PARTIE III

Soit a un réel strictement positif. On considère les deux suites réelles $(a_k)_{k\in\mathbb{N}}$ et $(b_k)_{k\in\mathbb{N}}$ définies par leurs premiers termes $a_0=a$, $b_0=1$ et les relations de récurrence :

$$\forall k \in \mathbb{N} , \ a_{k+1} = \frac{1}{2} \left(a_k + \frac{1}{b_k} \right) , \ b_{k+1} = \frac{1}{2} \left(b_k + \frac{1}{a_k} \right)$$

III.1 Montrer que pour tout $k \in \mathbb{N}$, $a_k > 0$ et $b_k > 0$.

III.2 On définit les suites $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{n\in\mathbb{N}}$ en posant pour tout $k\in\mathbb{N}$, $u_k=a_kb_k$ et $v_k=\frac{a_k}{b_k}$.

- a) Etudier la suite $(v_k)_{k \in \mathbb{N}}$.
- b) Etablir une relation de récurrence vérifiée par les termes de la suite $(u_k)_{k \in \mathbb{N}}$.
- c) Montrer que pour tout entier k supérieur ou égal à $1, u_k \ge 1$.
- **d**) Etudier la convergence de la suite $(u_k)_{k \in \mathbb{N}}$.

III.3 Déduire des questions précédentes que les suites $(a_k)_{k\in\mathbb{N}}$ et $(b_k)_{k\in\mathbb{N}}$ convergent et préciser leurs limites respectives.

C Théorème taubérien

On considère une suite $(a_n)_{n\in\mathbb{N}}$ décroissante de réels positifs et, pour tout entier naturel n, on pose : $S_n = \sum_{k=0}^n a_n$. On fait l'hypothèse que

$$S_n \underset{n \to \infty}{\sim} 2\sqrt{n}$$
.

On va montrer qu'alors

$$a_n \underset{n \to \infty}{\sim} \frac{1}{\sqrt{n}}$$

On notera [x] la partie entière d'un réel x .

8. Soit α, β un couple de nombres réels vérifiant : $0 < \alpha < 1 < \beta$. Pour tout entier naturel n tel que $n - [\alpha n]$ et $n - [\beta n]$ soient non nuls, justifier l'encadrement :

$$\frac{S_{[\beta n]} - S_n}{[\beta n] - n} \le a_n \le \frac{S_n - S_{[\alpha n]}}{n - [\alpha n]}.$$

9. Soit γ un réel strictement positif. Déterminer les limites des suites de termes généraux

$$\frac{n}{[\gamma n]}$$
 et $\frac{S_{[\gamma n]}}{\sqrt{n}}$.

10. Soit ε un réel strictement positif. Montrer que, pour tout entier naturel n assez grand, on a :

$$\frac{2(\sqrt{\beta}-1)}{\beta-1}-\varepsilon \le \sqrt{n}\,a_n \le \frac{2(1-\sqrt{\alpha})}{1-\alpha}+\varepsilon.$$

11. En déduire que $\lim_{n\to\infty} \sqrt{n} \, a_n = 1$.