I. Généralités sur les matrices SYMÉTRIQUES RÉELLES

1 D'après le théorème spectral, toute matrice symétrique réelle est orthodiagonalisable. Réciproquement, si $A \in \mathcal{M}_n(\mathbb{R})$ est orthodiagonalisable, il existe une matrice diagonale D et une matrice orthogonale P telles que $A = PDP^{T}$. Comme la matrice D est diagonale, elle est symétrique, donc $D^{\top} = D$. Il vient

$$\mathbf{A}^{\top} \ = \left(\mathbf{P}\mathbf{D}\mathbf{P}^{\top}\right)^{\top} = \left(\mathbf{P}^{\top}\right)^{\top}\mathbf{D}^{\top}\mathbf{P}^{\top} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top} = \mathbf{A}$$

Finalement,

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthodiagonalisable si, et seulement si, elle est symétrique.

2 Remarquons que la somme des première et troisième colonnes de A_1 vaut

$$\begin{pmatrix} 7 & 0 & 7 \end{pmatrix}^{\top} = 7 \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^{\top}$$

On en déduit que

Le vecteur [0] est un vecteur propre de A_1 associé à la valeur propre $\lambda_1 = 7$.

3 Calculons
$$A_1 - \lambda_1 I_3 = A_1 - 7I_3 = \begin{pmatrix} -4 & -2 & 4 \\ -2 & -1 & 2 \\ 4 & 2 & -4 \end{pmatrix}$$

La matrice $A_1 - \lambda_1 I_3$ est de rang 1 car tous ses vecteurs colonnes sont colinéaires au vecteur $(2 \ 1 \ -2)^{\top}$. D'après le théorème du rang, le sous-espace propre de A_1 associé à la valeur propre λ_1 est donc de dimension 2 et c'est le plan d'équation cartésienne 2x + y - 2z = 0. D'après la question 2, on peut prendre comme premier vecteur propre $X_1 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^{\top}$ (il correspond à x = 1 et y = 0).

Pour le deuxième vecteur propre, on peut prendre $\begin{pmatrix} 1 & -2 & 0 \end{pmatrix}^{\top}$ (à l'aide de x=1et z=0). Mais comme la question 4 demande d'orthodiagonaliser A_1 , autant prendre directement un vecteur X_2 orthogonal à X_1 , c'est-à-dire tel que $(X_1 \mid X_2) = 0$. Pour cela, il suffit de résoudre le système

$$\begin{cases} 2x + y - 2z = 0 \\ x + z = 0 \end{cases} \text{ soit } \begin{cases} 4x + y = 0 \\ x + z = 0 \end{cases} \text{ d'où } \begin{cases} y = -4x \\ z = -x \end{cases}$$
qui mène par exemple à $X_2 = \begin{pmatrix} -1 \\ 4 \end{pmatrix}^{\top} \text{ (avec } x = -1, \text{ qui implique } y = 4 \end{cases}$

et z=1). La famille (X_1,X_2) est bien une base de l'espace propre E_{λ_1} car c'est une famille orthogonale de deux vecteurs non nuls dans un espace de dimension 2. Ainsi,

$$E_{\lambda_1}(A_1) = \text{Vect}(X_1, X_2) \quad \text{avec} \quad X_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{et} \quad X_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$$

Comme la matrice A_1 est diagonalisable, la somme de ses valeurs propres est égale à sa trace, donc, en notant λ_2 la seconde valeur propre de A_1 ,

$$\lambda_1 + \lambda_1 + \lambda_2 = \text{Tr}(A_1) = 3 + 6 + 3 = 12$$

Comme $\lambda_1 = 7$, on en déduit que $\lambda_2 = -2$. Par suite,

$$\operatorname{sp}\left(A_{1}\right)=\left\{ -2,7\right\}$$

4 La matrice A₁ est symétrique réelle. Elle est donc orthodiagonalisable d'après la question 1. La question 3 affirme que $\lambda_1 = 7$, $\lambda_2 = -2$ et que les sous-espaces propres associés sont de dimension respective 2 et 1. Comme les sous-espaces propres de A₁ sont orthogonaux, on peut chercher un vecteur propre $X_3 = \begin{pmatrix} x & y & z \end{pmatrix}^{\top}$ associé à la valeur propre λ_2 en résolvant le système

$$\begin{cases} 0 = (\mathbf{X}_1 \mid \mathbf{X}_3) = x + z \\ 0 = (\mathbf{X}_2 \mid \mathbf{X}_3) = -x + 4y + z \end{cases} \quad \text{qui s'écrit} \quad \begin{cases} 0 = x + z \\ 0 = 4y + 2z \end{cases}$$
 En prenant $y = 1$, on obtient le vecteur $\mathbf{X}_3 = \begin{pmatrix} 2 & 1 & -2 \end{pmatrix}^\top$.

On pouvait aussi déterminer un vecteur propre X₃ associé à la valeur propre λ_2 de deux autres manières. D'abord, en exploitant l'orthogonalité des sous-espaces propres comme ci-dessus, on pouvait calculer directement le produit vectoriel entre X_1 et X_2 :

$$X_3 = X_1 \wedge X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ -2 \\ 4 \end{pmatrix}$$

Sinon, on pouvait aussi calculer

$$A_1 - \lambda_2 I_3 = A_1 + 2I_3 = \begin{pmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{pmatrix}$$

et chercher les vecteurs propres de A_1 associés à λ_2 en résolvant le système

$$\begin{cases}
5x - 2y + 4z = 0 \\
-2x + 8y + 2z = 0 \\
4x + 2y + 5z = 0
\end{cases}$$

On dispose donc d'une base orthogonale de vecteurs propres (X_1, X_2, X_3) . Il reste à normer ces trois vecteurs pour obtenir une base orthonormée de vecteurs propres, en calculant

$$\|X_1\| = \sqrt{1^2+0^2+1^2} = \sqrt{2} \qquad \|X_2\| = \sqrt{(-1)^2+4^2+1^2} = \sqrt{18} = 3\sqrt{2}$$
 et
$$\|X_3\| = \sqrt{2^2+1^2+(-2)^2} = 3$$

Il vient

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & \frac{2}{3} \\ 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \end{pmatrix} = \frac{1}{3\sqrt{2}} \begin{pmatrix} 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \\ 3 & 1 & -2\sqrt{2} \end{pmatrix}$$

$$A_1 = PDP^{\top} \quad \text{avec} \quad D = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad \text{et} \quad P = \frac{1}{3\sqrt{2}} \begin{pmatrix} 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \\ 3 & 1 & -2\sqrt{2} \end{pmatrix}$$

 $|\mathbf{5}|$ Montrons que l'application ϕ est bilinéaire symétrique définie positive. Considérons $(P, Q, R) \in (\mathbb{R}_{n-1}[X])^3$ et $\lambda \in \mathbb{R}$.

• L'application ϕ est symétrique puisque

$$\phi(P, Q) = \int_0^1 P(t)Q(t) dt = \int_0^1 Q(t)P(t) dt = \phi(Q, P)$$

5

• D'après la linéarité de l'intégrale, on a

$$\phi(\lambda P + R, Q) = \int_0^1 [\lambda P(t) + R(t)] Q(t) dt$$
$$= \lambda \int_0^1 P(t)Q(t) dt + \int_0^1 R(t)Q(t) dt$$
$$\phi(\lambda P + R, Q) = \lambda \phi(P, Q) + \phi(R, Q)$$

ce qui montre la linéarité à gauche de ϕ , donc sa bilinéarité par symétrie.

• Comme P est à coefficients réels, $P(t)^2 \ge 0$ pour tout $t \in [0, 1]$ et la positivité de l'intégrale donne

$$\phi(\mathbf{P}, \mathbf{P}) = \int_0^1 \mathbf{P}(t)^2 \, \mathrm{d}t \geqslant 0$$

donc l'application ϕ est positive.

• Enfin, si $\phi(P,P) = 0$, alors la fonction polynomiale $t \mapsto P(t)^2$ est continue et d'intégrale nulle sur [0;1]. Elle est donc nulle d'après la positivité stricte de l'intégrale. Par conséquent, le polynôme P admet une infinité de racines, si bien que P = 0. Ceci prouve que ϕ est définie.

L'application ϕ est un produit scalaire sur $\mathbb{R}_{n-1}[X]$.

6 Attention, à partir de cette question, les indices des lignes et des colonnes des matrices vont de 0 à n-1 (ce qui est usuel en Python par exemple), et non de 1 à n comme on en a l'habitude.

Soit $(i, j) \in [0; n-1]^2$. On a

$$h_{i,j} = \phi(\mathbf{X}^i, \mathbf{X}^j) = \int_0^1 t^i t^j dt = \left[\frac{1}{i+j+1} t^{i+j+1}\right]_0^1 = \frac{1}{i+j+1}$$

La matrice H du produit scalaire ϕ dans la base canonique de $\mathbb{R}_{n-1}[X]$ est égale à

$$\mathbf{H} = (h_{i,j})_{i,j \in \{0,\dots,n-1\}} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \ddots & \frac{1}{n+1} \\ \frac{1}{3} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{1}{2n-2} \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-2} & \frac{1}{2n-1} \end{pmatrix}$$

7 Notons $U = \begin{pmatrix} u_0 & \dots & u_{n-1} \end{pmatrix}^{\top} \in \mathcal{M}_{n,1}(\mathbb{R})$. Soit $i \in [0; n-1]$. On a

$$(\mathrm{HU})_{i} = \sum_{j=0}^{n-1} h_{i,j} \, u_{j} \qquad \text{puis} \qquad \mathrm{U}^{\top} \mathrm{HU} = \sum_{i=0}^{n-1} u_{i} (\mathrm{HU})_{i} = \sum_{i=0}^{n-1} u_{i} \sum_{j=0}^{n-1} h_{i,j} \, u_{j}$$
 lement,
$$\boxed{\forall \mathrm{U} \in \mathscr{M}_{n,1}(\mathbb{R}) \qquad \mathrm{U}^{\top} \mathrm{HU} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \phi(\mathrm{X}^{i}, \mathrm{X}^{j}) \, u_{i} \, u_{j}}$$

Finalement,
$$\forall \mathbf{U} \in \mathscr{M}_{n,1}(\mathbb{R})$$
 $\mathbf{U}^{\top} \mathbf{H} \mathbf{U} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \phi(\mathbf{X}^{i}, \mathbf{X}^{j}) u_{i} u_{j}$

Remarquons tout d'abord que la valeur encadrée ci-dessus vaut aussi

$$\phi\left(\sum_{i=0}^{n-1} u_i X_i, \sum_{j=0}^{n-1} u_j X_j\right) = \left\|\sum_{i=0}^{n-1} u_i X_i\right\|^2$$

Cette expression sera utile dans la question 8.

En outre, comme ce calcul servira à plusieurs reprises dans ce problème, donnons la valeur du réel $X^{\top}AY$ dans le cas général où $A \in \mathscr{M}_n(\mathbb{R})$ et $(X,Y) \in (\mathscr{M}_{n,1}(\mathbb{R}))^2$ en notant comme ci-dessus $A = (a_{i,j})_{0 \leqslant i,j \leqslant n-1}$, $X = (x_i)_{0 \leqslant i \leqslant n-1}$ et $Y = (y_i)_{0 \leqslant j \leqslant n-1}$. Soit $(i,j) \in [0;n-1]^2$. Alors

$$(AY)_i = \sum_{i=0}^{n-1} a_{i,j} y_j$$

puis

$$\mathbf{X}^{\top} \mathbf{A} \mathbf{Y} = \sum_{i=0}^{n-1} x_i (\mathbf{A} \mathbf{Y})_i = \sum_{i=0}^{n-1} x_i \sum_{j=0}^{n-1} a_{i,j} \, y_j = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} x_i a_{i,j} \, y_j$$

8 D'après la question 6, pour tout $(i, j) \in [0; n-1]^2$,

$$h_{i,j} = \frac{1}{i+j+1} = \frac{1}{j+i+1} = h_{j,i}$$
$$\boxed{\mathbf{H} \in \mathscr{S}_n(\mathbb{R})}$$

donc

On dit que H est la matrice du produit scalaire ϕ dans la base canonique de $\mathbb{R}_{n-1}[X]$.

Soient $\lambda \in \mathbb{R}$ une valeur propre de H et $U \in \mathcal{M}_{n,1}(\mathbb{R})$ un vecteur propre associé, de sorte que $HU = \lambda U$. D'une part,

$$\mathbf{U}^{\top}\mathbf{H}\mathbf{U} = \lambda \mathbf{U}^{\top}\mathbf{U} = \lambda \|\mathbf{U}\|^{2}$$

avec $\|U\| \neq 0$ puisque U est un vecteur propre. D'autre part, le résultat de la question précédente et la bilinéarité du produit scalaire ϕ assurent que

$$\begin{split} \mathbf{U}^{\top}\mathbf{H}\mathbf{U} &= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \phi(\mathbf{X}^{i}, \mathbf{X}^{j}) u_{i} u_{j} \\ &= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \phi(u_{i} \mathbf{X}^{i}, u_{j} \mathbf{X}^{j}) \\ &= \phi\left(\sum_{i=0}^{n-1} u_{i} \mathbf{X}^{i}, \sum_{j=0}^{n-1} u_{j} \mathbf{X}^{j}\right) \\ \mathbf{U}^{\top}\mathbf{H}\mathbf{U} &= \left\|\sum_{i=0}^{n-1} u_{i} \mathbf{X}^{i}\right\|^{2} \\ \lambda &= \frac{\left\|\sum_{i=0}^{n-1} u_{i} \mathbf{X}^{i}\right\|^{2}}{\|\mathbf{U}\|^{2}} > 0 \end{split}$$

Par suite,

Ceci étant vrai pour toute valeur propre λ de H,

Les valeurs propres de H sont strictement positives.

Pour les questions 9 à 12, on considère une matrice $A \in \mathcal{M}_n(\mathbb{R})$ de spectre non vide.

Si A est nilpotente, il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$. Ainsi, $0 = \det(A^p) = \det(A)^p$, donc $\det(A) = 0$ puis A n'est pas inversible. Il existe donc un vecteur $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que AX = 0, d'où $0 \in \operatorname{sp}(A)$.

Si $\lambda \in \mathbb{R}$ est une valeur propre de A et si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est un vecteur propre associé, alors $AX = \lambda X$, puis $A^k X = \lambda^k X$ pour tout $k \ge 1$ par récurrence immédiate. En particulier, $0 = A^p X = \lambda^p X$. Comme X est non nul, on en déduit que $\lambda^p = 0$ puis que $\lambda = 0$. Par conséquent, sp $\{A\} \subset \{0\}$.

Par suite, sp $(A) = \{0\}$. Finalement,

Si A est nilpotente, alors son rayon spectral $\rho(A)$ est nul.

10 Remarquons que $C = \{U \in \mathcal{M}_{n,1}(\mathbb{R}) \mid ||U|| = 1\}$ est la sphère de centre 0 et de rayon 1 associée à la norme euclidienne, donc d'après le cours,

L'espace C est une partie fermée de $\mathcal{M}_{n,1}(\mathbb{R})$.

11 L'application $U \mapsto |U^{\top} AU|$ est continue en tant que composition des applications $x \mapsto |x|$ continue sur \mathbb{R} . De même, l'application $(U, V) \mapsto U^{\top}V$ est continue sur $\mathcal{M}_{n,1}(\mathbb{R})^2$ car elle est bilinéaire en dimension finie. Enfin, l'application $U \mapsto AU$ est continue sur $\mathcal{M}_{n,1}(\mathbb{R})$ car elle est linéaire en dimension finie. De plus, d'après la question précédente, l'espace C est une partie fermée bornée (par 1) de $\mathcal{M}_{n,1}(\mathbb{R})$. L'application $U \mapsto |U^{\top} AU|$ est donc bornée sur C et elle atteint ses bornes sur C (d'après le théorème des bornes atteintes), ce qui signifie en particulier qu'elle possède un maximum.

L'application $U \mapsto \left| U^{\top} A U \right|$ admet un maximum sur C.

12 Soit λ une valeur propre de A telle que $\rho(A) = |\lambda|$ et X un vecteur propre associé. Quitte à le normer puisqu'il est non nul, on peut le supposer unitaire, donc appartenant à la partie C. Ainsi, $U \in C$ et

$$\left|\mathbf{U}^{\top}\mathbf{A}\mathbf{U}\right| = \left|\mathbf{U}^{\top}\lambda\mathbf{U}\right| = |\lambda|\,\|\mathbf{U}\|^2 = |\lambda| = \rho(\mathbf{A})$$

On en déduit que

$$\boxed{\rho(\mathbf{A}) \leqslant \max_{\mathbf{U} \in \mathbf{C}} \left| \mathbf{U}^{\top} \mathbf{A} \mathbf{U} \right|}$$

On sait que le spectre réel de $A \in \mathcal{M}_n(\mathbb{R})$ est non vide et que c'est un ensemble fini de réels. Ceci justifie que $\rho(A)$ est un maximum (nécessairement atteint en une valeur) et pas seulement une borne supérieure.

13 Puisque $A \in \mathscr{S}_n(\mathbb{R})$, la matrice A est orthodiagonalisable d'après la question 1. Il existe donc une matrice diagonale réelle $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ et une matrice orthogonale P telles que $A = PDP^{\top}$. Comme le spectre de $A \in \mathscr{M}_n(\mathbb{R})$ est non vide, on a $\rho(A) \leq \max_{\mathbf{U} \in G} |\mathbf{U}^{\top}A\mathbf{U}|$ d'après la question précédente.

Montrons à présent l'inégalité inverse. Soit $U\in C.$ On a

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U} = \mathbf{U}^{\top}\mathbf{P}\mathbf{D}\mathbf{P}^{\top}\mathbf{U} = (\mathbf{P}^{\top}\mathbf{U})^{\top}\mathbf{D}(\mathbf{P}^{\top}\mathbf{U}) = \mathbf{V}^{\top}\mathbf{D}\mathbf{V}$$

en posant $V = P^{T}U$. Notons que

$$\mathbf{V}^{\top}\mathbf{V} = (\mathbf{P}^{\top}\mathbf{U})^{\top}(\mathbf{P}^{\top}\mathbf{U}) = \mathbf{U}^{\top}\mathbf{P}\mathbf{P}^{\top}\mathbf{U} = \mathbf{U}^{\top}\mathbf{U}$$

car P est orthogonale. Comme $U \in C$, $U^{T}U = 1$ donc $V^{T}V = 1$, puis $V \in C$.

La matrice P^{\top} est orthogonale, donc c'est la matrice d'un endomorphisme orthogonal, qui conserve la norme. De ce fait, $P^{\top}U \in C$ pour tout $U \in C$.

En écrivant $V = \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}^\top$, un calcul similaire à celui effectué à la question 7 assure que

$$\mathbf{U}^{\top}\mathbf{A}\mathbf{U} = \mathbf{V}^{\top}\mathbf{D}\mathbf{V} = \sum_{i=0}^{n-1} \lambda_i v_i^2$$

d'où

$$\left|\mathbf{U}^{\top}\mathbf{A}\mathbf{U}\right| \leqslant \sum_{i=0}^{n-1} \left|\lambda_{i}\right| v_{i}^{2} \leqslant \rho(\mathbf{A}) \sum_{i=0}^{n-1} v_{i}^{2} = \rho(\mathbf{A}) \underbrace{\left\|\mathbf{V}\right\|^{2}}_{-1} = \rho(\mathbf{A})$$

Ceci étant vrai pour tout $U \in C$,

$$\max_{\mathbf{U} \in \mathcal{C}} \left| \mathbf{U}^{\top} \mathbf{A} \mathbf{U} \right| \ \leqslant \rho(\mathbf{A})$$

Finalement,

$$\rho(\mathbf{A}) = \max_{\mathbf{U} \in \mathbf{C}} \, \left| \mathbf{U}^{\top} \mathbf{A} \mathbf{U} \right|$$

[14] Dans le cas où les valeurs propres de A sont positives, le calcul de la question précédente montre que

$$\forall \mathbf{U} \in \mathbf{C} \qquad \mathbf{U}^{\top} \mathbf{A} \mathbf{U} = \sum_{i=0}^{n-1} \lambda_i v_i^2 \geqslant 0$$

ce qui s'écrit

$$\forall \mathbf{U} \in \mathbf{C} \qquad \mathbf{U}^{\top} \mathbf{A} \mathbf{U} = \left| \mathbf{U}^{\top} \mathbf{A} \mathbf{U} \right|$$

Ainsi,

$$\rho(\mathbf{A}) = \max_{\mathbf{U} \in \mathbf{C}} (\mathbf{U}^{\top} \mathbf{A} \mathbf{U})$$

15 Montrons que l'application ρ définit une norme sur $\mathscr{S}_n(\mathbb{R})$. Tout d'abord, elle est bien définie sur cet espace car les matrices symétriques réelles sont diagonalisables sur \mathbb{R} , elles ont donc bien un spectre réel non vide.

- Par définition, ρ est bien à valeurs dans \mathbb{R}_+ .
- Comme la matrice nulle n'admet que 0 comme valeur propre, $\rho(0_n) = 0$. Soit $A \in \mathcal{S}_n(\mathbb{R})$ telle que $\rho(A) = 0$. Alors sp $(A) = \{0\}$. Comme la matrice A est diagonalisable, cela signifie qu'elle est nulle. Autrement dit,

$$\rho(\mathbf{A}) = 0 \Longleftrightarrow \mathbf{A} = 0_n$$

• Soient $A \in \mathscr{S}_n(\mathbb{R})$ et $\mu \in \mathbb{R}$. Si μ est non nul, pour tout réel $\lambda \in \mathbb{R}$ et tout vecteur non nul $X \in \mathbb{R}^n$, on a équivalence entre les propositions

$$AX = \lambda X \iff (\mu A)X = (\mu \lambda)X$$

donc sp $(\mu A) = \mu \operatorname{sp}(A)$. Cette égalité restant vraie pour $\mu = 0$ puisque le spectre de la matrice nulle est réduit à $\{0\}$,

$$\rho(\mu \mathbf{A}) = \max_{\lambda \in \operatorname{sp}(\mathbf{A})} |\mu \lambda| = |\mu| \max_{\lambda \in \operatorname{sp}(\mathbf{A})} |\lambda| = |\mu| \, \rho(\mathbf{A})$$

• Enfin, soit $(A, B) \in (\mathscr{S}_n(\mathbb{R}))^2$. Utilisons l'expression obtenue à la question 13. Soit $U \in C$. L'inégalité triangulaire donne alors

$$\left|\mathbf{U}^{\top}(\mathbf{A} + \mathbf{B})\mathbf{U}\right| \leqslant \left|\mathbf{U}^{\top}\mathbf{A}\mathbf{U}\right| + \left|\mathbf{U}^{\top}\mathbf{B}\mathbf{U}\right| \leqslant \rho(\mathbf{A}) + \rho(\mathbf{B})$$

Par définition du maximum sur $U \in C$, il vient

$$\rho(A + B) \leq \rho(A) + \rho(B)$$

En conclusion,

L'application ρ définit une norme sur $\mathscr{S}_n(\mathbb{R})$.

II. MATRICE DE COVARIANCE

 $oxed{16}$ À partir de cette question, les indices des lignes et des colonnes des matrices vont de 1 à n de manière plus usuelle.

Par définition, pour tout $(i, j) \in [1; n]^2$,

$$\sigma_{i,j} = \text{cov}(\mathbf{Y}_i, \mathbf{Y}_j) = \text{cov}(\mathbf{Y}_j, \mathbf{Y}_i) = \sigma_{j,i}$$

La matrice $\Sigma_{\mathbf{Y}}$ est symétrique.

donc

De plus, pour tout $(i, j) \in [1; n]^2$,

$$\begin{aligned} \sigma_{i,j} &= \operatorname{cov}(\mathbf{Y}_i, \mathbf{Y}_j) \\ &= \mathbb{E}\left((\mathbf{Y}_i - \mathbb{E}(\mathbf{Y}_i))(\mathbf{Y}_j - \mathbb{E}(\mathbf{Y}_j)) \right) \\ \sigma_{i,j} &= \left(\mathbb{E}\left((\mathbf{Y} - \mathbb{E}(\mathbf{Y}))(\mathbf{Y} - \mathbb{E}(\mathbf{Y}))^\top \right) \right)_{i,j} \end{aligned}$$

Rappelons que si $(U,V) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$ et $(i,j) \in [\![\,1\,;n\,]\!]^2$, $(UV^\top)_{i,j} = U_iV_j$

Finalement,

$$\boxed{\Sigma_{Y} = \mathbb{E}\left((Y - \mathbb{E}(Y))(Y - \mathbb{E}(Y))^{\top}\right)}$$

Soient $U = \begin{pmatrix} u_1 & \dots & u_n \end{pmatrix}^{\top} \in \mathcal{M}_{n,1}(\mathbb{R})$ un vecteur constant et $(i,j) \in [1;n]^2$. Alors le coefficient d'indice (i,j) de la matrice de covariance Σ_{Y+U} est égal à

$$cov(Y_i + u_i, Y_j + u_j) = cov(Y_i, Y_j) + cov(Y_i, u_j) + cov(u_i, Y_j) + cov(u_i, u_j)$$

par bilinéarité de la covariance. En outre, u_i et u_j étant des variables aléatoires constantes, les trois dernières covariances sont nulles. En effet, si X et Y sont deux variables aléatoires et que X est constante, alors $X = \mathbb{E}(X)$, donc

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(\underbrace{X - \mathbb{E}(X)}_{=0})\left(Y - \mathbb{E}(Y)\right)\Big] = 0$$

et cov(Y, X) = cov(X, Y) = 0 par symétrie de la covariance. Finalement,

$$\forall (i,j) \in [1; n]^2$$
 $cov(Y_i + u_i, Y_j + u_j) = cov(Y_i, Y_j)$

soit

Si
$$U \in \mathcal{M}_{n,1}(\mathbb{R})$$
 est un vecteur constant, alors $\Sigma_{Y+U} = \Sigma_{Y}$.

17 Soient $p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{p,n}(\mathbb{R})$. Par définition du vecteur aléatoire Z = MY,

$$\forall i \in [1; p]$$
 $Z_i = \sum_{j=1}^n m_{i,j} Y_j$

Pour tout $i \in [1; p]$, la variable aléatoire Z_i est donc une combinaison linéaire des variables aléatoires Y_1, \ldots, Y_n . Ces dernières admettent une espérance finie d'après l'énoncé, donc la variable Z_i admet également une espérance finie, d'où l'existence de $\mathbb{E}(Z)$. En outre, la linéarité de l'espérance assure que

$$\forall i \in [1; p] \qquad \mathbb{E}(\mathbf{Z}_i) = \sum_{j=1}^n m_{i,j} \mathbb{E}(\mathbf{Y}_j)$$
$$\mathbb{E}(\mathbf{Z}) = \mathbf{M}\mathbb{E}(\mathbf{Y})$$

ce qui s'écrit

Si $p \in \mathbb{N}^*$ et $M \in \mathscr{M}_{p,n}(\mathbb{R})$, la variable aléatoire Z = MY admet une espérance et on a l'égalité $\mathbb{E}(Z) = M\mathbb{E}(Y)$.

De la même manière, $\operatorname{cov}(\mathbf{Y}_i, \mathbf{Y}_j)$ est bien définie pour tout $(i, j) \in [1; n]^2$ puisque $\Sigma_{\mathbf{Y}}$ existe. De ce fait, $\operatorname{cov}(\mathbf{Z}_i, \mathbf{Z}_j)$ existe pour tout $(i, j) \in [1; p]^2$ et vaut par bilinéarité de la covariance

$$\operatorname{cov}(\mathbf{Z}_{i}, \mathbf{Z}_{j}) = \operatorname{cov}\left(\sum_{k=1}^{n} m_{i,k} \mathbf{Y}_{k}, \sum_{\ell=1}^{n} m_{j,\ell} \mathbf{Y}_{\ell}\right)$$
$$= \sum_{k=1}^{n} m_{i,k} \sum_{\ell=1}^{n} m_{j,\ell} \operatorname{cov}(\mathbf{Y}_{k}, \mathbf{Y}_{\ell})$$
$$\operatorname{cov}(\mathbf{Z}_{i}, \mathbf{Z}_{j}) = \sum_{k=1}^{n} \sum_{\ell=1}^{n} m_{i,k} \ \sigma_{k,\ell} \ m_{j,\ell} = (\mathbf{M} \mathbf{\Sigma}_{\mathbf{Y}} \mathbf{M}^{\top})_{i,j}$$

si bien que

$$\Sigma_Z = M \Sigma_Y M^\top$$

Si $p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{p,n}(\mathbb{R})$, la variable aléatoire Z = MY admet une matrice de covariance Σ_Z et $\Sigma_Z = M\Sigma_Y M^\top$.

18 La matrice Σ_{Y} est symétrique réelle d'après la question 16, elle est donc orthodiagonalisable d'après le résultat de la question 1. Avec les notations de l'énoncé, la matrice P est la matrice de passage de la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ à une base orthonormée formée de vecteurs propres de Σ_{Y} . D'après les formules de changement de base, il existe donc une matrice $D = \text{diag}(\lambda_{1}, \ldots, \lambda_{n})$ telle que

$$\Sigma_{\mathbf{Y}} = \mathbf{P} \mathbf{D} \mathbf{P}^{\top}$$

Notons que les réels $\lambda_1, \ldots, \lambda_n$ sont alors les valeurs propres de Σ_Y . Comme $X = P^\top Y$, le résultat de la question 17 assure que la variable X admet une matrice de covariance Σ_X et que

$$\Sigma_{X} = P^{\top} \Sigma_{Y} (P^{\top})^{\top} = P^{\top} \Sigma_{Y} P$$

En réinjectant la valeur de $\Sigma_{\rm Y}$ dans cette égalité, il vient

$$\Sigma_X = P^\top P D P^\top P = D$$

puisque P est une matrice orthogonale. Ainsi,

La matrice
$$\Sigma_{\rm X}$$
 est diagonale.

19 D'après le calcul effectué dans la question précédente, les matrices Σ_Y et Σ_X sont semblables. Elles ont donc les mêmes valeurs propres notées $(\lambda_1, \ldots, \lambda_n)$ qui sont les coefficients diagonaux de Σ_X :

$$\forall i \in [1; n]$$
 $\lambda_i = (\Sigma_X)_{i,i} = cov(X_i, X_i) = V(X_i) \geqslant 0$

Les valeurs propres de $\Sigma_{\rm Y}$ sont toutes positives.

 $\fbox{20}$ D'après ce qui précède, les matrices Σ_Y et Σ_X sont semblables donc leurs traces sont égales. Par définition, la variance totale de X est égale à

$$\mathbb{V}_{\mathrm{T}}(\mathrm{X}) = \sum_{i=1}^{n} \mathbb{V}(\mathrm{X}_{i}) = \mathrm{Tr}\left(\Sigma_{\mathrm{X}}\right) = \mathrm{Tr}\left(\Sigma_{\mathrm{Y}}\right) = \sum_{i=1}^{n} \mathbb{V}(\mathrm{Y}_{i}) = \mathbb{V}_{\mathrm{T}}(\mathrm{Y})$$

Les variances totales de X et de Y sont égales.

On pouvait aussi remarquer que les matrices Σ_Y et Σ_X sont diagonalisables et qu'elles ont les mêmes valeurs propres $(\lambda_1, \ldots, \lambda_n)$. Leur trace est donc égale à la somme de ces valeurs propres :

$$\operatorname{Tr}\left(\Sigma_{\mathbf{X}}\right) = \sum_{i=1}^{n} \lambda_{i} = \operatorname{Tr}\left(\Sigma_{\mathbf{Y}}\right)$$

et on conclut comme ci-dessus.

21 Il suffit de considérer des variables aléatoires discrètes mutuellement indépendantes vérifiant, pour tout $i \in [1; n]$, l'égalité $\mathbb{V}(Z_i) = \lambda_i$. D'après le cours, on sait que de telles variables aléatoires existent. Par construction, on en déduit l'existence d'un vecteur aléatoire $Z = (Z_1 \ldots Z_n)^{\top}$ tel que Σ_Z existe et $\Sigma_Z = D$.

Plusieurs exemples de lois usuelles conviennent, le plus simple étant sans doute la loi de Poisson de paramètre λ_i pour tout $i \in [1; n]$ puisque que l'on sait d'après le cours que la variance d'une telle loi est égale à λ_i .

Il existe une variable aléatoire discrète Z à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$ telle que $\Sigma_{\mathbb{Z}} = \mathbb{D}$.

22 La matrice A est symétrique réelle, elle est donc orthodiagonalisable d'après le résultat de la question 1. Il existe donc une matrice diagonale D et une matrice orthogonale P telles que

$$A = PDP^{\top}$$

D'après le résultat de la question 21, il existe une variable aléatoire discrète Z à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$ telle que $\Sigma_{\mathbb{Z}} = \mathbb{D}$. Posons $\mathbb{Y} = \mathbb{P}\mathbb{Z}$. Alors, d'après le résultat de la question 17, la matrice de covariance $\Sigma_{\mathbb{Y}}$ de \mathbb{Y} existe et

$$\Sigma_{\mathbf{Y}} = \mathbf{P}\Sigma_{\mathbf{Z}}\mathbf{P}^{\top} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top} = \mathbf{A}$$

Il existe une variable aléatoire discrète Y
à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$ telle que $\Sigma_{\mathbf{Y}} = \mathbf{A}$.

23 Comme $X = U^{T}Y$, utilisons la question 17 en posant $M = U^{T}$. Alors X admet une matrice de covariance Σ_{X} vérifiant $\Sigma_{X} = U^{T}\Sigma_{Y}U$. En outre, comme X est une variable aléatoire réelle, ceci prouve l'existence de la variance de X puisque $V(X) = \Sigma_{X}$. Finalement,

La variable aléatoire X admet une variance, qui vaut $\mathbb{V}(X) = U^{\top} \Sigma_Y U$.

En toute rigueur, $\Sigma_X = U^{\top} \Sigma_Y U$ est une matrice carrée de taille 1 et $\mathbb{V}(X)$ est un réel. On se permet d'identifier ces valeurs comme dans l'énoncé.

24 Si r = n, alors Im $\Sigma_{Y} = \mathcal{M}_{n,1}(\mathbb{R})$. Comme la variable aléatoire Y est à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$, l'événement $\{Y - \mathbb{E}(Y) \in \text{Im } \Sigma_{Y}\}$ est l'événement certain. Ainsi,

Si
$$r = n$$
, alors $\mathbb{P}(Y - \mathbb{E}(Y) \in \text{Im } \Sigma_Y) = 1$.

25 Soient $U \in \text{Ker } \Sigma_Y \text{ et } V \in \text{Im } \Sigma_Y.$ Il existe $W \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $V = \Sigma_Y W.$ Par définition du produit scalaire,

$$(\mathbf{U} \mid \mathbf{V}) = \mathbf{U}^{\top} \mathbf{V} = \mathbf{U}^{\top} \boldsymbol{\Sigma}_{\mathbf{Y}} \mathbf{W} = (\boldsymbol{\Sigma}_{\mathbf{Y}}^{\top} \mathbf{U})^{\top} \mathbf{W}$$

Comme $\Sigma_{\rm Y}$ est symétrique, ceci entraı̂ne que

$$(\mathbf{U} \mid \mathbf{V}) = (\Sigma_{\mathbf{Y}} \mathbf{U})^{\top} \mathbf{W} = 0$$

puisque $\Sigma_Y U = 0$. Par suite, les espaces Ker Σ_Y et Im Σ_Y sont orthogonaux. On en déduit directement que Ker $\Sigma_Y \cap \operatorname{Im} \Sigma_Y = \{0\}$ (le vecteur nul étant le seul vecteur orthogonal à lui-même). Ces espaces sont donc en somme directe. D'après le théorème du rang, dim Ker Σ_Y + dim Im Σ_Y = dim $\mathcal{M}_{n,1}(\mathbb{R})$, donc ils sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$. Par conséquent,

Le noyau et l'image de Σ_Y sont supplémentaires orthogonaux dans $\mathcal{M}_{n,1}(\mathbb{R})$.

[26] Soit $j \in [1; d]$. Appliquons le résultat de la question 23 au vecteur $U = V_j$ et à la variable aléatoire $Y - \mathbb{E}(Y)$:

$$\mathbb{V} \left(\mathbf{V}_{j}^{\top} \left(\mathbf{Y} - \mathbb{E}(\mathbf{Y}) \right) \right) = \mathbf{V}_{j}^{\top} \boldsymbol{\Sigma}_{\mathbf{Y} - \mathbb{E}(\mathbf{Y})} \mathbf{V}_{j}$$

Le vecteur $\mathbb{E}(Y)$ étant constant, le résultat de la question 16 donne alors

$$\Sigma_{Y-\mathbb{E}(Y)} = \Sigma_Y$$

d'où

$$\mathbb{V}\left(\mathbf{V}_{j}^{\top}\left(\mathbf{Y} - \mathbb{E}(\mathbf{Y})\right)\right) = \mathbf{V}_{j}^{\top} \boldsymbol{\Sigma}_{\mathbf{Y}} \mathbf{V}_{j}$$

Enfin, comme $V_j \in \text{Ker } \Sigma_Y$, on a $\Sigma_Y V_j = 0$. Finalement,

$$\boxed{ \forall j \in [\![\, 1 \, ; d \,]\!] \qquad \mathbb{V} \ \left(\mathbf{V}_j^{\, \top} \left(\mathbf{Y} - \mathbb{E}(\mathbf{Y}) \right) \right) = 0 }$$

27 Soit $j \in [1;d]$. D'après le résultat de la question 26, la variance de la variable aléatoire $V_j^\top(Y - \mathbb{E}(Y))$ est nulle. Cette variable est à valeurs dans \mathbb{R} , donc d'après le cours, cette variable est presque sûrement constante égale à son espérance. Notons $V_j = \begin{pmatrix} v_{j,1} & \dots & v_{j,n} \end{pmatrix}^\top$ et calculons l'espérance de la variable $V_j^\top(Y - \mathbb{E}(Y))$, en utilisant la linéarité de l'espérance:

$$\mathbb{E}\left(\mathbf{V}_{j}^{\top}(\mathbf{Y} - \mathbb{E}(\mathbf{Y}))\right) = \mathbb{E}\left(\sum_{i=1}^{n} v_{j,i}(\mathbf{Y}_{i} - \mathbb{E}(\mathbf{Y}_{i}))\right) = \sum_{i=1}^{n} v_{j,i}\mathbb{E}(\mathbf{Y}_{i} - \mathbb{E}(\mathbf{Y}_{i})) = 0$$

On en déduit que ${\mathbf V_j}^\top({\mathbf Y} - \mathbb{E}({\mathbf Y}))$ est presque sûrement nulle, ce qui s'écrit

$$\forall j \in [1; d] \qquad \mathbb{P} \ \left(\mathbf{V}_j^{\top} \left(\mathbf{Y} - \mathbb{E}(\mathbf{Y}) \right) = 0 \right) = 1$$

28 En utilisant les notations de l'énoncé, le résultat de la question 25 implique que

$$(Y - \mathbb{E}(Y) \in \text{Im } \Sigma_Y) = (Y - \mathbb{E}(Y) \in (\text{Ker } \Sigma_Y)^{\perp})$$

La famille (V_1, \ldots, V_d) est une base orthonormée de Ker $\Sigma_Y = \text{Vect}(V_1, \ldots, V_d)$. Rappelons qu'un vecteur est orthogonal à Ker Σ_Y si, et seulement si, il est orthogonal à chacun des vecteurs de cette base, ce qui s'écrit

$$\operatorname{Im} \, \Sigma_{\mathbf{Y}} = \operatorname{Ker} \, \Sigma_{\mathbf{Y}}^{\perp} = \bigcap_{j=1}^{d} {\mathbf{V}_{j}}^{\perp}$$

On en déduit que

$$(\mathbf{Y} - \mathbb{E}(\mathbf{Y}) \in \text{Im } \Sigma_{\mathbf{Y}}) = \bigcap_{j=1}^{d} \left(\mathbf{V}_{j}^{\top} \left(\mathbf{Y} - \mathbb{E}(\mathbf{Y}) \right) = 0 \right)$$

Attention à ne pas confondre les deux notations d'orthogonal ${\mathbf V_j}^\perp$ (qui est un sous-espace vectoriel) et de transposée ${\mathbf V_j}^\top$ (qui est un vecteur ligne).

D'après le résultat de la question 27, la probabilité de chaque événement de cette intersection est égale à 1. D'après le cours, une intersection d'événements presque sûrs est presque sûre. Par conséquent,

Si
$$r < n$$
, alors $\mathbb{P}(Y - \mathbb{E}(Y) \in \text{Im } \Sigma_Y) = 1$.

Finalement, au vu du résultat de la question 24, on a dans tous les cas

$$\mathbb{P}(Y - \mathbb{E}(Y) \in \operatorname{Im} \Sigma_Y) = 1$$

Maximisation de la variance

29 La matrice A_2 est diagonale et tous ses coefficients diagonaux (donc ses valeurs propres) sont positifs. En appliquant la question 21,

Il existe un vecteur aléatoire dont \mathbf{A}_2 est la matrice de covariance.

30 Considérons une variable aléatoire Y à valeurs dans $\mathcal{M}_{3,1}(\mathbb{R})$ telle que $\Sigma_{Y} = A_{2}$. Soit $U \in \mathcal{M}_{3,1}(\mathbb{R})$. D'après le résultat de la question 23,

$$q_{\mathbf{Y}}(\mathbf{U}) = \mathbb{V}(\mathbf{U}^{\top} \ \mathbf{Y}) = \mathbf{U}^{\top} \boldsymbol{\Sigma}_{\mathbf{Y}} \mathbf{U} = \mathbf{U}^{\top} \ \mathbf{A}_{2} \mathbf{U}$$

Comme la matrice A₂ est symétrique et que ses valeurs propres 9, 5 et 4 sont positives, le résultat de la question 14 assure alors que

$$\max_{\mathbf{U} \in \mathbf{C}} \mathbf{U}^{\top} \mathbf{A}_2 \mathbf{U} = \rho(\mathbf{A}_2) = 9$$

Si une variable aléatoire Y vérifie $\Sigma_Y = A_2$, alors $\max_{U \in C} q_Y(U) = \rho(A_2) = 9$.

31 Comme la matrice $\Sigma_{\rm Y}$ est symétrique et que ses valeurs propres sont positives d'après les questions 16 et 19, le résultat de la question 23 assure que

$$\forall \mathbf{U} \in \mathbf{C}$$
 $q_{\mathbf{Y}}(\mathbf{U}) = \mathbb{V}(\mathbf{U}^{\top}\mathbf{Y}) = \mathbf{U}^{\top}\Sigma_{\mathbf{Y}}\mathbf{U}$

D'après le résultat de la question 14, la fonction q_Y admet un maximum sur C, égal à $\rho(\Sigma_{\rm Y}) = \max({\rm sp}(\Sigma_{\rm Y}))$. Par suite,

La fonction q_Y admet un maximum sur C, égal à max $(sp(\Sigma_Y))$.

Notons λ_0 la plus grande valeur propre de Σ_Y et U un vecteur propre associé. En notant $U_0 = U/\|U\|$, on a $U_0 \in C$ et U_0 est également un vecteur propre associé à λ_0 . Le calcul effectué à la question 12 montre alors que

$$q_{\mathbf{Y}}(\mathbf{U}_0) = \mathbf{U}_0^{\top} \mathbf{\Sigma}_{\mathbf{Y}} \mathbf{U}_0 = \lambda_0 = \max\left(\operatorname{sp}\left(\mathbf{\Sigma}_{\mathbf{Y}}\right)\right)$$

En prenant $U_0 \in C$ un vecteur propre de Σ_Y associé à sa plus grande valeur propre λ_0 ,

$$\max_{U \in C} \, \mathbb{V}(U^\top Y) = \mathbb{V}({U_0}^\top Y)$$

32 Soit $(i, j) \in [1; n]^2$ avec $i \neq j$. Par définition,

soit

$$\sigma_{i,j} = \operatorname{cov}(\mathbf{Y}_i, \mathbf{Y}_j) = \mathbb{E}\left[(\mathbf{Y}_i - \mathbb{E}(\mathbf{Y}_i))(\mathbf{Y}_j - \mathbb{E}(\mathbf{Y}_j)) \right]$$

Or, d'après le cours, quelles que soient les variables aléatoires X et Y possédant une variance, on a

$$\mathbb{E}(X\,Y)^2\leqslant \mathbb{E}(X^2)\,\mathbb{E}(Y^2)$$

Appliquons cette inégalité à $X = Y_i - \mathbb{E}(Y_i)$ et $Y = Y_j - \mathbb{E}(Y_j)$, qui possèdent bien une variance comme Y_i et Y_i . Il vient

$$\begin{split} \mathbb{E}\left[(\mathbf{Y}_i - \mathbb{E}(\mathbf{Y}_i))(\mathbf{Y}_j - \mathbb{E}(\mathbf{Y}_j))\right]^2 &\leqslant \mathbb{E}(\mathbf{Y}_i - \mathbb{E}(\mathbf{Y}_i))^2 \, \mathbb{E}(\mathbf{Y}_j - \mathbb{E}(\mathbf{Y}_j))^2 \\ \text{soit} & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

d'où $\gamma^2 \leqslant 1$

puisque $\sigma > 0$. Comme $\gamma > 0$, il vient

$$\gamma \leqslant 1$$

En outre, en notant I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$, on a par construction

$$\Sigma_{\rm Y} = \sigma^2 \gamma J + \sigma^2 (1 - \gamma) I_n$$

33 La matrice J est symétrique réelle, donc elle est diagonalisable. Puisque son rang est égal à 1 et que $n \ge 2$, elle admet 0 pour valeur propre et le sous-espace propre associé est de dimension n-1 d'après le théorème du rang. Comme sa trace est égale à n et qu'elle est diagonalisable, la somme de ses valeurs propres est égale à n. Ainsi, la deuxième valeur propre est égale à n et le sous-espace propre associé est de dimension 1. Puisque la somme des colonnes de J vaut $\begin{pmatrix} n & \dots & n \end{pmatrix}^{\top}$, on en déduit que le vecteur $V = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^{\top}$ est un vecteur propre associé à la valeur propre n. Finalement,

Les valeurs propres de J sont 0 et n et les sous-espaces propres associés sont respectivement de dimensions n-1 et 1. Le vecteur $V = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^{\mathsf{T}}$ est un vecteur propre associé à la valeur propre n.

Dans le cas où une matrice J est de rang 1, la base du sous-espace propre associé à la valeur propre non nulle est également une base de Im J, c'est pourquoi l'on peut prendre une colonne de J comme vecteur propre.

34 D'après le résultat de la question 31, le maximum de la variance de Z existe, il est égal à la plus grande valeur propre de $\Sigma_{\rm Y}$ et il est atteint pour ${\rm U}_0 \in {\rm C}$ vecteur propre associé. Or, d'après le résultat de la question 32,

$$\Sigma_{\rm Y} = \sigma^2 \gamma {\rm J} + \sigma^2 (1 - \gamma) {\rm I}_n$$

Comme les vecteurs propres de J sont évidemment des vecteurs propres de I_n , alors les matrices J et I_n admettent une base commune de vecteurs propres. Ce sont des vecteurs propres de toute combinaison linéaire de J et de I_n . Par suite, d'après l'étude réalisée à la question 33, une base de vecteurs propres de $\Sigma_Y = \sigma^2 \gamma J + \sigma^2 (1-\gamma) I_n$ est constituée d'une base de Ker J (de dimension n-1) et du vecteur $V = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^\top$. Pour déterminer les valeurs propres de Σ_Y ,

• Si $U \in \text{Ker J}$, alors

$$\Sigma_{\mathbf{V}}\mathbf{U} = \sigma^2 \gamma \mathbf{J}\mathbf{U} + \sigma^2 (1 - \gamma)\mathbf{U} = \sigma^2 (1 - \gamma)\mathbf{U}$$

donc $\sigma^2(1-\gamma)$ est valeur propre de Σ_Y de multiplicité n-1.

• Comme $V = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^{\top}$ est un vecteur propre de J associé à la valeur propre n, alors

$$\Sigma_{\mathbf{Y}}\mathbf{V} = \sigma^2\gamma\mathbf{J}\mathbf{V} + \sigma^2(1-\gamma)\mathbf{V} = \sigma^2\gamma n\mathbf{V} + \sigma^2(1-\gamma)\mathbf{V} = \sigma^2(1+(n-1)\gamma)\mathbf{V}$$

donc $\sigma^2(1+(n-1)\gamma)$ est valeur propre de Σ_Y . Sa multiplicité vaut 1 puisque l'hypothèse $n \ge 2$ implique que $\sigma^2(1+(n-1)\gamma) > \sigma^2(1-\gamma)$.

On pouvait également déterminer les valeurs et vecteurs propres de Σ_Y de la façon suivante. Soit λ une valeur propre de Σ_Y et $U \in C$ un vecteur propre associé. Alors, d'une part, $\Sigma_Y U = \lambda U$ et, d'autre part,

$$\begin{split} \Sigma_Y U &= \sigma^2 \gamma J U + \sigma^2 (1-\gamma) U \\ \text{d'où} & \lambda U &= \sigma^2 \gamma J U + \sigma^2 (1-\gamma) U \\ \text{puis} & J U &= \frac{\lambda - \sigma^2 (1-\gamma)}{\sigma^2 \gamma} U & \text{car } \sigma > 0 \text{ et } \gamma > 0 \end{split}$$

D'après l'étude réalisée à la question 33, il vient

$$\frac{\lambda - \sigma^2(1 - \gamma)}{\sigma^2 \gamma} \in \operatorname{sp}(J) = \{0, n\}$$
 Or,
$$\frac{\lambda - \sigma^2(1 - \gamma)}{\sigma^2 \gamma} = 0 \iff \lambda = \sigma^2(1 - \gamma)$$
 et
$$\frac{\lambda - \sigma^2(1 - \gamma)}{\sigma^2 \gamma} = n \iff \lambda = \sigma^2 + (n - 1)\sigma^2 \gamma$$
 donc
$$\lambda \in \{\sigma^2(1 - \gamma), \sigma^2 + (n - 1)\sigma^2 \gamma\}$$

Réciproquement, soit U un vecteur non nul de Ker (J) (il existe car la dimension de cet espace vaut $n-1\geqslant 1$ d'après la question 33). Alors

$$\Sigma_{\rm Y} {\rm U} = \sigma^2 \gamma {\rm J} {\rm U} + \sigma^2 (1 - \gamma) {\rm I}_n {\rm U} = \sigma^2 (1 - \gamma) {\rm U}$$

donc $\sigma^2(1-\gamma)$ est une valeur propre de Σ_Y . De plus, en notant V le vecteur déterminé à la question 33, c'est un vecteur propre (donc non nul) pour J associé à la valeur propre n, et

$$\Sigma_{\rm Y} {\rm V} = \sigma^2 \gamma {\rm JV} + \sigma^2 (1 - \gamma) {\rm I}_n {\rm V} = \sigma^2 \gamma n {\rm V} + \sigma^2 (1 - \gamma) {\rm V} = \sigma^2 (1 + (n - 1)\gamma) {\rm V}$$

donc $\sigma^2 (1 + (n - 1)\gamma)$ est également une valeur propre de $\Sigma_{\rm Y}$. Par suite,
$${\rm sp}(\Sigma_{\rm Y}) = \{\sigma^2 (1 - \gamma), \sigma^2 (1 + (n - 1)\gamma)\}$$

Pour appliquer la question 31, notons que la plus grande valeur propre de $\Sigma_{\rm Y}$ est égale à $\sigma^2(1+(n-1)\gamma)$ et qu'un vecteur propre associé est le vecteur ${\bf V}=\begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^{\top}$ de norme $\|{\bf V}\|=\sqrt{n}$. Par conséquent,

La variance de
$$Z = U_0^{\top} Y$$
 est maximale pour $U_0 = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^{\top}$.

35 D'après le résultat de la question 31 et le calcul effectué à la question 34, on a, pour la valeur de U_0 déterminée à la question 34,

$$\mathbb{V}(\mathbf{Z}) = \rho(\Sigma_{\mathbf{Y}}) = \sigma^2 + (n-1)\sigma^2\gamma$$
 En outre,
$$\mathbb{V}_{\mathbf{T}}(\mathbf{Y}) = \sum_{i=1}^n \mathbb{V}(\mathbf{Y}_i) = \operatorname{Tr} \Sigma_{\mathbf{Y}} = n\sigma^2$$
 donc
$$\frac{\mathbb{V}(\mathbf{Z})}{\mathbb{V}_{\mathbf{T}}(\mathbf{Y})} = \frac{\sigma^2 + (n-1)\sigma^2\gamma}{n\sigma^2} = \frac{1 + (n-1)\gamma}{n}$$

Comme la variance peut être interprétée comme la quantité d'information contenue dans une variable aléatoire, ce quotient représente la proportion d'information conservée en ne considérant que la première composante principale U_0 .

36 Remarquons tout d'abord que U_0^{\perp} est un sous-espace vectoriel de dimension non nulle de l'espace de dimension finie $\mathcal{M}_{n,1}(\mathbb{R})$, il est donc fermé. Comme C est également fermé, que $C' = C \cap U_0^{\perp}$ et que l'intersection de deux fermés est un fermé, on en déduit que l'espace C' est une partie fermée de $\mathcal{M}_{n,1}(\mathbb{R})$.

En outre, la partie $C' \subset C$ est également bornée dans $\mathcal{M}_{n,1}(\mathbb{R})$ puisque C l'est. Puisque l'orthogonal de U_0 est de dimension supérieure ou égale à 1, il contient donc des vecteurs unitaires, ce qui implique que C' est non vide. Comme l'application q_Y est continue, elle est donc bornée sur C' et elle atteint ses bornes sur C'.

L'application $q_{\rm Y}$ admet un maximum sur C'.

37 Comme la matrice Σ_Y est symétrique, la question 1 assure qu'elle est orthodiagonalisable. Notons (V_1, \ldots, V_n) une base orthonormée de vecteurs propres de Σ_Y , associés aux valeurs propres $(\lambda_1, \ldots, \lambda_n)$. D'après le résultat de la question 31, on peut prendre $V_1 = U_0$, qui est un vecteur propre associé à la plus grande valeur propre de Σ_Y , ici λ_1 .

Soit $U \in C'$. Comme $V_1 = U_0$ et que $C' = C \cap U_0^{\perp}$, on a $C' \subset Vect(V_2, \ldots, V_n)$, donc on peut écrire

$$U = \sum_{i=2}^{n} u_i V_i$$

avec $u_i \in \mathbb{R}$ pour tout $i \in [2; n]$. Ainsi

$$q_{\mathbf{Y}}(\mathbf{U}) = \mathbb{V}(\mathbf{U}^{\top}\mathbf{Y}) = \mathbf{U}^{\top}\Sigma_{\mathbf{Y}}\mathbf{U} \qquad (\text{question 23})$$

$$= \left(\sum_{i=2}^{n} u_{i} \mathbf{V}_{i}\right)^{\top} \Sigma_{\mathbf{Y}} \left(\sum_{j=2}^{n} u_{j} \mathbf{V}_{j}\right)$$

$$= \sum_{i=2}^{n} u_{i} \mathbf{V}_{i}^{\top} \sum_{j=2}^{n} u_{j} (\Sigma_{\mathbf{Y}} \mathbf{V}_{j})$$

$$= \sum_{i=2}^{n} u_{i} \mathbf{V}_{i}^{\top} \sum_{j=2}^{n} u_{j} (\lambda_{j} \mathbf{V}_{j})$$

$$= \sum_{i=2}^{n} \sum_{j=2}^{n} \lambda_{j} u_{i} u_{j} (\mathbf{V}_{i}^{\top} \mathbf{V}_{j})$$

$$q_{\mathbf{Y}}(\mathbf{U}) = \sum_{i=2}^{n} \lambda_{i} u_{i}^{2}$$

d'où

puisque la base (V_1, \ldots, V_n) est orthogonale. Il vient

$$q_{\mathbf{Y}}(\mathbf{U}) \leqslant \lambda_2 \underbrace{\sum_{i=2}^{n} u_i^2}_{\|\mathbf{U}\|^2 = 1} = \lambda_2$$

puisque le vecteur U est unitaire et que Vect (V_2, \ldots, V_n) est une famille orthonormée. En outre, la valeur λ_2 est atteinte par $q_Y(U)$ pour $U = V_2$. Par suite,

Le maximum de q_Y sur C' est égal à la deuxième plus grande valeur propre λ_2 de Σ_Y et il est atteint en $U_1 \in C'$ vecteur propre unitaire de Σ_Y associé à λ_2 .

Remarquons que l'on applique simplement dans cette question les résultats des parties précédentes à l'endormorphisme induit par Σ_Y sur ${U_0}^{\perp}$.

 $\boxed{\mathbf{38}}$ D'après le cours, comme $\mathbf{U_0}^{\mathsf{T}}\mathbf{Y}$ et $\mathbf{U_1}^{\mathsf{T}}\mathbf{Y}$ sont des variables aléatoires réelles,

$$\operatorname{cov}(\boldsymbol{U_0}^{\top}\boldsymbol{Y}, \boldsymbol{U_1}^{\top}\boldsymbol{Y}) = \frac{1}{4} \left(\mathbb{V}((\boldsymbol{U_0} + \boldsymbol{U_1})^{\top}\boldsymbol{Y}) - \mathbb{V}((\boldsymbol{U_0} - \boldsymbol{U_1})^{\top}\boldsymbol{Y}) \right)$$

On peut le redémontrer facilement par le calcul suivant :

$$\begin{split} \mathbb{V}(\mathbf{U_0}^{\top}\mathbf{Y} + \mathbf{U_1}^{\top}\mathbf{Y}) &= \mathbb{V}(\mathbf{U_0}^{\top}\mathbf{Y}) + \mathbb{V}(\mathbf{U_1}^{\top}\mathbf{Y}) + 2\operatorname{cov}(\mathbf{U_0}^{\top}\mathbf{Y}, \mathbf{U_1}^{\top}\mathbf{Y}) \\ \text{et} & \mathbb{V}(\mathbf{U_0}^{\top}\mathbf{Y} - \mathbf{U_1}^{\top}\mathbf{Y}) = \mathbb{V}(\mathbf{U_0}^{\top}\mathbf{Y}) + \mathbb{V}(\mathbf{U_1}^{\top}\mathbf{Y}) - 2\operatorname{cov}(\mathbf{U_0}^{\top}\mathbf{Y}, \mathbf{U_1}^{\top}\mathbf{Y}) \\ \text{donc } \operatorname{cov}(\mathbf{U_0}^{\top}\mathbf{Y}, \mathbf{U_1}^{\top}\mathbf{Y}) &= \frac{1}{4}\left(\mathbb{V}(\mathbf{U_0}^{\top}\mathbf{Y} + \mathbf{U_1}^{\top}\mathbf{Y}) - \mathbb{V}(\mathbf{U_0}^{\top}\mathbf{Y} - \mathbf{U_1}^{\top}\mathbf{Y})\right) \\ &= \frac{1}{4}\left(\mathbb{V}((\mathbf{U_0} + \mathbf{U_1})^{\top}\mathbf{Y}) - \mathbb{V}((\mathbf{U_0} - \mathbf{U_1})^{\top}\mathbf{Y})\right) \end{split}$$

Le résultat de la question 23 assure que

$$\begin{cases} \mathbb{V}((U_0 + U_1)^{\top} Y) = (U_0 + U_1)^{\top} \Sigma_Y (U_0 + U_1) \\ \mathbb{V}((U_0 - U_1)^{\top} Y) = (U_0 - U_1)^{\top} \Sigma_Y (U_0 - U_1) \end{cases}$$

En outre, d'après les questions 31 et 37,

$$\begin{cases} \Sigma_{Y}U_{0} = \lambda_{1}U_{0} \\ \Sigma_{Y}U_{1} = \lambda_{2}U_{1} \\ {U_{0}}^{\top}U_{0} = {U_{1}}^{\top}U_{1} = 1 \\ {U_{0}}^{\top}U_{1} = {U_{1}}^{\top}U_{0} = 0 \end{cases}$$

Il vient
$$\mathbb{V}((\mathbf{U}_0 + \mathbf{U}_1)^{\top} \mathbf{Y}) = (\mathbf{U}_0 + \mathbf{U}_1)^{\top} \Sigma_{\mathbf{Y}}(\mathbf{U}_0 + \mathbf{U}_1)$$

 $= (\mathbf{U}_0 + \mathbf{U}_1)^{\top} (\lambda_1 \mathbf{U}_0 + \lambda_2 \mathbf{U}_1)$
 $= \lambda_1 \mathbf{U}_0^{\top} \mathbf{U}_0 + \lambda_1 \mathbf{U}_1^{\top} \mathbf{U}_0 + \lambda_2 \mathbf{U}_0^{\top} \mathbf{U}_1 + \lambda_2 \mathbf{U}_1^{\top} \mathbf{U}_1$

$$\mathbb{V}((\mathbf{U}_{0} + \mathbf{U}_{1})^{\top}\mathbf{Y}) = \lambda_{1} + \lambda_{2}$$
et
$$\mathbb{V}((\mathbf{U}_{0} - \mathbf{U}_{1})^{\top}\mathbf{Y}) = (\mathbf{U}_{0} - \mathbf{U}_{1})^{\top}\Sigma_{\mathbf{Y}}(\mathbf{U}_{0} + \mathbf{U}_{1})$$

$$= (\mathbf{U}_{0} - \mathbf{U}_{1})^{\top}(\lambda_{1}\mathbf{U}_{0} - \lambda_{2}\mathbf{U}_{1})$$

$$= \lambda_{1}\mathbf{U}_{0}^{\top}\mathbf{U}_{0} - \lambda_{1}\mathbf{U}_{1}^{\top}\mathbf{U}_{0} - \lambda_{2}\mathbf{U}_{0}^{\top}\mathbf{U}_{1} + \lambda_{2}\mathbf{U}_{1}^{\top}\mathbf{U}_{1}$$

$$\mathbb{V}((\mathbf{U}_0 - \mathbf{U}_1)^{\top} \mathbf{Y}) = \lambda_1 + \lambda_2$$

Finalement,

$$cov(U_0^\top Y, U_1^\top Y) = \frac{1}{4} \left(\mathbb{V}((U_0 + U_1)^\top Y) - \mathbb{V}((U_0 - U_1)^\top Y) \right)$$
$$= \frac{1}{4} \left(\lambda_1 + \lambda_2 - (\lambda_1 + \lambda_2) \right)$$
$$cov(U_0^\top Y, U_1^\top Y) = 0$$

d'où

Ceci signifie que les deux premières composantes principales sont décorrélées entre elles.