
TP Python - PC* - Lycée Joffre TP n◦ 04

Programmation dynamique
La quasi-totalité des Smartphones actuels sont munis d’une fonction de correc-

tion automatique (parfois un peu trop) pour permettre aux usagers de rédiger des
messages rapides sans avoir trop à se soucier d’être particulièrement vigilants pour
l’orthographe. Lorsqu’un message est rédigé rapidement, les principales sources de
coquilles sont les suivantes :
• oubli d’un caractère ;
• utilisation d’un mauvais caractère ;
• ajout d’un caractère incorrect (pour ceux qui ont des gros doigts).
Ainsi, on pourra se retrouver à écrire endamrphismle au lieu de endomorphisme

en cumulant les trois coquilles ci-dessus. Pendant la composition d’un mot, les outils
numériques proposent donc à la volée une liste de mots du dictionnaire parmi les
plus proches de celui qui est en train d’être écrire pour corriger les erreurs ou même
compléter automatiquement la fin du mot.

Dans ce TP, on va s’intéresser à une méthode pour déterminer parmi un en-
semble E de mots celui ou ceux qui sont les plus proches d’un mot u. Cette méthode
est basée sur la notion de distance de Levenstein, aussi appelée distance d’édition,
qui compte le nombre minimal d’opérations élémentaires pour passer d’un mot u
à un mot v.

1 Distance de Levenstein
Dans toute cette partie, on considère deux mots u et v comportant respective-

ment p et q lettres. En Python, ces deux mots seront donnés sous la forme d’une
chaine de caractères. On rappelle que les chaînes fonctionnent comme les listes : on
accède au i-ième caractère par la syntaxe u[i] et la première lettre est d’indice 0.
Le mot vide (qui ne comporte aucune lettre) s’écrit ” ou "". On le notera ε par la
suite.

On définit trois types d’opérations élémentaires sur une chaine de caractère u :
• ajout(u,i,a) qui ajoute un caractère à la i-ème position du mot u. Par

exemple, ajout(’toto’, 1, ’z’) renvoie ’azjout’.
• supprime(u,i) qui supprime le i-ième caractère de u. Ainsi, l’instruction
supprime(’toto’,1) renvoie ’tto’.
• Enfin, remplace(u,i,a) qui remplace le i-ième caractère de u par la lettre
a de sorte que remplace(’toto’,3,’u’) renvoie ’totu’.

Note : l’implémentation de ces fonctions n’est pas nécessaire dans ce TP.

On notera qu’on aurait pu se passer de la dernière opération qui s’obtient en
composant les deux précédentes, mais en informatique, il est moins couteux de
remplacer un caractère que de le supprimer.

La distance de Levenstein d(u, v) entre u et v est alors définie comme le nombre
minimal d’opérations élémentaires pour passer de u à v.

1. Justifier que d(u, ε) = p pour tout mot u comportant p lettres.
2. Justifier que d(u, v) = d(v, u) pour tous mots u et v.

Pour tout i ∈ [[0; p]], on note ui le mot constitué des i premières lettres de u.
On définit de même vj pour tout j ∈ [[0; q]] et on pose

∀i, j ∈ [[0; p]]× [[0; q]] , di,j = d(ui, vj)

On notera donc que d(u, v) = dp,q. Cette quantité va s’obtenir en calculant la
matrice D = (di,j)i,j∈[[0;p]]×[[0;q]].

3. Résultat principal : Justifier que pour tous (i, j) ∈ [[0; p− 1]]× [[0; q − 1]]

di+1,j+1 =

{
di,j si u[i] = v[j]

1 + min {di+1,j , di,j+1, di,j} sinon

4. En déduire une fonction distance qui prend en argument deux mots u et v
et renvoie la distance de Levenstein entre les deux mots u et v. On utilisera
la méthode suivante :

• Initialiser une matrice D sous la forme d’une liste de p listes de 0 de lon-
gueur q. La case D[i][j] contiendra à terme di,j . On pourra éventuelle-
ment utiliser un dictionnaire (initialement vide) pour ceux qui préfèrent.

• Remplir la première colonne et la première ligne de D en utilisant la
question 1.

• Remplir le reste deD ligne par ligne (ou colonne par colonne) en utilisant
la question 3.

On testera le résultat sur plusieurs couples de mots de votre choix.

2 Tris efficaces
Dans cette partie, on dispose d’un ensemble E de mots et d’un mot u. On cherche

dans un premier temps à trier efficacement l’ensemble E par ordre croissant de la
distance à u. L’opération restant coûteuse, on cherchera ensuite plus simplement
à extraire de E les k éléments à distance la plus faible de u, l’entier k étant donné
en argument.

1



TP Python - PC* - Lycée Joffre TP n◦ 04

2.1 Tri fusion
Le tri fusion est un algorithme efficace qui permet de trier les éléments d’une

liste de n éléments en O(n lnn) opérations élémentaires. Il est relativement optimal
dans la mesure où on peut démontrer que tout algorithme de tri n’utilisant que des
comparaisons entre les éléments de la liste utilise systématiquement dans le pire cas
au moins O(n lnn) opérations. Il est basé sur la stratégie « diviser pour régner »
(qui regroupe une vaste classe d’algorithmes). Pour trier une liste de longueur n :
• Si n ≤ 1, il n’y a rien à faire, on renvoie la liste sans la modifier.
• Si n ≥ 2, on coupe la liste en deux, on trie les deux morceaux, puis on réalise

une fusion pour reconstituer la liste triée à partir des deux sous-listes triées.
Pour réaliser l’opération de fusion de deux listes L1 et L2 triée et de longueur

n1 et n2,
• on crée une nouvelle liste L (vide, ou de longueur n1 + n2) dans laquelle on

va ajouter successivement les éléments des deux listes par ordre croissant.
• on utilise deux indices i et j pour parcourir simultanément L1 et L2.

À chaque instant, on compare L1[i] et L2[j] et on ajoute le minimum
dans L. Après quoi, on augmente i ou j de 1 suivant l’élément ajouté.

• Dès que l’on arrive à la fin d’une liste, on ajoute les éléments restants de
l’autre liste les uns après les autres.

5. Ecrire la fonction fusion décrite ci-dessus. Elle prendra en argument les
deux listes L1 et L2 ainsi que la fonction de comparaison compare. On n’uti-
lisera donc pas l’opérateur < pour comparer deux éléments x et y mais l’ins-
truction compare x y qui renvoie le booléen True si et seulement si x est
plus petit que y au sens de la comparaison utilisée.

6. En déduire la fonction tri_fusion qui prend en argument une liste L et la
trie par ordre croissant selon une relation de comparaison là encore donnée
en argument sous la forme d’une fonction compare.

7. Application : Etant donné un ensemble de mots E représentée en python
sous la forme d’une liste de chaînes de caractères et un mot u, écrire une
fonction dico_trié qui renvoie une liste contenant les mêmes mots que E
mais rangé par ordre croissant de distance de Levenstein à u.

2.2 Extraction des k minimums
Les algorithmes de correction automatique proposent en général un faible nombre

de corrections (trois ou quatre). Il n’est donc pas indispensable de trier l’intégralité
du dictionnaire mais seulement d’en extraire les plus petits éléments.

8. Ecrire une fonction qui insère un élément v dans une liste L triée de longueur
inférieur ou égale à k. L’élément v est inséré à la bonne place en décalant
tous les éléments suivants et le dernier élément est supprimé du tableau si sa
longueur dépasse k après l’insertion. A nouveau, la fonction de comparaison
compare sera fournie en argument.

9. En déduire une fonction k_plus_proches qui prend en argument l’ensemble E
(sous la forme d’une liste de chaînes de caractères) et un mot u et renvoie
les k mots de E les plus proches de u.

3 Pour les plus motivés
La fonction distance de la première partie renvoie la distance entre deux mots

u et v mais ne précise pas par quelles opérations on peut passer de u à v. On veut
maintenant écrire une fonction qui renvoie la suite de ces opérations. On reprend
pour cela l’analyse amenant à la formule de la question 3 : on va déterminer les
opérations pour passer de u = up à v = vq par récurrence :

• Si u[i] = v[j], on passe de ui+1 à vj+1 de la même manière que l’on passe
de ui à vj .

• Sinon, on distingue les cas du minimum :

◦ si di+1,j+1 = di,j , on passe de ui+1 à vj+1 en effectuant les opérations
pour passer de ui à vj , puis en remplaçant la lettre u[i] par v[j] ;

◦ si di+1,j+1 = di+1,j , on passe de ui+1 à vj+1 en effectuant les opérations
pour passer ui+1 par vj , puis ajoutant la lettre v[j] en fin de mot ;

◦ le dernier cas est symétrique.

On peut ainsi écrire une fonction récursive qui liste/affiche les opérations à
effectuer pour passer de ui à vj et qui s’arrête lorsque i = j = 0 et l’appliquer
au couple (up, vq). On commence pour cela par calculer les valeurs (di,j) comme
précédemment avant d’exécuter la fonction suivant le principe récursif détaillé ci-
dessus.

10. Ecrire une fonction transformation qui prend en argument les mots u et
v et affiche la liste des opérations pour passer de u à v.

2


