Valeurs propres, vecteurs propres

1 ______ (*) ______

Soit α, β deux complexes. Déterminer le polynôme caractéristique des matrices

$$A = \begin{pmatrix} \alpha & 0 & \cdots & \cdots & \cdots & 0 & \beta \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ \vdots & \ddots & \alpha & 0 & \beta & \ddots & \vdots \\ \vdots & & 0 & \alpha + \beta & 0 & & \vdots \\ \vdots & \ddots & \beta & 0 & \alpha & \ddots & \vdots \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ \beta & 0 & \cdots & \cdots & \cdots & 0 & \alpha \end{pmatrix} \in \mathcal{M}_{2n+1}(\mathbb{C}) \quad \text{ et } \quad B = \begin{pmatrix} \alpha & & & & & \beta \\ & \ddots & & & & & \beta \\ & & \ddots & & & & \ddots \\ & & & & \beta & \alpha & & (0) \\ & & \ddots & & & & \ddots \\ & & & & & \beta \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$$

Déterminer les valeurs propres et les vecteurs propres de la matrice suivante :

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ 2 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ n & 0 & \cdots & 0 \end{pmatrix}$$

Soit $E=\mathcal{C}(\mathbb{R},\mathbb{R})$ et Φ définie sur E par

$$\forall f \in E, \qquad \Phi(f): x \longmapsto \int_0^x \frac{f(t)}{1+t^2} dt$$

- (a). (i) Montrer que Φ est un endomorphisme de E.
 - (ii) Soit $g \in \text{Im } \Phi$. Montrer que g est de classe \mathcal{C}^1 . Que peut-on en déduire sur Φ ?
- (b). Déterminer les valeurs propres de Φ .

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et v un élément de E non nul. On note

$$E_v = \{u \in \mathcal{L}(E), v \text{ est vecteur propre de } u\}$$

Montrer que E_v est un sous-espace vectoriel de $\mathcal{L}(E)$ et donner sa dimension.

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que AB = 0.

- (a) Montrer que A et B ont un vecteur propre en commun.
- (b) En déduire l'existence de $P \in \mathcal{G}\ell_n(\mathbb{C})$ telle que $P^{-1}AP$ et $P^{-1}BP$ soient toutes deux triangulaires supérieures.

Diagonalisabilité

_____(*)_____

Pour tout
$$P \in \mathbb{R}_n[X]$$
, on pose $u(P) = (X+2) P(X) - (X+1) P(X+1)$

Montrer que l'on définit ainsi un endomorphisme u de $\mathbb{R}_n[X]$. Est-il diagonalisable? Déterminer enfin le rang de u et son noyau.

______(**) _______CCP PC 2009

Soit J l'élément de $\mathcal{M}_2(\mathbb{R})$ dont tous les coefficients valent 1 et f l'application définie par

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \qquad f(M) = JM - MJ$$

- (a). Montrer que f est un endomorphisme et déterminer sa matrice respectivement à la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- (b). L'endomorphisme f est-il diagonalisable? Déterminer ses valeurs propres et les espaces propres associés.
- (c). Déterminer une base de Ker f et une base de Im f.

(d). Soit B un élément de $\mathcal{M}_2(\mathbb{R})$. Résoudre l'équation f(M) = B d'inconnue M.

_____(*) _____

(a). Soit $\alpha, \beta \in \mathbb{C}$ et $\theta \in \mathbb{R}$. Calculer le premier des deux déterminants suivant et en déduire la valeur du second :

$$D_n(\alpha,\beta) = \begin{vmatrix} \alpha+\beta & \alpha\beta & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & \alpha\beta \\ (0) & 1 & \alpha+\beta \end{vmatrix} \qquad P_n(\theta) = \begin{vmatrix} 2\cos\theta & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 2\cos\theta \end{vmatrix}$$

(b). Soit $z \in \mathbb{C}$. La matrice suivante est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{C})$?

$$A_{z} = \begin{pmatrix} z & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & z \end{pmatrix}$$

_____(**) _____

___ X PC 2019

Soit E un \mathbb{K} -espace vectoriel de dimension finie et u un endomorphisme de E de rang 1. Donner une condition nécessaire et suffisante pour que u soit diagonalisable.

____(**) ____

Montrer que si f est un endomorphisme diagonalisable d'un espace vectoriel de dimension finie, alors Ker f et Im f sont supplémentaires. La réciproque est-elle vraie?

_____ (**) _____

Soit E un K-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On définit alors

$$\varphi_f: \ \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$$
 $q \longmapsto f \circ q$

- (a). Montrer que si λ est valeur propre de f, elle est valeur propre de φ_f et déterminer la dimension de $E_{\lambda}(\varphi_f)$ en fonction de celle de $E_{\lambda}(f)$.
- (b). Que peut-on en déduire si f est diagonalisable?

______ (**) ______ Mines PC 2016 12

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ tels que $f \circ f$ est diagonalisable. Montrer que f est diagonalisable si et seulement si Ker $f \cap \text{Im } f = \{0\}.$

______ (**) _______ X PC 2010 13 ___

Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que A est diagonalisable si et seulement si pour tout polynôme non constant P, on peut trouver $M \in \mathcal{M}_2(\mathbb{C})$ tel que A = P(M).

Equations matricielles

_____(**) _____

Soit A un élément non nul de $\mathcal{M}_3(\mathbb{R})$ tel que $A^3=-A$ et u l'endomorphisme de \mathbb{R}^3 associé à A.

- (a). Montrer que $\mathbb{R}^3 = \text{Ker } u \oplus \text{Ker } (u^2 + I_d)$.
- (b). Montrer que A est semblable à $M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$
- (c). Donner la dimension et une base de C(A).
- (d). Résoudre l'équation $X^6 + X^2 = 0$ dans $\mathcal{M}_3(\mathbb{R})$.

Déterminer les matrices $A \in \mathcal{M}_2(\mathbb{C})$ telles que $A^2 + A + I_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Divers

__ (**) _

Soit $a \in \mathbb{R}$. Déterminer

$$\lim_{n \to +\infty} \frac{1}{n} \begin{pmatrix} 0 & 1 + \frac{a^2}{n^2} \\ -1 & 2 \end{pmatrix}^n$$

17 _

______ (*) _______ X PC 2016

Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$. Déterminer la dimension de $\{B \in \mathcal{M}_3(\mathbb{R}), AB = BA\}$.

18

_ (**) ______ Centrale PC 2008

Déterminer les matrices $A \in \mathcal{M}_2(\mathbb{C})$ telles que A et A^2 soient semblables. On exprimera le résultat sous la forme $A = PBP^{-1}$ avec P inversible arbitraire et B la plus simple possible.

____ (**) ______ X PC 2010

Déterminer les sous-espaces vectoriels de \mathbb{R}^3 stables par l'endomorphisme canoniquement associé à

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

20

______ (***) _______ X PC 2010

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$ tels que $f \circ g = f + g$.

- (a) Montrer que Ker f = Ker g et Im f = Im g.
- (b) On suppose f et g diagonalisables. Montrer que $f \circ g$ est diagonalisable et que son spectre est inclus dans $\mathbb{R} \setminus [0; 4[$.

Exercices supplémentaires non corrigés

Soit $A \in \mathcal{M}_2(\mathbb{R})$. On suppose qu'il existe $n \in \mathbb{N}^*$ telle que $A^{2^n} = I_2$. Montrer que $A^2 = I_2$ ou bien qu'il existe $k \in \mathbb{N}^*$ tel que $A^{2^k} = -I_2.$

22

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que AB soit diagonalisable.

- (a). La matrice BA est-elle diagonalisable?
- $\dim \operatorname{Ker} AB \leq \dim \operatorname{Ker} B(AB)A \leq \dim \operatorname{Ker} A(BABA)B \leq \dim \operatorname{Ker} AB$ (b). Montrer que
- (c). La matrice $(BA)^2$ est-elle diagonalisable?

23

_____ (**) _____ Centrale PC 2024

Soit $A \in \mathcal{G}\ell_n(\mathbb{C})$.

- (a). La matrice $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ est-elle diagonalisable?
- (b). Montrer que la matrice $C=\begin{pmatrix} 0 & A \\ I_n & A \end{pmatrix}$ est diagonalisable si et seulement si A l'est.

On pose
$$A_1=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}$$
 puis
$$\forall n\in\mathbb{N}^*,\qquad A_{n+1}=\begin{pmatrix} A_n&I_{2^n}\\I_{2^n}&A_n \end{pmatrix}$$

Montrer que la matrice A_n admet (n+1) valeurs propres $\lambda_0 < \lambda_1 < \cdots < \lambda_n$ d'ordres respectifs $\binom{n}{k}$ pour $k \in [0; n]$.

- 1 On pourra déterminer des valeurs propres évidentes et en déduire la liste complète.
- **2** Résoudre le système $AX = \lambda X$ en fonction de la valeur de λ .
- $\boxed{\bf 3}$ (b) Dériver l'égalité $\Phi(f) = \lambda f$ pour se ramener à une équation différentielle linéaire du premier ordre.
- Compléter $\{v\}$ en une base de E et raisonner sur la forme de la matrice de $u \in E_v$ respectivement à cette base.
- $\boxed{\mathbf{5}}$ (a) Raisonner sur l'endomorphisme induit par B sur Im B.
 - (b) Procéder par récurrence sur n.
- $\boxed{\mathbf{6}}$ On pourra considérer la matrice de u dans la base canonique.
- [7] (a) Noter $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ puis calculer f(M). En déduire les images des matrices élémentaires $E_{1,1}$, $E_{1,2}$, $E_{2,1}$ et $E_{2,2}$ puis la matrice demandée (de taille 4).
 - (b) Calculer le polynôme caractéristique de la matrice obtenue à la question (a) et vérifier qu'il est scindé sur \mathbb{R} (avec des racines entières).
 - (c) Pour obtenir une base de Im f, prendre une base de vecteurs propres associés à des valeurs propres non nulles.
 - (d) Noter $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Commencer par déterminer une condition sur a, b, c et d pour que B appartienne à Im f. Déterminer ensuite un antécédent quelconque de B, puis tous les antécédents à l'aide de Ker f.
- (a) Déterminer une formule de récurrence satisfaite par $D_n(\alpha, \beta)$. Remarquer que $P_n(\theta)$ n'est qu'un cas particulier du premier.
 - (b) Déterminer n complexes $\lambda_1, \ldots, \lambda_n$ deux à deux distincts tels que pour tout $k \in [1; n], A_z \lambda_k I_n$ soit non inversible.
- 9 Calculer le polynôme caractéristique de u en travaillant dans une base adaptée à Ker u.
- [10] Comparer les espaces propres de f aux espaces Ker f et Im f. Pour la réciproque, raisonner à l'aide d'un élément de $\mathcal{G}\ell_n(\mathbb{K})$ bien choisi.
- [11] (a) Etant donné λ une valeur propre de A, à quelle condition portant sur Im g l'endomorphisme g appartient-il à $\operatorname{Ker}(\varphi \lambda I_{d\mathcal{L}(E)})$?
- Commencer par justifier que Ker $f \cap \text{Im } f = \{0\}$ si et seulement si Ker $f = \text{Ker } f^2$.

 Passer ensuite par les polynômes annulateurs et utiliser le fait que tout complexe non nul admet deux racines carrées distinctes.
- 13 Utiliser les formes réduites des éléments de $\mathcal{M}_2(\mathbb{C})$.
- **14** (b) Justifier que dim Ker $(u^2 + I_d) = 2$.
 - (d) Remarquer que si X est solution, alors $A = X^2$ vérifie $A^3 = -A$ et X commute avec A.
- 15 Noter $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Remarquer alors que A et J commutent et que J est diagonalisable.
- | 16 | En distinguant les 2 cas a = 0 et $a \neq 0$, on cherchera une forme réduite dans $\mathcal{M}_2(\mathbb{C})$ de la matrice et on justifiera que

$$\left(1 + \frac{ia}{n}\right)^n \xrightarrow[n \to +\infty]{} \exp(ia)$$

- 17 Ne surtout pas se précipiter sur le moindre calcul, c'est inutile. Remarquer que A a 3 valeurs propres distinctes donc est diagonalisable. Justifier ensuite qu'une matrice diagonale ayant des valeurs propres deux à deux distinctes ne commute qu'avec des matrices diagonales.
- 18 Utiliser les formes réduites des éléments de $\mathcal{M}_2(\mathbb{C})$.
- 19 Raisonner sur l'endomorphisme induit sur le sous-espace stable.
- 20 (a) Justifier deux inclusions puis conclure avec un argument de dimension.
 - (b) Choisir une base de diagonalisation de f et justifier en passant par les matrices qu'elle diagonalise automatiquement g. Pour le résultat sur le spectre, justifier que si deux réels a et b vérifient a + b = ab, alors $ab \notin]0; 4[$.