Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels.

Pour tout $n \in \mathbb{N}^*$, on pose :

$$b_n = n(a_n - a_{n+1}), A_n = \sum_{k=1}^n a_k \text{ et } B_n = \sum_{k=1}^n b_k$$

- 1. On prend dans cette question, pour tout $n \ge 1$, $a_n = \frac{1}{2^{n-1}}$.
 - 1.1 Vérifier que la série $\sum_{n \geq 1} a_n$ converge et calculer sa somme.
 - 1.2 Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1} n \, x^{n-1}$
 - 1.3 Montrer que la série $\sum_{n\geq 1} b_n$ converge et calculer sa somme.
- **2.** On prend dans cette question, $a_n = \frac{1}{n \ln(n)}$, $n \ge 2$ et $a_1 = 0$.
 - **2.1** Etudier la monotonie et la convergence de la suite $(a_n)_{n\geq 2}$.
 - **2.2** Quelle est la nature de la série $\sum_{n\geq 1} a_n$?
 - **2.3** Calculer $\lim_{n \to +\infty} n \, a_n$.
 - **2.4** Quelle est la nature de la série $\sum_{n\geq 1} b_n$?
- 3. On suppose <u>dans cette question</u> que la série $\sum_{n\geqslant 1}a_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de réels positifs.
 - **3.1** Pour tout entier naturel n non nul, on note $u_n = \sum_{p=n+1}^{2n} a_p$. Montrer que : $\forall n \in \mathbb{N}^*, n \, a_{2n} \leqslant u_n$.
 - **3.2** En déduire $\lim_{n\to+\infty} n \, a_{2n}$.
 - **3.3** Démontrer alors que $\lim_{n \to +\infty} n \, a_n = 0$.
 - **3.4** Montrer que la série $\sum_{n\geqslant 1} b_n$ converge.
 - **3.5** A-t-on $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?
- 4. On suppose <u>dans cette question</u> que la série $\sum_{n\geqslant 1}b_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est positive, décroissante et de limite nulle.
 - 4.1 Vérifier que : $\forall m \in \mathbb{N}^*, m \leqslant n, B_n \geqslant A_m m a_{n+1}$.
 - **4.2** En déduire que la série $\sum_{n\geq 1} a_n$ converge.

4.3 Peut-on en déduire que $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?

Exercice 3

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de nombres réels.

On dit que la suite (a_n) vérifie la propriété (P) si à la fois : $\begin{cases} \bullet \text{ la suite } (a_n) \text{ est bornée,} \\ \bullet \forall n \in \mathbb{N}^*, a_n > 0, \\ \bullet \text{ la série } \sum a_n \text{ diverge.} \end{cases}$

On note alors:

$$\forall\,n\in\mathbb{N}^*\;,\,A_n=\sum_{k=1}^na_k\;\;\text{et}\;\;\forall\,n\geqslant 2\;,\,b_n=\frac{1}{\ln(A_n)}\,\sum_{k=1}^n\frac{a_k}{A_k}$$

Dans tout l'exercice, on utilisera sans le démontrer la propriété suivante, notée (R) :

Soient (u_n) et (v_n) deux suites réelles à termes strictement positifs.

Si: $\begin{cases} (a) & u_n + \infty \\ & v_n \end{cases}$ et alors: $\sum_{k=1}^n u_k \underset{+\infty}{\sim} \sum_{k=1}^n v_k$ (b) la série $\sum_{k=1}^n u_n$ diverge

1. Pour tout *n* entier naturel supérieur ou égal à 1, on pose $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

En utilisant les séries de terme général $u_n=\frac{1}{n}$ et $v_n=\ln(n+1)-\ln(n)$ et la propriété (R), prouver que :

$$H_n \sim \ln(n)$$

2. 2.1 De facon analogue, montrer que :

$$T_n = \sum_{k=2}^n \frac{1}{k \ln(k)} \underset{+\infty}{\sim} \ln(\ln(n))$$

- **2.2** En déduire la nature de la série de terme général $w_n = \frac{1}{n \ln(n)}$ $(n \ge 2)$.
- 2.3 Retrouver ce résultat sans utiliser la propriété (R).
- 3. Etude de deux exemples.
 - **3.1** On prend dans cette question: $\forall n \in \mathbb{N}^*, a_n = 1$.
 - Vérifier que la suite (a_n) ainsi définie satisfait à la propriété (P).
 - Déterminer $\lim_{n\to+\infty} b_n$.
 - **3.2** On prend dans cette question: $\forall n \in \mathbb{N}^*, a_n = \frac{1}{n}$.
 - Vérifier que la suite (a_n) ainsi définie satisfait à la propriété (P).
 - En utilisant la propriété (R) et la série $\sum_{n \searrow n} w_n,$ déterminer $\lim_{n \to +\infty} b_n.$
- 4. On revient au cas général et on considère une suite (a_n) qui satisfait à la propriété (P).
 - **4.1** Montrer que $A_n \sim_{+\infty} A_{n-1}$
 - 4.2 Prouver que :

$$\frac{a_n}{A_n} \underset{+\infty}{\sim} \ln \left(\frac{A_n}{A_{n-1}} \right)$$

- **4.3** Déterminer alors la nature de la série : $\sum_{n\geq 2} \frac{a_n}{A_n}$. **4.4** A l'aide de la propriété (R) et des questions précédentes, déterminer alors $\lim_{n \to +\infty} b_n$.

- Montrer qu'il existe une suite (v_n) à termes positifs tels que : $\begin{cases} \bullet \ v_n = o(u_n) \\ \bullet \ \text{la série} \sum v_n \ \text{diverge} \end{cases}$
- 5. Soit (u_n) le terme général d'une série à termes strictement positifs divergente.

QUATRIÈME PARTIE

Dans toute cette partie, $(a_k)_{k\in\mathbb{N}}$ désigne une suite réelle convergente vers 0. Cette suite est supposée de plus décroissante à partir de la question 4.4.

4.1 Soit $(\lambda_k)_{k\in\mathbb{N}}$ une suite de réels strictement positifs telle la série de terme général λ_k diverge vers $+\infty$. Montrer que

$$\lim_{n \to +\infty} \frac{\sum_{k=0}^{n} \lambda_k a_k}{\sum_{k=0}^{n} \lambda_k} = 0$$

4.2 On définit Δ l'opérateur opérant sur une suite quelconque $(u_k)_{k\in\mathbb{N}}$ par la relation:

$$\forall k \in \mathbf{N}, \quad (\Delta u)_k = u_k - u_{k+1}$$

puis on note Δ^n la puissance itérée n-ième de l'opérateur Δ :

$$\Delta^0 = \text{Id et pour tout } n \in \mathbb{N}, \ \Delta^{n+1} = \Delta \circ \Delta^n$$

Montrer que pour tous k et n dans N, on a

$$(\Delta^n u)_k = \sum_{i=0}^n (-1)^i \binom{n}{i} u_{k+i}$$

4.3 Montrer, à n fixé dans \mathbf{N} , que $\lim_{k \to +\infty} (\Delta^n a)_k = 0$ et, à k fixé dans \mathbf{N} , que $\lim_{n \to +\infty} \frac{(\Delta^n a)_k}{2^n} = 0$.

4.4 On suppose à partir de maintenant que la suite $(a_k)_{k \in \mathbb{N}}$ est décroissante et convergente vers 0. On note S la somme de la série alternée de terme général $(-1)^k a_k$ pour tout $k \in \mathbb{N}$.

On definit pour tous k et n dans N:

$$a_n^{(k)} = (-1)^k \left[\frac{(\Delta^n a)_k}{2^n} - \frac{(\Delta^{n+1} a)_k}{2^{n+1}} \right]$$

Montrer, à k fixé dans \mathbf{N} , que la série de terme général $(a_n^{(k)})_{n\in\mathbb{N}}$ est convergente avec pour somme:

$$\sum_{n=0}^{+\infty} a_n^{(k)} = (-1)^k a_k$$

et, à n fixé dans \mathbb{N} , que la série de terme général $(a_n^{(k)})_{k\in\mathbb{N}}$ est convergente avec pour somme:

$$\sum_{k=0}^{+\infty} a_n^{(k)} = \frac{(\Delta^n a)_0}{2^{n+1}}.$$

4.5 On note $r_m^{(k)} = \sum_{n=m}^{+\infty} a_n^{(k)}$. Montrer que la série de terme général $(r_m^{(k)})_{k \in \mathbb{N}}$ est convergente. On note R_m sa somme.

4.6 Montrer que
$$\lim_{m \to +\infty} R_m = 0$$
 et $\sum_{n=0}^{\infty} \frac{(\Delta^m a)_0}{2^{m+1}} = R_0 - R_{n+1}$.

- **4.7** En déduire que la série de terme général $\left(\frac{(\Delta^m a)_0}{2^{m+1}}\right)_{m\in\mathbb{N}}$ est convergente et a pour somme S.
- **4.8** On suppose en outre que la suite $(a_k)_{k\in\mathbb{N}}$ peut s'écrire sous la forme $a_k = f(k)$ pour tout $k \in \mathbb{N}$ où f est une fonction appartenant à $C^{\infty}(\mathbb{R}_+,\mathbb{R})$ et telle que

$$\forall k \in \mathbf{N}, \quad \forall x \in \mathbf{R}_+, \quad (-1)^k f^{(k)}(x) \ge 0$$

Montrer dans ce cas que pour tout $n \in \mathbb{N}$ et tout $k \in \mathbb{N}$, $(\Delta^n a)_k \geq 0$. En déduire que pour tout $m \in \mathbb{N}$,

$$0 \le \frac{(\Delta^m a)_0}{2^{m+1}} \le \frac{a_0}{2^{m+1}}.$$

4.9 En appliquant les résultats de cette partie à la suite de terme général $a_k = \frac{1}{k+1}$, proposer une méthode d'approximation de $\ln 2$ avec une précision $\epsilon > 0$ donnée. Quelle expression de $\ln 2$ retrouve t-on?