COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Notations

L'objectif du problème est l'étude de modèles matriciels de dynamique de populations. Nous l'illustrerons avec des populations structurées en âge.

Soit $d \in \mathbb{N}^*$. Pour des vecteurs $x = (x_1, \dots, x_d), y = (y_1, \dots, y_d)$ de \mathbb{R}^d (qui pourront être des vecteurs lignes ou colonnes dans la suite), on note

$$||x||_1 = \sum_{i=1}^d |x_i|, \quad ||x||_2 = \sqrt{\sum_{i=1}^d x_i^2}$$

les normes 1 et 2 usuelles et

$$\langle x, y \rangle = \sum_{i=1}^{d} x_i y_i$$

le produit scalaire canonique sur \mathbb{R}^d .

On note \mathbb{R}_+ l'ensemble des nombres réels positifs ou nuls et \mathbb{R}_+^* l'ensemble des nombres réels strictement positifs.

Si m et n sont deux éléments de \mathbb{N}^* et si A est une partie de \mathbb{R} , on note $\mathcal{M}_{m,n}(A)$ l'ensemble des matrices à m lignes et n colonnes et dont les coefficients sont dans A. Lorsque m=n, on note $\mathcal{M}_m(A)$ l'ensemble $\mathcal{M}_{m,m}(A)$.

Les parties 1, 2, 3 et 4 sont dépendantes. Dans l'ensemble du sujet, pour répondre à une question, on pourra admettre les résultats des questions précédentes.

Première partie

Soit \mathscr{P} l'ensemble des vecteurs lignes de taille d à coefficients positifs dont la somme des coordonnées vaut 1:

$$\mathscr{P} = \left\{ u \in \mathscr{M}_{1,d}(\mathbb{R}_+) : \sum_{j=1}^d u_j = 1 \right\}.$$

On considère une matrice carrée $P \in \mathcal{M}_d(\mathbb{R}_+)$ telle que pour tout $i \in \{1, \ldots, d\}$,

$$\sum_{j=1}^{d} P_{i,j} = 1.$$

On suppose de plus qu'il existe $\nu \in \mathscr{P}$ et c > 0 tels que pour tous $i, j \in \{1, \ldots, d\}$,

$$P_{i,j} \geqslant c\nu_j$$
.

1. Justifier que $c \leq 1$.

- **2.** Montrer que si $u \in \mathcal{P}$, alors $uP \in \mathcal{P}$.
- **3.** Montrer que pour tous $u, v \in \mathcal{P}$,

$$||uP - vP||_1 \le (1 - c)||u - v||_1.$$

(On pourra introduire R = P - cN où $N = (n_{i,j})_{1 \le i,j \le d}$ avec $n_{i,j} = \nu_j$ pour tous $1 \le i,j \le d$.)

4. Soit $(x_n)_n \in \mathscr{P}^{\mathbb{N}}$ définie par récurrence par $x_0 \in \mathscr{P}$ et

$$x_{n+1} = x_n P.$$

Montrer que la série $\sum_{n\geq 0} ||x_{n+1} - x_n||_1$ est convergente.

- **5.** En déduire que $(x_n)_n$ converge vers un élément de \mathscr{P} .
- 6. Montrer qu'il existe un unique élément μ de \mathscr{P} tel que $\mu P = \mu$.
- 7. Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in \mathscr{P}$,

$$||xP^n - \mu||_1 \le 2(1-c)^n$$
.

Deuxième partie

Soit $M \in \mathcal{M}_d(\mathbb{R}_+)$. On suppose que la matrice M possède une valeur propre $\lambda > 0$ et qu'il existe $h \in \mathcal{M}_{d,1}(\mathbb{R}_+^*)$ vecteur colonne tel que :

$$Mh = \lambda h$$
.

On suppose aussi qu'il existe $\nu \in \mathscr{P}$ et c > 0 tels que pour tous $i, j \in \{1, \ldots, d\}$,

$$M_{i,j} \geqslant c\nu_i$$
.

On introduit la matrice $P \in \mathcal{M}_d(\mathbb{R}_+)$ définie pour $1 \leq i, j \leq d$ par

$$P_{i,j} = \frac{M_{i,j}h_j}{\lambda h_i}$$

- 8. Justifier que pour tout $i \in \{1, \dots, d\}, \sum_{j=1}^{d} P_{i,j} = 1.$
- 9. Soit $n \ge 1$. Donner une expression des coefficients de P^n en fonction des coefficients de M^n , h et λ .
- **10a.** Montrer qu'il existe $\mu \in \mathscr{P}$, C > 0 et $\gamma \in [0, 1[$, tels que $\mu P = \mu$ et pour tout $n \geqslant 0$,

$$\sum_{i=1}^{d} \sum_{j=1}^{d} \left| \lambda^{-n} (M^n)_{i,j} - h_i \frac{\mu_j}{h_j} \right| \leqslant C \gamma^n.$$

- **10b.** Prouver qu'il existe un unique $\pi \in \mathscr{P}$ tel que $\pi M = \lambda \pi$.
- 11. Considérons $(c_0, \ldots, c_{d-1}) \in (\mathbb{R}_+^*)^d$ et P le polynôme

$$X^{d} - c_{d-1}X^{d-1} - \dots - c_{1}X - c_{0}$$
.

Montrer que le polynôme P possède une unique racine dans \mathbb{R}_{+}^{*} .

Considérons $a=(a_1,\ldots,a_d)\in(\mathbb{R}_+^*)^d$ et $b=(b_1,\ldots,b_{d-1})\in(\mathbb{R}_+^*)^{d-1}$ et introduisons la matrice

$$M = \begin{pmatrix} a_1 & b_1 & 0 & \dots & 0 & 0 \\ a_2 & 0 & b_2 & \dots & 0 & 0 \\ a_3 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{d-1} & 0 & 0 & \dots & 0 & b_{d-1} \\ a_d & 0 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

12a. Justifier qu'il existe un unique couple $(\lambda, \pi) \in \mathbb{R}_+^* \times \mathscr{P}$ tel que $\pi M = \lambda \pi$. On exprimera explicitement π en fonction de a et b et λ .

12b. Montrer qu'il existe un unique $h \in \mathcal{M}_{d,1}(\mathbb{R}_+^*)$ tel que $\langle \pi, h \rangle = 1$ et

$$Mh = \lambda h$$
.

12c. En déduire que la suite $(\lambda^{-n}M^n)_{n\geqslant 1}$ converge quand n tend vers l'infini et donner une expression de sa limite en fonction de h et μ .