PARTIE I

I.1.1 Identifions les polynômes de $\mathbb{R}_n[X]$ avec les fonctions polynomiales de \mathbb{R} dans \mathbb{R} . Puisqu'une fonction polynomiale de \mathbb{R} dans \mathbb{R} est continue, il vient que $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $C(\mathbb{R}, \mathbb{R})$. La fonction B est définie sur $C(\mathbb{R}, \mathbb{R}) \times C(\mathbb{R}, \mathbb{R})$ et à valeurs réelles. Elle est de plus manifestement bilinéaire, symétrique et positive. Elle l'est de même par restriction à $\mathbb{R}_n[X] \times \mathbb{R}_n[X]$.

Montrons que cette restriction est définie positive sur $\mathbb{R}_n[X]$. Supposons que $P \in \mathbb{R}_n[X]$ vérifie B(P, P) = 0. Ceci s'écrit

$$\sum_{i=0}^{n} P(x_i)^2 = 0$$

Puisque pour tout $i \in [0, n]$, $P(x_i) \in \mathbb{R}$, on a $P(x_i)^2 \ge 0$. Or une somme de n+1 termes positifs est nulle si et seulement si tous les termes de la somme sont nuls. Ainsi,

$$\forall i \in \llbracket 0; n \rrbracket \qquad P(x_i)^2 = 0$$

donc

$$\forall i \in [0; n] \qquad P(x_i) = 0$$

On en déduit que le polynôme P, de degré au plus n, admet au moins n+1 racines distinctes. Par conséquent, P=0. Ceci montre que la restriction de B à $\mathbb{R}_n[X] \times \mathbb{R}_n[X]$ est définie positive sur $\mathbb{R}_n[X]$. En conclusion,

B définit un produit scalaire sur $\mathbb{R}_n[X]$.

Montrons que B n'est pas définie positive sur $C(\mathbb{R},\mathbb{R})$. La fonction f définie pour $x\in\mathbb{R}$ par

$$f(x) = \prod_{i=0}^{n} (x - x_i)$$

est une fonction polynomiale donc continue sur \mathbb{R} . Elle est non nulle sur \mathbb{R} car c'est une fonction polynomiale de degré n+1 dont les seules racines sont x_0, \ldots, x_n . En outre,

$$B(f, f) = \sum_{i=0}^{n} f(x_i)^2$$

$$= \sum_{i=0}^{n} \prod_{j=0}^{n} (x_i - x_j)^2$$

$$= \sum_{i=0}^{n} 0$$

$$B(f, f) = 0$$

En résumé, B(f, f) = 0 et $f \neq 0$. Par suite, B n'est pas définie positive sur $C(\mathbb{R}, \mathbb{R})$. En particulier,

B ne définit pas un produit scalaire sur $C(\mathbb{R}, \mathbb{R})$.

I.1.2 Introduisons le symbole de Kronecker défini pour $(j,k) \in \mathbb{N}^2$ par

$$\delta_{j,k} = \begin{cases} 1 & \text{si } j = k \\ 0 & \text{sinon} \end{cases}$$

Soit $(j,k) \in [0;n]^2$. Calculons

$$L_k(x_j) = \prod_{\substack{i=0\\i\neq k}}^n \frac{(x_j - x_i)}{(x_k - x_i)}$$

Si $j \neq k$, alors l'un des termes du produit est $(x_j - x_j)/(x_k - x_j) = 0$. Par conséquent, dans ce cas, $L_k(x_j) = 0$. Si j = k, alors les n termes du produit sont égaux à 1 et $L_k(x_j) = 1$. En résumé,

$$\forall (j,k) \in [0;n]^2 \qquad \mathbf{L}_k(x_j) = \begin{cases} 1 & \text{si } j = k \\ 0 & \text{sinon} \end{cases}$$

Pour tout $k \in [0; n]$, L_k est un polynôme à coefficients réels de degré égal à n, donc $L_k \in \mathbb{R}_n[X]$. Soit $(j, k) \in [0; n]^2$. Écrivons, à l'aide du calcul précédent,

$$B(L_j, L_k) = \sum_{i=0}^{n} L_j(x_i) L_k(x_i) = \sum_{i=0}^{n} \delta_{i,j} \delta_{i,k}$$

Si $k \neq j$, tous les termes de la somme ci-dessus sont nuls. Si k = j, alors

$$B(L_j, L_j) = \sum_{i=0}^{n} \delta_{i,j}^2$$

et le seul terme non nul dans cette somme est $\delta_{j,j}^{\ \ 2}=1^2=1.$ Par conséquent,

$$\forall (j,k) \in [0;n]^2$$
 $B(L_j,L_k) = \delta_{j,k}$

On en déduit que la famille $(L_k)_{k \in [0, n]}$ est une famille orthonormée de $\mathbb{R}_n[X]$. Puisqu'elle comporte n+1 vecteurs et que $\mathbb{R}_n[X]$ est de dimension n+1, il vient que

$$(L_k)_{k \in [0; n]}$$
 est une base orthonormée de $(\mathbb{R}_n[X], B)$.

I.2.1 Soit $f \in C(\mathbb{R}, \mathbb{R})$ et $k \in [0; n]$. Calculons, à l'aide de la question précédente,

$$B(f, L_k) = \sum_{i=0}^{n} f(x_i) L_k(x_i)$$
$$= \sum_{i=0}^{n} f(x_i) \delta_{k,i}$$
$$B(f, L_k) = f(x_k)$$

Par suite,

$$P_n(f)(x_k) = \sum_{i=0}^n B(f, L_i) L_i(x_k)$$

$$= \sum_{i=0}^n B(f, L_i) \delta_{i,k}$$

$$= B(f, L_k)$$
d'après I.1.2

 $P_n(f)(x_k) = f(x_k)$ d'après le début de la question

I.2.2 Considérons la fonction

$$\varphi \colon \begin{cases} \mathbb{R}_n[X] \longrightarrow \mathbb{R}^{n+1} \\ P \longmapsto (P(x_0), \dots, P(x_n)) \end{cases}$$

L'application φ est linéaire. Déterminons son noyau. Soit $P \in \text{Ker}(\varphi)$. Le fait que $\varphi(P) = 0$ implique que pour tout $i \in [0; n]$, $P(x_i) = 0$. Puisque les x_i sont deux à deux distincts pour $i = 0, \ldots, n$, le polynôme $(X - x_0) \times \cdots \times (X - x_n)$ divise P, qui est de degré au plus n. Par conséquent, P = 0 puis

$$Ker(\varphi) = \{0\}$$

donc φ est injective. Comme $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} sont de même dimension finie n+1, il vient que φ est bijective. En particulier, $(f(x_0), \ldots, f(x_n))$ admet un unique antécédent par φ , c'est-à-dire qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que, pour tout $k \in [0; n]$, $P(x_k) = f(x_k)$. Or, par construction, le polynôme $P_n(f)$ est combinaison linéaire des $(L_j)_{j \in [0; n]}$, donc $P_n(f) \in \mathbb{R}_n[X]$. En outre, d'après la question précédente, pour tout $k \in [0; n]$,

$$P_n(f)(x_k) = f(x_k)$$

On en déduit que

 $P_n(f)$ est l'unique polynôme P de $\mathbb{R}_n[X]$ vérifiant $P(f)(x_k) = f(x_k)$ pour tout $k \in [0, n]$.

Les polynômes L_k $(k \in [0; n])$ sont appelés polynômes interpolateurs de Lagrange aux points x_0, \ldots, x_n .

On peut également montrer le résultat de cette question comme suit. D'une part, en utilisant la question précédente, on constate que $P_n(f)$ est un polynôme de degré au plus n qui vérifie $P_n(f)(x_k) = f(x_k)$ pour tout k. D'autre part, si $P \in \mathbb{R}_n[X]$ vérifie $P(x_k) = f(x_k) = P_n(f)(x_k)$ pour tout k, alors le polynôme $P - P_n(f)$ est de degré au plus n et admet au moins n+1 racines distinctes: x_0, \ldots, x_n . Par conséquent, $P - P_n(f) = 0$, c'est-à-dire $P = P_n(f)$. Par suite, le polynôme $P_n(f)$ est bien le seul polynôme de $\mathbb{R}_n[X]$ qui répond à la question.

I.2.3 Soit $f \in \mathbb{R}_n[X]$. Dans ce cas, f est un polynôme de $\mathbb{R}_n[X]$ et vérifie évidemment $f(x_k) = f(x_k)$ pour tout $k \in [0; n]$. La question précédente assure alors que

$$P_n(f) = f$$

En considérant le polynôme $f = 1 \in \mathbb{R}_n[X]$, on obtient, d'une part, avec la question précédente,

et, d'autre part,
$$\begin{aligned} \mathbf{P}_n(f)(\mathbf{X}) &= f(\mathbf{X}) = 1\\ \mathbf{P}_n(f)(\mathbf{X}) &= \sum_{i=0}^n \mathbf{B}\left(f, \mathbf{L}_i\right) \mathbf{L}_i(\mathbf{X})\\ &= \sum_{i=0}^n f(x_i) \mathbf{L}_i(\mathbf{X})\\ \mathbf{P}_n(f)(\mathbf{X}) &= \sum_{i=0}^n 1 \times \mathbf{L}_i(\mathbf{X}) \end{aligned}$$
 Ceci implique
$$\forall x \in \mathbb{R} \qquad \sum_{i=0}^n \mathbf{L}_i(x) = 1$$

I.3.1 Soit
$$f \in C([a;b], \mathbb{R})$$
. Calculons, pour $x \in [a;b]$,

$$\Lambda(f)(x) = P_n(f)(x)$$

$$= \sum_{i=0}^n B(f, L_i) L_i(x)$$

$$\Lambda(f)(x) = \sum_{i=0}^n f(x_i) L_i(x)$$
 d'après la question I.2.1

Par inégalité triangulaire, il vient

$$|\Lambda(f)(x)| \leq \sum_{i=0}^{n} |f(x_i)| |\mathcal{L}_i(x)|$$

Or, par définition de N_{∞} ,

$$\forall i \in [0; n] \quad |f(x_i)| \leq N_{\infty}(f)$$

Par suite,

$$|\Lambda(f)(x)| \leqslant \sum_{i=0}^{n} \mathcal{N}_{\infty}(f) |\mathcal{L}_{i}(x)|$$
$$\leqslant \mathcal{N}_{\infty}(f) \sum_{i=0}^{n} |\mathcal{L}_{i}(x)|$$
$$|\Lambda(f)(x)| \leqslant \mathcal{N}_{\infty}(f) \Phi(x)$$

Puisque la fonction L_i est continue pour tout $i \in [0; n]$, sur [a; b], il en est de même de la fonction $|L_i|$ par composition et de la fonction Φ par sommation finie. Ainsi, $\Phi \in C([a; b], \mathbb{R})$. En outre, l'inégalité précédente implique que

$$\forall x \in [a;b]$$
 $|\Lambda(f)(x)| \leq N_{\infty}(f)N_{\infty}(\Phi)$

Par conséquent,

$$N_{\infty}(\Lambda(f)) \leqslant N_{\infty}(f)N_{\infty}(\Phi)$$

puis, pour $f \in C([a;b], \mathbb{R})$ telle que $N_{\infty}(f) \leq 1$,

$$N_{\infty}(\Lambda(f)) \leqslant N_{\infty}(\Phi)$$

Ceci implique que l'endomorphisme Λ est continu et

$$\|\Lambda\|\leqslant N_\infty(\Phi)$$

 $\fbox{\textbf{I.3.2}}$ La fonction Φ est continue sur le segment [a;b] donc elle y est bornée et y atteint ses bornes. En particulier,

$$\exists \tau \in [a;b] \quad \Phi(\tau) = \sup \{\Phi(x) \mid x \in [a;b]\}$$

Puisque $\Phi \ge 0$ comme somme de fonctions positives,

$$\{|\Phi(x)| \mid x \in [a;b]\} = \{\Phi(x) \mid x \in [a;b]\}$$

Ainsi, $N_{\infty}(\Phi) = \operatorname{Sup}\{|\Phi(x)| \mid x \in [a;b]\} = \operatorname{Sup}\{\Phi(x) \mid x \in [a;b]\}$

1.3.3 Calculons
$$\Lambda(\Psi)(\tau) = P_n(\Psi)(\tau) = \sum_{i=0}^n \Psi(x_i) L_i(\tau)$$

Soit $i \in [0; n]$. Si $L_i(\tau) = 0$, alors $\Psi(x_i) = \varepsilon_i = 0$ et

$$\Psi(x_i)L_i(\tau) = 0 = |L_i(\tau)|$$

Sinon, $L_i(\tau) \neq 0$, $\Psi(x_i) = |L_i(\tau)|/L_i(\tau)$ et

$$\Psi(x_i)L_i(\tau) = \frac{|L_i(\tau)|}{L_i(\tau)}L_i(\tau) = |L_i(\tau)|$$

En conséquence, pour tout $i \in [0; n]$,

$$\Psi(x_i)L_i(\tau) = |L_i(\tau)|$$

Ceci implique

$$\Lambda(\Psi)(\tau) = \sum_{i=0}^{n} |\mathcal{L}_i(\tau)| = \Phi(\tau) = \mathcal{N}_{\infty}(\Phi)$$

La fonction Ψ est, par construction, continue sur [a;b] et à valeurs dans [-1;1], donc $N_{\infty}(\Psi) \leq 1$. L'inégalité précédente assure que

$$N_{\infty}(\Lambda(\Psi))) \geqslant N_{\infty}(\Phi)$$

Par définition de la norme subordonnée $\|\cdot\|$,

$$\|\Lambda\| \geqslant N_{\infty}(\Phi)$$

À l'aide de l'inégalité démontrée en I.3.1, on conclut que

$$\|\Lambda\|=N_\infty(\Phi)$$

I.4.1 Pour tout $i \in [0; p-1]$, le théorème de Rolle appliqué à la restriction de la fonction g à l'intervalle $[c_i; c_{i+1}]$, continue sur $[c_i; c_{i+1}]$, dérivable sur $]c_i; c_{i+1}[$, et telle que $g(c_i) = g(c_{i+1})$ certifie que la fonction g' s'annule au moins une fois sur l'intervalle $]c_i; c_{i+1}[$. Les p intervalles $]c_i; c_{i+1}[$ étant deux à deux disjoints et inclus dans [a; b], il vient

g' s'annule en au moins p points de [a;b].

 $\ | \ \mathbf{I.4.2} \ | \ \mathbf{Montrons} \ \mathbf{par} \ \mathbf{r\'ecurrence} \ \mathbf{sur} \ k \in [\![\, 0\,; p\,]\!] \ \mathbf{que} \ \mathbf{la} \ \mathbf{propri\'et\'e}$

 $\mathscr{P}(k)$: la fonction $g^{(k)} \in \mathbf{C}^{p-k}([a;b],\mathbb{R})$ et s'annule en au moins p-k+1 points distincts de [a;b]

est vraie pour tout $k \in [0; p]$.

- $\mathcal{P}(0)$ correspond à l'hypothèse sur la fonction g.
- $\mathcal{P}(1)$ a été obtenue à la question précédente.
- $\mathscr{P}(k) \Longrightarrow \mathscr{P}(k+1)$: Afin de montrer l'hérédité, supposons $\mathscr{P}(k)$ vérifiée pour $\overline{\mathrm{un}}\ k \in \llbracket 0\,; p-1 \rrbracket$ donné et appliquons le résultat de la question précédente à la fonction $\widetilde{g}=g^{(k)}$ qui est à valeurs réelles, de classe $\widetilde{p}=p-k$ sur $[a\,;b]$, et qui s'annule au moins $\widetilde{p}+1$ fois sur ce segment par hypothèse de récurrence. Puisque $\widetilde{p}\geqslant 1$, le résultat de la question précédente certifie que $\widetilde{g}'=g^{(k+1)}$, qui est de classe $\widetilde{p}-1=p-(k+1)$ sur $[a\,;b]$, s'y annule en au moins $\widetilde{p}=p-k=p-(k+1)+1$ points distincts. Cela signifie que $\mathscr{P}(k+1)$ est vérifiée.

En particulier, $\mathcal{P}(p)$ assure que

$$g^{(p)}$$
 s'annule au moins une fois sur $[a;b]$.

 $\fbox{\textbf{I.5.1}}$ Puisque P_n et P_{n+1} sont des polynômes de degré inférieur ou égal à n+1, on sait que

$$P_{n+1} - P_n \in \mathbb{R}_{n+1}[X]$$

En outre, pour tout $i \in [0; n]$, on a

$$(P_{n+1} - P_n)(x_i) = P_{n+1}(x_i) - P_n(x_i) = f(x_i) - f(x_i) = 0$$

Par conséquent, $\prod_{i=0}^{n} (X - x_i)$ divise $P_{n+1} - P_n$. Puisque T_{n+1} est exactement de degré n+1, ceci s'écrit encore

$$\exists r \in \mathbb{R} \qquad P_{n+1} - P_n = r T_{n+1}$$

Finalement,

$$\exists r \in \mathbb{R} \quad \forall x \in \mathbb{R} \qquad P_{n+1}(x) - P_n(x) = r T_{n+1}(x)$$

I.5.2 Puisque $f \in \mathbb{C}^{n+1}([a;b],\mathbb{R})$, il en est de même de $g = f - P_{n+1}$. En outre,

$$\forall i \in [0; n]$$
 $g(x_i) = f(x_i) - P_{n+1}(x_i) = f(x_i) - f(x_i) = 0$

donc la fonction g s'annule en n+1 points de [a;b]. Appliquons le résultat de la question I.4.2 à la fonction g avec p = n + 1 pour obtenir

$$\exists \beta \in [a;b]$$
 $g^{(n+1)}(\beta) = 0$

En particulier,

$$f^{(n+1)}(\beta) = P_{n+1}^{(n+1)}(\beta)$$

Par ailleurs, en dérivant n+1 fois l'identité polynomiale de la question précédente,

$$P_{n+1}^{(n+1)} = r T_{n+1}^{(n+1)} - P_n^{(n+1)}$$

Or $P_n \in \mathbb{R}_n[X]$, d'où $P_n^{(n+1)} = 0$. De plus, en développant T_{n+1} , on obtient

$$T_{n+1} - X^{n+1} \in \mathbb{R}_n[X]$$

 $(T_{n+1} - X^{n+1})^{(n+1)} = 0$

donc

$$T_{n+1}^{(n+1)} = (n+1)!$$

puis

$$T_{n+1}' = (n+1)!$$

Par suite,

$$P_{n+1}^{(n+1)} = r(n+1)!$$

En conclusion,

$$\exists \beta \in [a;b] \qquad f^{(n+1)}(\beta) = r(n+1)!$$

Soit $y \in [a;b] \setminus \{x_0, x_1, \dots, x_n\}$. Considérons le polynôme P_{n+1} interpolant faux n+1 points y, x_0, \ldots, x_n . D'après la question I.5.1,

$$\exists r \in \mathbb{R} \qquad P_{n+1} - P_n = r T_{n+1}$$

Or, on a montré

$$\exists \beta \in [a; b]$$
 $r = \frac{f^{(n+1)}(\beta)}{(n+1)!}$

Par suite,

$$P_{n+1} - P_n = \frac{f^{(n+1)}(\beta)}{(n+1)!} T_{n+1}$$

Évaluons cette relation en y et utilisons l'égalité $P_{n+1}(y) = f(y)$ pour obtenir

$$f(y) - P_n(y) = \frac{f^{(n+1)}(\beta)}{(n+1)!} T_{n+1}(y)$$

| **I.5.3** | Lorsque $y \in \{x_0, \ldots, x_n\}$,

$$P_n(y) = f(y)$$
 et $T_{n+1}(y) = 0$

donc l'égalité démontrée à la question précédente est vraie pour tout $\beta \in [a;b]$.

La quantité $f - P_n(f)$ s'appelle erreur d'interpolation de f par P_n .

PARTIE II

 $\boxed{\mathbf{II.1.1}}$ La fonction $t\mapsto\prod_{i=0}^n(t-i)$ est polynomiale, donc continue sur $[0\,;n]$. De plus, la fonction $y\mapsto|y|$ est continue sur \mathbb{R} . Par composition, la fonction φ est donc continue sur $[0\,;n]$. Puisque le segment $[0\,;n]$ est compact, il vient

$$\varphi$$
 admet un maximum sur $[0;n]$.

II.1.2 Soit $t \in [0; n]$. Écrivons

$$\varphi(n-t) = \left| \prod_{i=0}^{n} ((n-t)-i) \right|$$

$$= \left| \prod_{i=0}^{n} (-t+(n-i)) \right|$$

$$= \left| \prod_{i=0}^{n} (-1) (t-(n-i)) \right|$$

$$= \left| (-1)^{n+1} \prod_{i=0}^{n} (t-(n-i)) \right|$$

$$= \left| \prod_{i=0}^{n} (t-(n-i)) \right|$$

$$= \left| \prod_{i=0}^{n} (t-i) \right|$$

$$\varphi(n-t) = \varphi(t)$$

en utilisant la bijection $i\mapsto n-i$ de [0;n] dans lui-même et la commutativité du produit de nombres réels.

II.1.3 Puisque $t \notin \mathbb{N}$, on a $\varphi(t) \neq 0$. En outre,

$$\varphi(t-1) = \prod_{i=0}^{n} (t-1-i) = \prod_{i=0}^{n} (t-(1+i)) = \prod_{i=1}^{n+1} (t-i)$$
$$\frac{\varphi(t-1)}{\varphi(t)} = \frac{\left|\prod_{i=1}^{n+1} (t-i)\right|}{\left|\prod_{i=0}^{n} (t-i)\right|}$$
$$\frac{\varphi(t-1)}{\varphi(t)} = \left|\frac{t-(n+1)}{t}\right|$$

et

Par suite,

Soit $t \in [1; n/2]$. Distinguons deux cas.

• Supposons $t \notin \mathbb{N}$. Puisque $1 \leqslant t \leqslant n/2$,

$$\frac{2}{n}\leqslant \frac{1}{t}\leqslant 1$$
 d'où
$$2\frac{n+1}{n}\leqslant \frac{n+1}{t}\leqslant n+1 \qquad \operatorname{car} n+1\geqslant 0$$
 puis
$$2\left(1+\frac{1}{n}\right)-1\leqslant \frac{n+1}{t}-1\leqslant n$$
 et donc
$$1+\frac{2}{n}\leqslant \frac{(n+1)-t}{t}\leqslant n$$

Par suite, puisque $t \notin \mathbb{N}$, $1 + \frac{2}{n} \leqslant \frac{\varphi(t-1)}{\varphi(t)}$

Puisque $\varphi(t) > 0$ et $1 + \frac{2}{n} \geqslant 1$, on obtient finalement $\varphi(t) \leqslant \varphi(t-1)$

• Supposons $t \in \mathbb{N}$. Dans ce cas,

$$t-1 \in \left[0; \frac{n}{2} - 1\right]$$
 et $t-1 \in \mathbb{N}$

Par conséquent, $\varphi(t-1) = 0$ et $\varphi(t) = 0$

L'inégalité $\varphi(t)\leqslant \varphi(t-1)$ est donc encore vérifiée.

En résumé,

$$\forall t \in \left[1; \frac{n}{2}\right] \qquad \varphi(t) \leqslant \varphi(t-1)$$

II.1.4] Supposons dans un premier temps que p=1. La fonction φ est définie et continue sur [0;2]. D'après la question II.1.2, pour tout $t \in [0;2]$, $\varphi(2-t) = \varphi(t)$. On en déduit que

$$\sup_{[0\,;\,2\,]}\varphi=\sup_{[0\,;\,1\,]}\varphi$$

La fonction φ (respectivement la restriction de φ à [0;1]) est continue sur [0;2] (resp. [0;1]) donc elle est bornée sur [0;2] (resp. [0;1]) et y atteint ses bornes. L'égalité précédente s'écrit alors

$$\max_{[0\,;\,2\,]}\varphi=\max_{[0\,;\,1\,]}\varphi$$

Par suite,

 φ atteint son maximum en un point de [0;1].

Supposons désormais $p \ge 2$. Comme précédemment, à l'aide de la question II.1.2,

$$\max_{[0\,;\,n]}\varphi = \max_{[0\,;\,p]}\varphi$$

Écrivons que

$$\mathop{\rm Max}_{\left[\,0\,;\,p\,\right]}\varphi=\mathop{\rm Max}_{i\in\{0,\ldots,p-1\}}\left(\mathop{\rm Max}_{\left[\,i\,;\,i+1\,\right]}\varphi\right)$$

Or, d'après la question II.1.3,

$$\forall i \in \{1, \dots, p-1\} \qquad \max_{[i-1\,;\,i]} \varphi \geqslant \max_{[i\,;\,i+1]} \varphi$$

Par suite,

$$\begin{aligned} \max_{i \in \{0, \dots, p-1\}} \left(\max_{[i\,;\,i+1]} \varphi \right) &= \max_{[0\,;\,1]} \varphi \\ \max_{[0\,;\,n]} \varphi &= \max_{[0\,;\,1]} \varphi \end{aligned}$$

donc

puis

La fonction φ atteint son maximum en un point de [0;1].

| II.2.1 | Pour $t \notin \mathbb{N}$, chacun des termes du produit définissant φ est non nul. Par $\overline{\text{suite}}, \varphi(t) > 0 \text{ et l'on a}$

$$\ln\left(\varphi(t)\right) = \ln\left(\prod_{i=0}^{n} |t - i|\right) = \sum_{i=0}^{n} \ln|t - i|$$

Puisque φ est strictement positive et dérivable sur tout intervalle]k;k+1[où $k \in [0; n-1]$, on en déduit qu'il en est de même de la fonction φ et que, sur un tel intervalle, la dérivée en t de cette dernière vaut

$$\boxed{\frac{\varphi'(t)}{\varphi(t)} = \sum_{i=0}^{n} \frac{1}{t-i}}$$

II.2.2 Soit $t \in [1/2;1]$ et $k \in [2;n]$. Puisque $-k \leqslant -2$ et $t \leqslant 1$, il vient $t-k \leqslant 1-2 < 0$. Par suite, 1/(t-k) < 0. Par sommation,

$$\sum_{k=2}^{n} \frac{1}{t-k} < 0$$

Puisque $1/2 \le t$, on a $1/t \le 2$. Le fait que $t \in [1/2; 1[$ assure également que

$$-\frac{1}{2} \leqslant t - 1 < 0$$

Par suite,

 $\frac{1}{t-1} \leqslant -2$

Par addition,

$$\frac{1}{t}+\frac{1}{t-1}\leqslant 2-2=0$$

Ceci assure, par addition avec l'inégalité montrée précédemment,

$$\sum_{k=0}^{n} \frac{1}{t-k} < 0$$

À l'aide de la question précédente, il vient, pour $t \in [1/2; 1]$,

$$\varphi'(t) = \varphi(t) \times \left(\sum_{k=0}^{n} \frac{1}{t-k}\right)$$

Puisque $\varphi(t) > 0$ et $\sum_{k=0}^{n} \frac{1}{t-k} < 0$, on obtient par produit

$$\forall t \in \left[\frac{1}{2}; 1 \left[\qquad \varphi'(t) < 0 \right] \right]$$

II.2.3 La fonction g est dérivable sur]0;1[comme somme de fonctions ayant cette propriété. Ainsi, pour $t \in]0;1[$,

$$g'(t) = -\sum_{k=0}^{n} \frac{1}{(t-k)^2}$$

Par suite, g' est strictement négative sur l'intervalle]0;1[. On en déduit que

La fonction g est strictement décroissante sur] 0;1 [.

Puisque g est strictement monotone sur]0;1[,g] s'annule au plus une fois sur l'intervalle]0;1[. En outre, pour $t\in]0;1[$,

$$\varphi'(t) = \varphi(t) g(t)$$

et de plus $\varphi(t) \neq 0$. Par conséquent, la fonction φ' s'annule sur] 0; 1 [si et seulement si g s'annule sur] 0; 1 [. Finalement,

La fonction φ' s'annule au plus une fois sur] $0\,;1\,[.$

II.2.4] Rappelons que l'on a admis en II.1.4 que φ atteint son maximum en un point de [0;1]. Puisque $\varphi > 0$ sur]0;1[et $\varphi(0) = \varphi(1) = 0$, la fonction φ atteint son maximum en au moins un point t_n de]0;1[. Comme elle est dérivable sur]0;1[, $\varphi'(t_n)=0$. En outre, d'après la question précédente, φ' s'annule au plus une fois sur]0;1[, donc t_n est unique. Puisqu'en ce point la dérivée de φ est nulle, la question II.2.2 permet d'affirmer que $t_n \in]0;1/2[$. En résumé,

 φ atteint son maximum en un point et un seul de $\left] 0; \frac{1}{2} \right[$.

En ce point, on a, d'après II.2.1,

$$\varphi'(t_n) = 0 = \varphi(t) \left(\sum_{k=0}^{n} \frac{1}{t_n - k} \right)$$

Puisque $t_n \in]0;1[$, on a $\varphi(t_n) > 0$. Par suite,

$$\sum_{k=0}^{n} \frac{1}{t_n - k} = 0$$

| II.3.1 | Soit $k \in \mathbb{N}^*$. Puisque

$$0 < t_n < 1$$

on a donc

$$-1 < -t_n < 0$$

 $k - 1 < k - t_n < k$

Puisque $k-1 \ge 0$, on peut déduire de ce qui précède

$$\frac{1}{k} < \frac{1}{k - t_n}$$

On a montré en II.2.4 que

$$\sum_{k=0}^{n} \frac{1}{t_n - k} = \frac{1}{t_n} + \sum_{k=1}^{n} \frac{1}{t_n - k} = 0$$

$$\frac{1}{t_n} = \sum_{k=1}^{n} \frac{1}{k - t_n} > \sum_{k=1}^{n} \frac{1}{k}$$

 $car 0 < t_n < 1$

Par suite,

$$\left| \sum_{k=1}^{n} \frac{1}{k} < \frac{1}{t_n} \right|$$

Ceci implique

II.3.2 Rappelons que

La série de terme général positif $\sum\limits_k \frac{1}{k}$ est divergente.

Ainsi,

$$\sum_{k=1}^{n} \frac{1}{k} \xrightarrow[n \to +\infty]{} +\infty$$

Par minoration, on obtient à l'aide de la question précédente que

$$\boxed{\frac{1}{t_n}\xrightarrow[n\to+\infty]{}+\infty}$$

Par suite,

$$t_n \xrightarrow[n \to +\infty]{} 0^+$$

II.4.1 Soit $k \in [1; n]$. La fonction

$$f_k : \begin{cases} [k; k+1] \longrightarrow \mathbb{R}_+ \\ t \longmapsto \frac{1}{k} - \frac{1}{t} \end{cases}$$

est continue sur [k; k+1] et strictement positive sur [k; k+1]. Par suite,

$$\int_{k}^{k+1} f_k(t) dt > 0$$

$$0 < \int_{k}^{k+1} \frac{1}{k} dt - \int_{k}^{k+1} \frac{dt}{t}$$

$$\int_{k}^{k+1} \frac{dt}{t} < \frac{1}{k}$$

Ceci implique

donc

Sommant pour $k \in [1; n]$, il vient, à l'aide de la relation de Chasles,

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t} < \sum_{k=1}^{n} \frac{1}{k}$$

| II.4.2 | On a montré en II.3.1 que

$$\sum_{k=1}^{n} \frac{1}{k} < \frac{1}{t_n}$$

À l'aide de la question précédente, on en déduit que

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t} < \frac{1}{t_n}$$

c'est-à-dire que

$$\ln(n+1) - \ln 1 < \frac{1}{t_n}$$

Par conséquent,

$$t_n < \frac{1}{\ln(n+1)}$$

$\boxed{\mathbf{II.4.3}}$ Par définition de t_n ,

$$\forall t \in [0; n] \qquad \varphi(t) \leqslant \varphi(t_n)$$

Puisque $t_n \in]0; 1/2[$ d'après la question II.2.4,

$$\forall k \in [1; n] \qquad |t_n - k| = k - t_n \leqslant k$$

$$\varphi(t_n) = t_n \prod_{k=1}^n |t_n - k| \leqslant t_n \prod_{k=1}^n k = t_n n!$$

Le résultat de la question précédente assure que

$$\varphi(t_n) < \frac{n!}{\ln(n+1)}$$

Finalement,

$$\forall t \in [0; n]$$
 $\varphi(t) < \frac{n!}{\ln(n+1)}$

II.5.1 Écrivons, puisque x = a + t h et $x_i = a + i h$,

$$|T_{n+1}(x)| = \prod_{i=0}^{n} |x - x_i|$$

$$= \prod_{i=0}^{n} |t h - i h|$$

$$= \prod_{i=0}^{n} |h(t - i)|$$

$$= |h|^{n+1} \left| \prod_{i=0}^{n} (t - i) \right|$$

$$|T_{n+1}(x)| = h^{n+1} \varphi(t)$$

II.5.2 Fixons $y \in [a;b]$. D'après la question I.5.3, il existe $\beta \in [a;b]$ tel que

$$f(y) - P_n(y) = \frac{1}{(n+1)!} T_{n+1}(y) f^{(n+1)}(\beta)$$

Posons comme à la question précédente t = (y - a)/h. Cela certifie que

$$|T_{n+1}(y)| = h^{n+1}\varphi(t)$$

Par suite,

$$|f(y) - P_n(y)| = \frac{1}{(n+1)!} |T_{n+1}(y)| |f^{(n+1)}(\beta)|$$
$$= \frac{1}{(n+1)!} h^{n+1} \varphi(t) |f^{(n+1)}(\beta)|$$

À l'aide de la question II.4.3, on obtient

$$|f(y) - P_n(y)| \le \frac{h^{n+1}}{(n+1)!} \frac{n!}{\ln(n+1)} |f^{(n+1)}(\beta)|$$

puis, par définition de $N_{\infty}(f^{n+1})$,

$$|f(y) - P_n(y)| \le \frac{h^{n+1}}{(n+1)\ln(n+1)} N_{\infty}(f^{(n+1)})$$

Cette majoration étant indépendante de $y \in [a;b]$ et valable pour tout $y \in [a;b]$, on en déduit que

$$\boxed{\mathbf{N}_{\infty}(f - \mathbf{P}_n) \leqslant \frac{h^{n+1}}{(n+1)\ln(n+1)} \mathbf{N}_{\infty}(f^{(n+1)})}$$

PARTIE III

| III.1 | Par définition de L_k , on a

$$L_k(X) = \prod_{\substack{i=0\\i\neq k}}^n (X - x_i) / \prod_{\substack{i=0\\i\neq k}}^n (x_k - x_i)$$

Par suite,

$$w_k^{-1} L_k(X) = \prod_{\substack{i=0\\i\neq k}}^n (X - x_i) = \frac{\prod_{i=0}^n (X - x_i)}{X - x_k}$$

On en déduit que

$$w_k^{-1}(X - x_k)L_k(X) = T_{n+1}(X)$$

Finalement,

$$\forall x \in \mathbb{R}$$
 $T_{n+1}(x) = w_k^{-1}(x - x_k)L_k(x)$

III.2 À l'aide de I.2.1, on a, pour tout $x \in \mathbb{R}$,

$$P_n(x) = \sum_{k=0}^n f(x_k) L_k(x)$$

Si $x \neq x_k$, alors d'après la question précédente,

$$L_k(x) = \frac{w_k}{(x - x_k)} T_{n+1}(x)$$

Par conséquent, si x est différent de tous les x_i ,

$$P_n(x) = \sum_{k=0}^{n} f(x_k) \frac{w_k}{(x - x_k)} T_{n+1}(x)$$

On en déduit que, pour tout $x \in \mathbb{R} \setminus \{x_0, \dots, x_n\}$,

$$P_n(x) = T_{n+1}(x) \sum_{k=0}^{n} \frac{w_k f(x_k)}{x - x_k}$$
(3)

Appliquons ce résultat à la fonction f constante égale à 1 sur \mathbb{R} tout entier. Puisque P_n est aussi la fonction constante égale à 1, il vient pour tout $x \in \mathbb{R} \setminus \{x_0, \dots, x_n\}$,

$$T_{n+1}(x) \sum_{k=0}^{n} \frac{w_k}{x - x_k} = 1$$

Par suite, pour tout $x \in \mathbb{R} \setminus \{x_0, \dots, x_n\}$,

$$T_{n+1}(x) = \frac{1}{\sum_{k=0}^{n} \frac{w_k}{x - x_k}}$$

Insérant cette expression de T_{n+1} dans (3), il vient, pour $x \in \mathbb{R} \setminus \{x_0, \dots, x_n\}$,

$$P_n(x) = \frac{\sum_{k=0}^{n} \frac{w_k}{x - x_k} f(x_k)}{\sum_{k=0}^{n} \frac{w_k}{x - x_k}}$$
(4)

III.3.1 | Calculons

$$\frac{1}{w_k} = \prod_{\substack{i=0\\i\neq k\\i\neq k}}^{n} (x_k - x_i)$$

$$= \prod_{\substack{i=0\\i\neq k\\i\neq k}}^{n} (a + k h - (a + i h))$$

$$= \prod_{\substack{i=0\\i\neq k\\i\neq k}}^{n} (h(k - i))$$

$$= h^n \prod_{\substack{i=0\\i\neq k\\i\neq k}}^{n} (k - i)$$

$$= h^n \prod_{\substack{i=0\\i\neq k\\i\neq k}}^{n} (k - i) \times \prod_{\substack{i=k+1\\i=k+1}}^{n} (k - i)$$

$$= h^n \underbrace{K \times (k - 1) \times \dots \times 2 \times 1}_{=k!} \times \underbrace{(-1) \times (-2) \times \dots \times (-(n - k))}_{=(-1)^{n-k}(n-k)!}$$

$$\frac{1}{w_k} = (-1)^{n-k} h^n k! (n - k)!$$

Finalement,

$$w_k = \frac{(-1)^{n-k}}{h^n \, k! \, (n-k)!}$$

Ainsi,

$$w_k^* = (-1)^n h^n n! w_k$$
$$= (-1)^k \frac{n!}{k! (n-k)!}$$
$$w_k^* = (-1)^k \binom{n}{k}$$

III.3.2 À l'aide de la question précédente, pour tout $k \in [0; n]$,

$$w_k = \frac{(-1)^n}{h^n \, n!} w_k^* = \frac{(-1)^n}{h^n \, n!} (-1)^k \, \binom{n}{k}$$

Par conséquent, pour $x \in \mathbb{R} \setminus \{x_0, \dots, x_n\}$,

$$\sum_{k=0}^{n} \frac{w_k f(x_k)}{x - x_k} = \frac{(-1)^n}{h^n \, n!} \sum_{k=0}^{n} (-1)^k \, \binom{n}{k} \, \frac{f(x_k)}{x - x_k}$$

et, de même,

$$\sum_{k=0}^{n} \frac{w_k}{x - x_k} = \frac{(-1)^n}{h^n n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{x - x_k}$$

Par simplification par $\frac{(-1)^n}{h^n n!}$ dans la formule (4) démontrée en III.2, il vient

$$P_n(x) = \frac{\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{f(x_k)}{x - x_k}}{\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{x - x_k}}$$
 (5)

| III.4.1 | Les 4n + 1 points équidistants entre -2n et 2n sont distants de 1, donc

$$\forall k \in [0; 4n] \qquad x_k = -2n + k$$

On peut par exemple appliquer la formule

$$x_i = a + i\,h$$
donnée en II.5 avec $a = -2n,\, b = 2n$ et $h = \frac{2n - (-2n)}{4n} = 1.$

III.4.2 Calculons, pour $k \in [0; 4n]$, à l'aide de la question précédente,

$$f(x_k) = \cos\left(\frac{\pi x_k}{2}\right) = \cos\left(\frac{\pi}{2}(k-2n)\right)$$

$$= \cos\left(k\frac{\pi}{2} - n\pi\right)$$

$$= \cos\left(k\frac{\pi}{2}\right)\cos(n\pi) + \sin\left(\frac{\pi}{2}\right)\sin(n\pi)$$

$$f(x_k) = (-1)^n\cos\left(k\frac{\pi}{2}\right)$$

car $\cos(n\pi) = (-1)^n$ et $\sin(n\pi) = 0$. Pour tout $x \in \mathbb{R} \setminus \{x_0, \dots, x_n\}$, on a donc

$$\sum_{k=0}^{4n} (-1)^k \binom{4n}{k} \frac{f(x_k)}{x - x_k} = (-1)^n \sum_{k=0}^{4n} (-1)^k \binom{4n}{k} \frac{\cos\left(\frac{k\pi}{2}\right)}{x - (k - 2n)}$$

$$\operatorname{que} \qquad \cos\left(\frac{k\pi}{2}\right) = \begin{cases} 0 & \text{si } k \text{ est impair} \\ (-1)^{k/2} & \text{si } k \text{ est pair} \end{cases}$$

Rappelons que

La somme précédente, dont tous les termes d'indice impair sont nuls, peut être réindexée par p en posant k=2p:

$$\sum_{k=0}^{4n} (-1)^k \binom{4n}{k} \frac{f(x_k)}{x - x_k} = (-1)^n \sum_{p=0}^{2n} (-1)^{2p} \binom{4n}{2p} \frac{(-1)^p}{x - 2(p - n)}$$

Changeons l'indice de sommation dans cette dernière somme en posant k=p-n pour obtenir

$$\sum_{k=0}^{4n} (-1)^k \binom{4n}{k} \frac{S(x_k)}{x - x_k} = (-1)^n \sum_{k=-n}^n \binom{4n}{2(n+k)} \frac{(-1)^{k+n}}{x - 2k}$$
$$= \sum_{k=-n}^n (-1)^k \binom{4n}{2n+2k} \frac{1}{x - 2k}$$

Par ailleurs, par changement d'indice k' = k - 2n

$$\sum_{k=0}^{4n} (-1)^k \binom{4n}{k} \frac{1}{x-x_k} = \sum_{k=-2n}^{2n} (-1)^k \binom{4n}{2n+k} \frac{1}{x-k}$$

donc on obtient, en appliquant la formule (5) établie à la question III.3.2 à la fonction f continue sur \mathbb{R} définie par $f(x) = \cos(\pi x/2)$, pour tout $x \in \mathbb{R} \setminus \{x_0, \dots, x_{4n}\}$,

$$P_{4n}(f)(x) = \frac{\sum_{k=-n}^{n} (-1)^k \binom{4n}{2n+2k} \frac{1}{x-2k}}{\sum_{k=-2n}^{2n} (-1)^k \binom{4n}{2n+k} \frac{1}{x-k}}$$

| III.4.3 | Rappelons que p est l'unique entier relatif tel que

$$x \in [p; p+1[$$

• Si $k \in [-2n; p]$, $|x - k| = x - k \le (p + 1) - k$

• Si
$$k \in [p+1; 2n]$$
, $|x-k| = k - x \leqslant k - p$

Ainsi, pour $x \in [-2n; 2n[$

$$\prod_{k=-2n}^{2n} |x-k| = \prod_{k=-2n}^{p} |x-k| \times \prod_{k=p+1}^{2n} |x-k|$$

$$\leqslant \prod_{k=-2n}^{p} ((p+1)-k) \times \prod_{k=p+1}^{2n} (k-p)$$

$$\prod_{k=-2n}^{2n} |x-k| \leqslant (2n+p+1)! \times (2n-p)!$$

et cette inégalité est triviale lorsque x = 2n

III.4.4 La fonction $f: x \mapsto \cos((\pi x)/2)$ est de classe \mathscr{C}^{∞} sur \mathbb{R} , donc elle est de classe \mathscr{C}^{4n+1} sur [-n;n]. Puisque P_{4n} est son polynôme d'interpolation aux 4n+1 points $x_i=i-2n$ pour $i\in [0;4n]$ d'après la question III.4.2, on peut appliquer le résultat de la question I.5.3:

$$\forall y \in [-2n; 2n] \quad \exists \beta \in [-2n; 2n] \quad f(y) - P_{4n}(y) = \frac{1}{(4n+1)!} T_{4n+1}(y) f^{(4n+1)}(\beta)$$

Remarquons que

$$f^{(4n+1)}(\beta) = -\left(\frac{\pi}{2}\right)^{4n+1} \sin\left(\frac{\pi\beta}{2}\right)$$

donc

$$\left|f^{(4n+1)}(\beta)\right| \leqslant \left(\frac{\pi}{2}\right)^{4n+1}$$

En outre, pour $x \in [-2n; 2n]$,

$$T_{(4n+1)}(x) = \prod_{i=0}^{4n} (x - x_i)$$

$$= \prod_{i=0}^{4n} (x - (i - 2n))$$

$$T_{(4n+1)}(x) = \prod_{k=-2n}^{2n} (x - k)$$
 en posant $k = i - 2n$

Par suite, à l'aide de la question précédente, on obtient la majoration

$$|T_{(4n+1)}(x)| \le (2n+p+1)!(2n-p)!$$

On en déduit que, pour tout $x \in [-2n; 2n]$,

$$|f(x) - P_{4n}(x)| \le (2n+p+1)!(2n-p)!\frac{(\pi/2)^{4n+1}}{(4n+1)!}$$

Écrivons à l'aide de la formule de Stirling

puis
$$(2n+p+1)! \underset{+\infty}{\sim} \left(\frac{2n+p+1}{\mathrm{e}}\right)^{2n+p+1} \sqrt{2\pi(2n+p+1)}$$
 puis
$$(2n-p)! \underset{+\infty}{\sim} \left(\frac{2n-p}{\mathrm{e}}\right)^{2n-p} \sqrt{2\pi(2n-p)}$$
 et
$$(4n+1)! \underset{+\infty}{\sim} \left(\frac{4n+1}{\mathrm{e}}\right)^{4n+1} \sqrt{2\pi(4n+1)}$$

Par produit et quotient d'équivalents non nuls, on obtient

$$\theta(n,p) \underset{+\infty}{\sim} \sqrt{2\pi} \frac{(2n+p+1)^{2n+p+1}(2n-p)^{2n-p}}{(4n+1)^{4n+1}} \sqrt{\frac{(2n+p+1)(2n-p)}{4n+1}} \left(\frac{\pi}{2}\right)^{4n+1}$$

$$\underset{+\infty}{\sim} \sqrt{2\pi} \frac{(2n+p+1)^{p+1}}{(4n+1)(2n-p)^p} \left(\frac{(2n+p+1)(2n-p)}{(4n+1)^2}\right)^{2n} \sqrt{\frac{4n^2}{4n}} \left(\frac{\pi}{2}\right)^{4n+1}$$

$$\underset{+\infty}{\sim} \sqrt{2\pi} \frac{2^{p+1}n^{p+1}}{4n 2^p n^p} \sqrt{n} \left(\frac{4n^2+2n(p+1-p)-p(p+1)}{16n^2+8n+1}\right)^{2n} \left(\frac{\pi}{2}\right)^{4n+1}$$

$$\underset{+\infty}{\sim} \sqrt{\frac{2\pi n}{2}} \left(\frac{4n^2\left(1+\frac{1}{2n}-\frac{p(p+1)}{4n^2}\right)}{16n^2\left(1+\frac{1}{2n}+\frac{1}{16n^2}\right)}\right)^{2n} \left(\frac{\pi}{2}\right)^{4n+1}$$

$$\theta(n,p) \underset{+\infty}{\sim} \sqrt{\frac{2\pi n}{2}} \left(\frac{1}{4}\right)^{2n} \left(\frac{1}{4}+\frac{1}{2n}-\frac{p(p+1)}{4n^2}}{1+\frac{1}{2n}+\frac{1}{16n^2}}\right)^{2n} \left(\frac{\pi}{2}\right)^{4n+1}$$
Posons $u_n = \frac{1+\frac{1}{2n}-\frac{p(p+1)}{4n^2}}{1+\frac{1}{2n}+\frac{1}{16n^2}}$ et écrivons que
$$1+\frac{1}{2n}-\frac{p(p+1)}{4n^2}=1+\frac{1}{2n}+O\left(\frac{1}{n^2}\right) \text{ et } \frac{1}{1+\frac{1}{2n}+\frac{1}{16n^2}}=1-\frac{1}{2n}+O\left(\frac{1}{n^2}\right)$$
donc
$$u_n = \left(1+\frac{1}{2n}\right)\left(1-\frac{1}{2n}\right)+O\left(\frac{1}{n^2}\right)=1+O\left(\frac{1}{n^2}\right)$$
Par suite,
$$\ln(u_n) = O\left(\frac{1}{n^2}\right)$$
donc
$$2n\ln(u_n) = O\left(\frac{1}{n}\right)$$
Par conséquent,
$$\exp(2n\ln(u_n)) \xrightarrow[n \to +\infty]{} 1$$

$$c'est-à-dire$$

$$u_n^{2n} \underset{+\infty}{\sim} 1$$
On en déduit que
$$\theta(n,p) \underset{+\infty}{\sim} \sqrt{2\pi n} \left(\frac{\pi}{4}\right)^{4n+1}$$
Puisone $\frac{\pi}{n} < 1$ on obtient final equent.

Puisque $\frac{\pi}{4}$ < 1, on obtient finalement

$$\theta(n,p) \xrightarrow[n \to +\infty]{} 0$$

Ceci implique que la suite de polynômes $(P_{4n})_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment.