal{L}(\mathcal{E}_n) \qquad g^2 = \mathcal{D}_n$$

II-1.c En raisonnant par l'absurde, supposons l'existence d'un endomorphisme g de E tel que $g^2 = D$. D'après la question I-1.b, $g(E_n) \subset E_n$ et l'endomorphisme g_n induit par g sur E_n vérifie $g_n^2 = D_n$. Ceci est impossible au vu du résultat établi à la question précédente.

Conclusion:

$$\nexists g \in \mathcal{L}(\mathcal{E}) \qquad g^2 = \mathcal{D}_n$$

II-2 Existence d'un endomorphisme g tel que $g^k = D^m$

II-2.a Procédons en trois temps.

• Commençons par remarquer que **l'opérateur D** de dérivation dans E **est surjectif**: tout polynôme $P = \sum_{j=0}^{d} a_j X^j$ (où $d \in \mathbb{N}$, $(a_j)_j \in \mathbb{R}^{d+1}$ et $a_d \neq 0$) est l'image par D du polynôme $\sum_{j=0}^{d} \frac{a_j}{j+1} X^{j+1} \in E$.

 \bullet De même, **l'application D**^m est surjective comme composée d'un nombre fini d'applications surjectives, ce que l'on peut montrer par une récurrence simple.

$$g^k = D^m$$
 est surjectif.

• Il nous reste à montrer que **g** est surjectif. Nous venons de voir que $g^k = D^m$ l'était : tout polynôme P de E admet un antécédent $Q \in E$ par g^k , ce que l'on peut écrire :

$$\forall P \in E, \exists Q \in E \qquad P = q^k(Q)$$

soit encore, sachant que $k \ge 2$,

$$\forall P \in E, \exists Q \in E \qquad P = g(g^{k-1}(Q))$$

c'est-à-dire que $g^{k-1}(\mathbf{Q}) \in \mathbf{E}$ est un antécédent de P pour g.

$$g$$
 est surjectif.

II-2.b En utilisant la relation $g^k = D^m$ et le résultat de la question b des préliminaires, on obtient

$$\forall q \in \mathbb{N}, q \leqslant k$$
 Ker $g^q \subset \text{Ker } g^k = \text{Ker } D^m = E_{m-1}$

d'où

$$\forall q \in \mathbb{N}, \ q \leqslant k \quad \Longrightarrow \quad \dim \operatorname{Ker} \ g^q \leqslant m < +\infty$$

II-2.c Montrons que Φ est une application linéaire de Ker g^p dans Ker g^{p-1} .

- Φ est bien définie et linéaire sur Ker g^p car g l'est aussi.
- Il reste à montrer que Φ est à valeurs dans Ker g^{p-1} . Soit $P \in \text{Ker } g^p$. Alors $g^{p-1}(\Phi(P)) = g^{p-1}(g(P)) = g^p(P) = 0$.

L'application
$$\Phi$$
 est linéaire de Ker g^p dans Ker g^{p-1} .

Montrons que Ker $\Phi = \text{Ker } g$. On procède par double inclusion.

- « \subset » : soit P \in Ker Φ . Alors $0 = \Phi(P) = g(P)$, c'est-à-dire que P appartient à Ker g.
- « \supset » : soit P \in Ker g. D'après la question a des préliminaires, P \in Ker g^p donc $\Phi(P)$ est bien définie ; en outre, $\Phi(P) = g(P) = 0$.

Conclusion:

$$\operatorname{Ker} \Phi = \operatorname{Ker} g$$

Montrons que Φ est surjective. Soit $P \in \text{Ker } g^{p-1}$. Il s'agit de montrer qu'il existe un polynôme $Q \in \text{Ker } g^p$ vérifiant $P = \Phi(Q)$. Comme g est surjectif (ce que l'on a établi à la question II-2.a), on sait déjà qu'il existe un polynôme réel Q dont l'image par g est P. Pour en faire un antécédent de P par Φ , il suffit de montrer que $Q \in \text{Ker } g^p$. C'est chose faite en écrivant $g^p(Q) = g^{p-1}(g(Q)) = g^{p-1}(P) = 0$.

En conclusion,

 Φ est surjective.

Établissons une relation entre les dimensions des sous-espaces Ker g^{p-1} et Ker g^p . On commence par remarquer que ceux-ci sont de dimension finie, comme on l'a démontré à la question II-2.b. Puis on applique le théorème du rang à Φ :

$$\dim \operatorname{Im} \Phi + \dim \operatorname{Ker} \Phi = \dim \operatorname{Ker} q^p$$

Or, nous avons montré que Φ était surjective et que son noyau coïncidait avec celui de l'endomorphisme g, d'où

$$\dim \operatorname{Ker} \, g^{p-1} + \dim \operatorname{Ker} \, g = \dim \operatorname{Ker} \, g^p$$

Cette formule est valable en remplaçant p par q pour $2 \le q \le p$. Par sommation des p-1 relations ainsi obtenues, il vient

$$\sum\limits_{q=2}^p \dim \operatorname{Ker}\, g^{q-1} + (p-1) \dim \operatorname{Ker}\, g = \sum\limits_{q=2}^p \dim \operatorname{Ker}\, g^q$$

d'où l'on déduit

$$\dim \operatorname{Ker} g^p = p \dim \operatorname{Ker} g \tag{6}$$

 $\boxed{\mathbf{II-2.d}}$ Montrons qu'il existe $g \in L(\mathbf{E})$ vérifiant $g^k = \mathbf{D}^m$ si et seulement si k divise m.

• \Longrightarrow : écrivons la relation (6) dans le cas où p = k. Il vient

$$\dim \operatorname{Ker} g^k = k \dim \operatorname{Ker} g$$

Or, Ker
$$g^k = \text{Ker } D^m = E_{m-1}$$

d'où $m = k \dim \operatorname{Ker} g$

Il reste à montrer que dim Ker $g \neq 0$. Ceci provient du fait que m > 0. En résumé, k divise m.

• $\underline{\Leftarrow}$: dire que k divise m signifie qu'il existe un entier $r \in \mathbb{N}^*$ tel que m = k r. L'endomorphisme $g = D^r$ de E vérifie bien $g^k = (D^r)^k = D^{rk} = D^m$.

En conclusion,
$$(\exists g \in L(E) \ g^k = D^m) \iff k \mid m$$

La question II-1.c correspond au cas particulier où k=2 ne divise pas m=1, d'où le résultat.

TROISIÈME PARTIE

III-1 Dérivée de l'application $t \longmapsto (L_n(t))^k$

III-1.a Soit $t \in \mathbb{R}$. La matrice $I_{n+1} + t D_n$ est inversible d'inverse

$$\left[(\mathbf{I}_{n+1} + t \, \mathbf{D}_n)^{-1} = \sum_{k=0}^{n} (-1)^k t^k \, \mathbf{D}_n^{\ k} \right]$$

comme on peut le vérifier par le calcul:

$$(I_{n+1} + t D_n) \left(\sum_{k=0}^n (-1)^k t^k D_n^k \right) = \sum_{k=0}^n (-1)^k t^k D_n^k + \sum_{k=0}^n (-1)^k t^{k+1} D_n^{k+1}$$

$$= \underbrace{(D_n)^0}_{=I_{n+1}} + (-1)^n t^{n+1} \underbrace{(D_n)^{n+1}}_{=0_{n+1}}$$

$$(I_{n+1} + t D_n) \left(\sum_{k=0}^n (-1)^k t^k D_n^k \right) = I_{n+1}$$

d'où

$$\forall k \in \mathbb{N}, k \leqslant n \qquad a_k \colon \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto (-1)^k t^k \end{cases}$$

III-1.b L'application $\begin{cases} \mathbb{R} \longrightarrow \mathscr{M}_n(\mathbb{R}) \\ t \longmapsto (\mathrm{I}_{n+1} + t\,\mathrm{D}_n)^{-1} \end{cases}$ est continûment dérivable en tant que polynôme en t. Afin d'obtenir l'expression de sa dérivée, on dérive la relation

$$(I_{n+1} + t D_n) (I_{n+1} + t D_n)^{-1} = I_{n+1}$$

par rapport à $t \in \mathbb{R}$. Il vient que pour tout réel t,

$$\underbrace{\frac{\mathrm{d}\left(\mathbf{I}_{n+1} + t\,\mathbf{D}_{n}\right)}{\mathrm{d}t}}_{=\mathbf{D}_{n}} \left(\mathbf{I}_{n+1} + t\,\mathbf{D}_{n}\right)^{-1} + \left(\mathbf{I}_{n+1} + t\,\mathbf{D}_{n}\right) \, \frac{\mathrm{d}\left(\mathbf{I}_{n+1} + t\,\mathbf{D}_{n}\right)^{-1}}{\mathrm{d}t} = 0_{n+1}$$

$$ie \qquad \forall t \in \mathbb{R} \qquad \frac{d (I_{n+1} + t D_n)^{-1}}{dt} = -(I_{n+1} + t D_n)^{-1} D_n (I_{n+1} + t D_n)^{-1}$$

Or, d'après la question précédente, nous savons que $(I_{n+1} + t D_n)^{-1}$ est un polynôme en D_n et que donc il commute avec D_n .

Conclusion:
$$\forall t \in \mathbb{R} \qquad \frac{\mathrm{d} \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_n \right)^{-1}}{\mathrm{d}t} = -\mathbf{D}_n \, \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_n \right)^{-2}$$

III-1.c Soit $t \in \mathbb{R}$. Montrons que $(L_n(t))^{n+1} = 0$. On remarque que

$$L_n(t) = D_n \left(\sum_{k=0}^{n-1} (-1)^k \frac{t^{k+1}}{k+1} D_n^k \right)$$

ce qui permet d'exprimer $(L_n(t))^{n+1}$ sous la forme (les deux termes du produit commutent):

$$(L_n(t))^{n+1} = (D_n)^{n+1} \left(\sum_{k=0}^{n-1} (-1)^k \frac{t^{k+1}}{k+1} D_n^k \right)^{n+1}$$

et comme $(D_n)^{n+1} = 0$, la nullité de $(L_n(t))^{n+1}$ ne fait pas de doute.

En conclusion,

$$\forall t \in \mathbb{R} \qquad (\mathcal{L}_n(t))^{n+1} = 0$$

III-1.d L'application L_n est continûment dérivable sur \mathbb{R} en tant que polynôme en t. Par linéarité de l'opérateur de dérivation, on obtient

$$\forall t \in \mathbb{R} \qquad \frac{dL_n(t)}{dt} = \sum_{k=1}^n (-1)^{k-1} t^{k-1} D_n^k$$

$$= \left(\sum_{k=0}^{n-1} (-1)^k t^k D_n^k\right) D_n$$

$$= \left((I_{n+1} + t D_n)^{-1} - (-1)^n t^n D_n^n \right) D_n$$

$$= (I_{n+1} + t D_n)^{-1} D_n - (-1)^n t^n \underbrace{D_n^{n+1}}_{=0_{n+1}}$$

$$\frac{dL_n(t)}{dt} = (I_{n+1} + t D_n)^{-1} D_n$$

d'où

$$\forall t \in \mathbb{R}$$
 $\frac{\mathrm{dL}_n(t)}{\mathrm{d}t} = (\mathrm{I}_{n+1} + t\,\mathrm{D}_n)^{-1}\,\mathrm{D}_n$

Soit $k \in \mathbb{N}$.

- Si k = 0, $(L_n(t))^0 = I_{n+1}$ et $\frac{d(L_n(t))^k}{dt} = 0_{n+1}$.
- Sinon,

$$\forall t \in \mathbb{R}$$
 $\frac{\mathrm{d} (\mathrm{L}_n(t))^k}{\mathrm{d}t} = k (\mathrm{L}_n(t))^{k-1} \frac{\mathrm{d} \mathrm{L}_n(t)}{\mathrm{d}t}$

d'où, d'après l'expression de $\frac{dL_n(t)}{dt}$ précédente,

$$\forall t \in \mathbb{R} \qquad \frac{\mathrm{d} \left(\mathbf{L}_n(t) \right)^k}{\mathrm{d}t} = k \left(\mathbf{L}_n(t) \right)^{k-1} \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_n \right)^{-1} \, \mathbf{D}_n$$

Conclusion:

$$\forall k \in \mathbb{N} \quad \forall t \in \mathbb{R} \qquad \frac{\mathrm{d} \left(\mathbf{L}_n(t) \right)^k}{\mathrm{d} t} = k \left(\mathbf{L}_n(t) \right)^{k-1} \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_n \right)^{-1} \, \mathbf{D}_n$$

III-2 Matrice $\varphi_u(t)$

III-2.a Soient u, v et t trois réels fixés. En utilisant la formule du binôme de Newton dans la relation définissant φ_{u+v} , on a:

$$\varphi_{u+v}(t) = \sum_{k=0}^{n} \frac{(u+v)^k}{k!} \left(\mathcal{L}_n(t) \right)^k$$

$$= \sum_{k=0}^{n} \frac{\sum_{l=0}^{k} \binom{k}{l} u^l v^{k-l}}{k!} \left(\mathcal{L}_n(t) \right)^k$$

$$\varphi_{u+v}(t) = \sum_{k=0}^{n} \sum_{l=0}^{k} \frac{u^l}{l!} \frac{v^{k-l}}{(k-l)!} \left(\mathcal{L}_n(t) \right)^k$$

Comme $(L_n(t))^k = 0$ dès que k est supérieur ou égal à n+1, on peut ajouter des termes de ce type pour obtenir l'expression

$$\varphi_{u+v}(t) = \sum_{k=0}^{2n} \left(\sum_{l=0}^{k} \frac{u^{l}}{l!} \frac{v^{k-l}}{(k-l)!} \right) (\mathbf{L}_{n}(t))^{k}$$

que l'on reconnaît comme étant la forme développée de

$$\varphi_{u+v}(t) = \left(\sum_{k=0}^{n} \frac{u^k}{k!} \left(\mathbf{L}_n(t) \right)^k \right) \left(\sum_{l=0}^{n} \frac{v^l}{l!} \left(\mathbf{L}_n(t) \right)^l \right)$$
$$= \varphi_u(t) \, \varphi_v(t)$$

En conclusion,

$$\forall (u, v, t) \in \mathbb{R}^3$$
 $\varphi_{u+v}(t) = \varphi_u(t) \varphi_v(t)$

III-2.b φ_u est dérivable en tant que combinaison linéaire de fonctions dérivables:

$$\varphi_{u}'(t) = \sum_{k=0}^{n} \frac{u^{k}}{k!} \frac{\mathrm{d} \left(\mathrm{L}_{n}(t)\right)^{k}}{\mathrm{d}t}$$

soit, en utilisant l'expression de $\frac{\mathrm{d}\left(\mathrm{L}_{n}(t)\right)^{k}}{\mathrm{d}t}$ établie à la question III-1.d,

$$\varphi'_{u}(t) = \sum_{k=0}^{n} \frac{u^{k}}{k!} k \left(\mathbf{L}_{n}(t) \right)^{k-1} \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n}
= u \left(\sum_{k=0}^{n-1} \frac{u^{k}}{k!} \left(\mathbf{L}_{n}(t) \right)^{k} \right) \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n}
= u \left(\varphi_{u}(t) - \frac{u^{n}}{n!} \left(\mathbf{L}_{n}(t) \right)^{n} \right) \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n}
= u \varphi_{u}(t) \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n} - \frac{u^{n+1}}{n!} \left(\mathbf{L}_{n}(t) \right)^{n} \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n}
= u \varphi_{u}(t) \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n} - \frac{u^{n+1}}{(n+1)!} \frac{d \left(\mathbf{L}_{n}(t) \right)^{n+1}}{dt}
\varphi'_{u}(t) = u \varphi_{u}(t) \left(\mathbf{I}_{n+1} + t \, \mathbf{D}_{n} \right)^{-1} \mathbf{D}_{n}$$

puisque $(L_n(t))^{n+1} = 0$ d'après le résultat de la question III-1.c. Or, d'après ce qui précède, $\varphi_u(t)$, $L_n(t)$, $(L_n(t))^n$, $(I_{n+1} + t D_n)^{-1}$ et D_n sont des polynômes en D_n et commutent donc.

Conclusion:

$$\forall t \in \mathbb{R}$$
 $\varphi'_u(t) = u \left(\mathbf{I}_{n+1} + t \mathbf{D}_n \right)^{-1} \mathbf{D}_n \varphi_u(t)$

III-2.c D'après la question précédente,

$$\forall t \in \mathbb{R}$$
 $D_n \varphi_1(t) = (I_{n+1} + t D_n) \varphi_1'(t)$

Dérivons cette relation par rapport à t: on obtient

$$\forall t \in \mathbb{R}$$
 $D_n \varphi_1'(t) = D_n \varphi_1'(t) + (I_{n+1} + t D_n) \varphi_1''(t)$

Par conséquent,

$$\forall t \in \mathbb{R}$$
 $(I_{n+1} + t D_n) \varphi_1''(t) = 0$

Mais $(I_{n+1} + t D_n)$ est connue comme étant inversible depuis la question III-1.a;

$$\forall t \in \mathbb{R} \qquad \varphi_1''(t) = 0$$

Chacune des coordonnées de la matrice $\varphi_1(t)$ est une fonction affine de t puisque de dérivée seconde nulle; il existe donc un couple (A, B) de $\mathcal{M}_n(\mathbb{R})$ tel que

$$\forall t \in \mathbb{R}$$
 $\varphi_1(t) = A t + B$

Déterminons quelles sont ces matrices A et B.

• Spécialisons t à 0 dans la relation définissant φ_1 :

$$\varphi_1(0) = \sum_{k=0}^{n} \frac{1}{k!} L_n(0)^k$$

Or, on déduit directement de la définition de $L_n(t)$ que

$$L_n(0) = 0_{n+1}$$
 et $L_n^0(0) = I_{n+1}$

Par suite $\varphi_1(0)=\mathrm{I}_{n+1}\,,$ d'où $\mathrm{B}=\mathrm{I}_{n+1}.$

• D'après la question précédente, $\varphi_1'(0) = D_n \varphi_1(0) = D_n$, donc $A = D_n$.

En conclusion,

$$\forall t \in \mathbb{R}$$
 $\varphi_1(t) = I_{n+1} + t D_n$

III-3 Existence de l'endomorphisme g

III-3.a En utilisant successivement le fait que λ soit strictement positif et le résultat de la question III-2.c, on peut écrire que

$$\lambda I_{n+1} + D_n \stackrel{=}{\underset{\lambda>0}{=}} \lambda \left(I_{n+1} + \frac{1}{\lambda} D_n \right) \stackrel{=}{\underset{\text{III-2.c}}{=}} \lambda \varphi_1 \left(\frac{1}{\lambda} \right)$$

Enfin, d'après la question III-2.a,

$$\varphi_1\left(\frac{1}{\lambda}\right) = \left(\varphi_{\frac{1}{2}}\left(\frac{1}{\lambda}\right)\right)^2$$

d'où

$$\lambda I_{n+1} + D_n = \left(\pm\sqrt{\lambda}\,\varphi_{\frac{1}{2}}\left(\frac{1}{\lambda}\right)\right)^2$$

Les matrices
$$\mathcal{M}_{\pm} = \pm \sqrt{\lambda} \, \varphi_{\frac{1}{2}} \left(\frac{1}{\lambda} \right) \in \mathscr{M}_n(\mathbb{R})$$
 vérifient $\mathcal{M}^2_{\pm} = \lambda \, \mathcal{I}_{n+1} + \mathcal{D}_n$.

De plus, l'endomorphisme g_+ (respectivement g_-) de matrice M_+ (resp. M_-) dans la base B_n construite à la question I-3.b vérifie $g^2=\lambda\operatorname{id}_{E_n}+D_n$.

III-3.b D'après la question précédente, les matrices $M_{\pm} = \pm \varphi_{\frac{1}{2}}(1)$ vérifient bien la relation $M_{+}^{2} = I_{n+1} + D_{n} = A_{1}$. Il reste à les expliciter:

$$L_2(1) = D_2 - \frac{1}{2} (D_2)^2 = \begin{pmatrix} 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

et

$$\varphi_{\frac{1}{2}}(1) = I_2 + \frac{1}{2}L_2(1) + \frac{1}{8}\left(L_2(1)\right)^2$$

Finalement,

$$\mathbf{M}_{\pm} = \pm \varphi_{\frac{1}{2}}(1) = \pm \begin{pmatrix} 1 & \frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

QUATRIÈME PARTIE

IV-1 Un développement en série entière

IV-1.a h est continûment dérivable sur]-1; ∞ [car la fonction racine carrée l'est sur]0; ∞ [. On peut calculer sa fonction dérivée:

$$\forall x > -1$$
 $h'(x) = \frac{1}{2\sqrt{1+x}} = \frac{\sqrt{1+x}}{2(1+x)} = \frac{h(x)}{2(1+x)}$

d'où l'équation différentielle linéaire du premier ordre recherchée:

$$\forall x > -1 \qquad (1+x) h'(x) - \frac{1}{2}h(x) = 0$$
 (7)

La première équation différentielle que l'on « voit » en dérivant, $h\,h'=\frac{1}{2}\,,$ n'est pas linéaire. . .

IV-1.b La question précédente invite à appliquer la « méthode de l'équation différentielle ».

- Premier point: appliquons le théorème de Cauchy-Lipschitz au système (*) formé de l'équation différentielle précédente et de la condition h(0) = 1.
 On en déduit que h en est l'unique solution. Si l'on parvient à trouver une fonction h, développable en série entière et solution du même système, on pourra conclure que h = h.
- Second point : supposons donc l'existence d'un réel 0 < R < 1 tel qu'il existe une solution \widetilde{h} du système différentiel (*) définie par

$$\forall x \in]-R; R[$$
 $\widetilde{h}(x) = \sum_{p=0}^{+\infty} b_p x^p$

Par propriété, la dérivée \widetilde{h}' de \widetilde{h} est également développable en série entière sur]-R; R [et \widetilde{h} se dérive « terme » ; on déduit alors de (7) que

$$\forall x \in]-R; R[$$
 $(1+x) \sum_{p=0}^{+\infty} (p+1) b_{p+1} x^p - \frac{1}{2} \sum_{p=0}^{+\infty} b_p x^p = 0$

soit
$$\forall x \in]-R; R[$$
 $\sum_{p=0}^{+\infty} \left((p+1) b_{p+1} + \left(p - \frac{1}{2} \right) b_p \right) x^p = 0$

Par unicité du développement en série entière de la fonction nulle au voisinage de 0, on aboutit à la relation

$$\forall p \in \mathbb{N} \qquad (p+1) b_{p+1} + \left(p - \frac{1}{2}\right) b_p = 0$$

$$\forall p \in \mathbb{N} \qquad b_{p+1} = -\frac{2p-1}{2(p+1)} b_p$$
(8)

d'où

Comme \widetilde{h} vérifie (*), on sait en outre que $\widetilde{h}(0)=1.$ Nous sommes conduits aux conditions suivantes :

(9)
$$\begin{cases} \forall p \in \mathbb{N}^* & b_p = \frac{(-1)^p}{2^p \, p!} \prod_{k=1}^p (2p - 2k - 1) \\ b_0 = 1 \end{cases}$$

que l'on montre par récurrence sur p: montrons que la propriété

$$\mathscr{P}(p): b_p = (-1)^p \frac{\prod_{k=1}^p (2p - 2k - 1)}{2^p p!}$$

est vraie pour tout $p \in \mathbb{N}^*$.

- $-\underline{\mathscr{P}(1)}$ est vraie par hypothèse car $b_1=\frac{1}{2}$ d'après (8).
- $\mathscr{P}(q) \Longrightarrow \mathscr{P}(q+1)$: d'après (8) et $\mathscr{P}(q)$,

$$b_{p+1} = -\frac{2p-1}{2(p+1)} (-1)^p \frac{\prod_{k=1}^p (2p-2k-1)}{2^p p!}$$
$$= (-1)^{p+1} \frac{\prod_{k=0}^p (2p-2k-1)}{2^{p+1} (p+1)!}$$
$$b_{p+1} = (-1)^{p+1} \frac{\prod_{k=1}^{p+1} (2(p+1)-2k-1)}{2^{p+1} (p+1)!}$$

c'est-à-dire que $\mathscr{P}(q+1)$ est vraie.

- Conclusion: $\mathscr{P}(q)$ est vraie pour tout $q \geqslant p$.

Il reste à vérifier que la série ainsi construite a un rayon de convergence non nul. On constate que (pour p > 0)

$$\left| \frac{b_{p+1}}{b_p} \right| = \frac{2p-1}{2(p+1)} \xrightarrow[p \to +\infty]{} 1$$

La règle de D'Alembert s'applique car b_p n'est jamais nul, et permet de conclure que $\mathbf{R}=1.$

Finalement, il existe une solution \widetilde{h} de (*) développable en série entière.

L'ordre dans lequel on traite les deux points ci-dessus est sans aucune importance. Cependant, le second reste toujours le plus long et le premier le plus « subtil » . . . à ne pas oublier.

D'après les deux points précédents, h est développable en série entière sur]-1;1[. Le terme général de la série est $b_p x^p$ pour $p \in \mathbb{N}$, où les b_p sont définis par les relations (8).

IV-1.c
$$\forall x \in]-1;1[$$
 $1+x=h^2(x)=\left(\sum_{p=0}^{+\infty}b_p\,x^p\right)^2$

Effectuons le produit de Cauchy:

$$1 + x = \sum_{n=0}^{+\infty} \left(\sum_{p=0}^{n} b_p b_{n-p} \right) x^n = \sum_{n=0}^{+\infty} c_n x^n$$

Par unicité du développement en série entière de 1 + x au voisinage de 0, on obtient

$$c_1 = c_0 = 1 \quad \text{et} \quad \forall n \geqslant 2 \quad c_n = 0$$

IV-2 Existence d'un endomorphisme g de E tel que

$$g^2 = \lambda \operatorname{id}_{\mathrm{E}} + \mathrm{D}$$
 où $\lambda > 0$

IV-2.a Montrons que $T \in L(E)$. Soit $P \in E$ de degré $d^{\circ}(P) \in \mathbb{N}$. Comme pour tout $p \ge d^{\circ}(P) + 1$, $D^{p}(P) = 0$, on peut écrire, sans problème de convergence,

$$T(P) = \sum_{p=0}^{d^{\circ}(P)} \frac{b_p}{\lambda^p} D^p(P) \in E$$

Il reste à montrer que T est linéaire. Commençons par remarquer que

$$\forall P \in E \quad \forall q \in \mathbb{N} \quad q \geqslant d^{\circ}(P) \qquad T(P) = \sum_{p=0}^{q} \frac{b_p}{\lambda^p} D^p(P)$$
 (10)

Soient $(\alpha, \beta) \in \mathbb{R}^2$, $(P, Q) \in (\mathbf{E})^2$ et $q = \max(d^{\circ}(P), d^{\circ}(Q)) + 1$. Par construction, q est supérieur ou égal à $d^{\circ}(P) + 1$, $d^{\circ}(Q) + 1$ et $d^{\circ}(\alpha P + \beta Q) + 1$.

D'après (10),
$$\begin{split} \mathrm{T}(\alpha\mathrm{P} + \beta\mathrm{Q}) &= \sum_{p=0}^q \frac{b_p}{\lambda^p} \mathrm{D}^p(\alpha\mathrm{P} + \beta\mathrm{Q}) \\ &= \sum_{p=0}^q \frac{b_p}{\lambda^p} \left(\alpha\mathrm{D}^p(\mathrm{P}) + \beta\mathrm{D}^p(\mathrm{Q})\right) \\ &= \alpha \sum_{p=0}^q \frac{b_p}{\lambda^p} \mathrm{D}^p(\mathrm{P}) + \beta \sum_{p=0}^q \frac{b_p}{\lambda^p} \mathrm{D}^p(\mathrm{Q}) \\ \mathrm{T}(\alpha\mathrm{P} + \beta\mathrm{Q}) &= \alpha\mathrm{T}(\mathrm{P}) + \beta\mathrm{T}(\mathrm{Q}) \end{split}$$

Conclusion:

$$T\in L(E)$$

IV-2.b Soit $P \in E$ de degré $d^{\circ}(P)$. Calculons $T^{2}(P)$. Commençons par exprimer, pour tout $q \in \mathbb{N}$:

$$\mathbf{D}^q(\mathbf{T}(\mathbf{P})) = \mathbf{D}^q \left(\sum_{p=0}^{d^{\circ}(\mathbf{P})} \frac{b_p}{\lambda^p} \mathbf{D}^p(\mathbf{P}) \right) = \sum_{p=0}^{d^{\circ}(\mathbf{P})} \frac{b_p}{\lambda^p} \mathbf{D}^{p+q}(\mathbf{P})$$

et utilisons cette expression dans celle de $\mathrm{T}^2(\mathrm{P})$:

$$\mathbf{T}^2(\mathbf{P}) = \sum_{q=0}^{d^{\circ}(\mathbf{T}(\mathbf{P}))} \frac{b_q}{\lambda^q} \mathbf{D}^q(\mathbf{T}(\mathbf{P})) = \sum_{q=0}^{d^{\circ}(\mathbf{T}(\mathbf{P}))} \frac{b_q}{\lambda^q} \sum_{p=0}^{d^{\circ}(\mathbf{P})} \frac{b_p}{\lambda^p} \mathbf{D}^{p+q}(\mathbf{P})$$

On peut alors remarquer que pour tout polynôme P non nul, tous les termes intervenant dans la somme T(P) sont des polynômes de degrés strictement inférieurs à P à l'exception du premier terme de cette somme, qui est $\frac{b_0}{\lambda^0}D^0(P)=\frac{b_0}{1}P=P$. Nous venons de démontrer que $d^\circ(T(P))=d^\circ(P)$, cette propriété restant valable lorsque P est nul.

Bilan:
$$\forall P \in E \qquad d^{\circ}(T(P)) = d^{\circ}(P)$$

Posons alors $n = d^{\circ}(P)$; il vient

$$\mathbf{T}^{2}(\mathbf{P}) = \sum_{q=0}^{d^{\circ}(\mathbf{T}(\mathbf{P}))} \frac{b_{q}}{\lambda^{q}} \sum_{p=0}^{d^{\circ}(\mathbf{P})} \frac{b_{p}}{\lambda^{p}} \mathbf{D}^{p+q}(\mathbf{P}) = \sum_{p=0}^{n} \sum_{q=0}^{n} b_{p} \, b_{q} \, \frac{1}{\lambda^{p+q}} \, \mathbf{D}^{p+q}(\mathbf{P})$$

et comme $D^r(P) = 0$ pour $r \ge n + 1$, on en déduit

$$T^{2}(P) = \sum_{r=0}^{n} \sum_{(p,q)\in\mathbb{N}^{2}/p+q=r} b_{p} b_{q} \frac{1}{\lambda^{r}} D^{r}(P)$$

$$= \sum_{r=0}^{n} \sum_{p=0}^{r} b_{p} b_{r-p} \frac{1}{\lambda^{r}} D^{r}(P)$$

$$T^{2}(P) = \sum_{r=0}^{n} c_{r} \frac{1}{\lambda^{r}} D^{r}(P)$$

Enfin, en utilisant le résultat de la question IV-1.c sachant que $n \ge 1$, on obtient finalement

$$T^{2}(P) = \left(\frac{1}{\lambda^{0}} D^{0} + \frac{1}{\lambda^{1}} D^{1}\right)(P) = \left(id_{E} + \frac{1}{\lambda} D\right)(P)$$

En conclusion,

Par définition,

$$\boxed{T^2 = id_E + \frac{1}{\lambda} D}$$

IV-2.c Les applications $g_{\pm} = \pm \sqrt{\lambda} \, \mathrm{T}$:

- sont des endomorphismes de E d'après la question IV-2.a;
- vérifient $g_{\pm}{}^2=\lambda\,\mathrm{T}^2=\lambda\,\mathrm{id_{\,E}}+\mathrm{D}$ d'après le résultat de la question IV-2.b.

IV-2.d D'après les questions I-1.b et IV-2.c, $g_{\pm}(\mathbf{E}_n) \subset \mathbf{E}_n$ et l'endomorphisme g_{\pm} induit par g_{\pm} sur \mathbf{E}_n vérifie la relation

$$\begin{aligned} g_{\pm_n}^{\ 2} &= \lambda \text{ id }_{\mathbf{E}} + \mathbf{D} \\ g_{\pm_n} &= g_{\pm_{\left| \mathbf{E}_n \right|}} \\ &= \pm \sqrt{\lambda} \left. \mathbf{T}_{\left| \mathbf{E}_n \right|} \right. \\ &= \pm \sqrt{\lambda} \left. \left(\sum_{p=0}^{+\infty} \frac{b_p}{\lambda^p} \mathbf{D}^p \right)_{\left| \mathbf{E}_n \right|} \right. \end{aligned}$$

 $g_{\pm_n} = \pm \sqrt{\lambda} \sum_{p=0}^{+\infty} \frac{b_p}{\lambda^p} (\mathbf{D}^p)|_{\mathbf{E}_n}$

mais $\mathbf{D}^p_{\mid_{\mathbf{E}_n}} = \mathbf{D}_n^{\ p} = 0$ dès que $p \geqslant n+1$ et il reste finalement

$$g_{\pm_n} = \pm \sqrt{\lambda} \sum_{p=0}^n \frac{b_p}{\lambda^p} \mathbf{D}_n^p$$

On pose par exemple $g_n = \sqrt{\lambda} \sum_{p=0}^n \frac{b_p}{\lambda^p} \mathbf{D}_n^p$ qui est bien un polynôme en \mathbf{D}_n .

Le problème posé à la question I-4.b correspond au cas où $\lambda=1$ et n=2. Dans ces conditions,

$$g_n = b_0 D_2^0 + b_1 D_2 + b_2 D_2^2$$

et il reste à calculer les coefficients b_0,b_1 et b_2 . D'après les relations (9) obtenues à la question IV-1.b, ceux-ci sont :

$$b_0 = 1, \quad b_1 = \frac{1}{2}, \quad b_2 = -\frac{1}{8}$$

et l'on retrouve le résultat de la question I-4.b, à savoir que les matrices

$$\mathbf{M}_{\pm} = \pm \begin{pmatrix} 1 & \frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

représentant les endomorphismes g_{\pm_2} dans la base \mathbf{B}_2 vérifient l'équation

$$M_+^2 = A_1$$