SESSION 2005 PSIM104

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

N.B. Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Notation et Objectifs:

On note:

• N : l'ensemble des nombres entiers naturels,

• R : l'ensemble des nombres réels.

• C : l'ensemble des nombres complexes,

• \mathcal{C}^0 : le \mathbb{R} – espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} ,

• \mathcal{C}^0_1 : le sous-espace vectoriel de \mathcal{C}^0 des fonctions f 1-périodique (c'est-à-dire

telles que f(x+1) = f(x), pour tout $x \in \mathbb{R}$).

Dans tout ce problème, on désigne par θ l'application de \mathcal{C}^0 dans \mathcal{C}^0 , définie par : pour tout $f \in \mathcal{C}^0$, $\theta(f) = F$ où F est la fonction de \mathbb{R} dans \mathbb{R} qui à x, associe $\int_{r}^{x+1} f(t)dt$.

On admet que θ est un endomorphisme de \mathcal{C}^0 .

L'objet de ce problème est l'étude de quelques propriétés de la fonction F et de l'endomorphisme θ .

PARTIE I

Quelques propriétés de $F = \theta(f)$

- I.1/ Exemples.
 - I.1.1/ Expliciter F(x), si f est définie sur \mathbb{R} par f(t)=1.
 - **I.1.2**/ Expliciter F(x), si f est définie sur \mathbb{R} par $f(t) = t^k$ (où k est fixé dans \mathbb{N}^{\bullet}).
- I.2/ Variation de $F = \theta(f)$.

On désigne maintenant par f une fonction arbitraire de $\mathcal{C}^{\mathfrak{o}}$.

- I.2.1/ Montrer que la fonction F est de classe \mathcal{C}^1 sur \mathbb{R} . Expliciter F'(x) en fonction de f et de x.
- **I.2.2**/ Montrer que si la fonction f est croissante (respectivement décroissante) sur un intervalle $J_{x_0} = [x_0, +\infty[$, alors la fonction F est croissante (respectivement décroissante) sur J_{x_0} .
- **I.2.3**/ Montrer que la fonction $F = \theta(f)$ est constante sur \mathbb{R} si et seulement si f appartient à \mathcal{C}_1^0 .
- **I.2.4**/ Expliciter F(x), si f est définie sur \mathbb{R} par $f(t) = |\sin(\pi t)|$.

On suppose de nouveau que f désigne une fonction arbitraire de \mathscr{C}° .

- **I.2.5**/ On suppose que la fonction f admet une limite finie L_1 en $+\infty$. Montrer que la fonction F admet une limite L_2 (que l'on explicitera) en $+\infty$; on pourra étudier d'abord le cas où $L_1=0$.
- I.3/ Propriétés du graphe de F.

Soient
$$f \in \mathcal{C}^0$$
 et $F = \theta(f)$.

On considère la fonction ψ définie sur \mathbb{R} par $\psi(u) = F\left(u - \frac{1}{2}\right) = \int_{u - \frac{1}{2}}^{u + \frac{1}{2}} f(t) dt$.

- I.3.1/ Comparer $\psi(-u)$ et $\psi(u)$, si la fonction f est impaire (respectivement paire).
- I.3.2/ Quelle propriété géométrique de la représentation graphique de la fonction F peut-on déduire des résultats obtenus en I.3.1, si la fonction f est impaire (respectivement paire)?

PARTIE II

L'endomorphisme θ

II.1/ L'endomorphisme θ est-il surjectif?

II.2/ Sur le noyau de θ .

On note désormais $Ker\theta$ le noyau de l'endomorphisme θ .

II.2.1/ Montrer que
$$f \in Ker\theta \Leftrightarrow [f \in \mathcal{C}_1^0 \text{ et } \int_0^1 f(t)dt = 0].$$

II.2.2/ Soit
$$(f,g) \in (\mathcal{C}_1^0)^2$$
. On note $\langle f | g \rangle = \int_0^1 f(t)g(t)dt$. On admettra, sans justification, que $\langle \cdot | \cdot \rangle$ est un produit scalaire sur \mathcal{C}_1^0 . Soit $k \in \mathbb{N}^*$. On note C_k la fonction définie sur \mathbb{R} par $C_k(t) = \cos(2\pi kt)$.

II.2.2.1/ Vérifier que C_k appartient à \mathcal{C}_1^0 pour tout $k \in \mathbb{N}^*$ et calculer $\langle C_j | C_k \rangle$ pour $(j,k) \in (\mathbb{N}^*)^2$.

II.2.2.2/ $Ker\theta$ est-il de dimension finie?

II.2.3/ Soit $f \in \mathcal{C}_1^0$.

Soit
$$n \in \mathbb{N}$$
. On note: $\varphi_n(x) = \int_n^x f(t)dt$ pour $x \in [n, n+1]$.
Soit $n \in \mathbb{N}^{+}$. On pose $W_n = \int_{n}^{n+1} \frac{f(t)}{t}dt$.

II.2.3.1/ Établir, pour tout
$$n \in \mathbb{N}^*$$
, la relation : $W_n = \frac{\varphi_0(1)}{n+1} + \int_n^{n+1} \frac{\varphi_n(t)}{t^2} dt$.

- II.2.3.2/ Si on suppose que f appartient à $Ker\theta$, quelle est la nature de la série $\sum_{n\geq 1} W_n \ ?$
- II.2.3.3/ Si on suppose que f n'appartient pas à $Ker\theta$, quelle est la nature de la série $\sum_{n\geq 1} W_n$?