1 _

_ (*)

Soit α,β deux complexes. Déterminer le polynôme caractéristique des matrices

On traite dans un premier temps le cas de la matrice B. Il suffit de remarquer que les n premiers vecteurs suivants sont vecteurs propres associés à la valeur propre $\alpha + \beta$, tandis que les n suivants sont vecteurs propres associés à la valeur propre $\alpha - \beta$.

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{pmatrix}, e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix}, \dots, e_{n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$e_{n+1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ -1 \end{pmatrix}, e_{n+2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \dots, e_{2n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ -1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

On en déduit que $\alpha + \beta$ et $\alpha - \beta$ sont valeurs propres avec des espaces propres associés de dimension au moins n. Leur somme directe est donc de dimension au moins 2n donc égale à \mathbb{C}^{2n} . La matrice est donc diagonalisable et par conséquent,

Le polynôme caractéristique de B est égal à $(X - \alpha - \beta)^n (X - \alpha + \beta)^n$.

Le cas de la matrice A se traite de la même manière : il suffit simplement de constater que le (n+1)-ième vecteur de la base canonique de \mathbb{C}^{2n+1} est également vecteur propre associé à $\alpha+\beta$, ce qui fait que l'espace propre associé est cette fois de dimension n+1. Par suite,

Le polynôme caractéristique de A est égal à $(X - \alpha - \beta)^{n+1}(X - \alpha + \beta)^n$.

2

(**)

Déterminer les valeurs propres et les vecteurs propres de la matrice suivante :

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ 2 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ n & 0 & \cdots & 0 \end{pmatrix}$$

Notons A cette matrice. Il est clair que A est de rang 2 donc 0 est valeur propre de multiplicité au moins n-2 et son espace propre associé, à savoir Ker A est de dimension n-2. Une base de cet espace est clairement

$$\{t(0, n, 0, \dots, 0, -2), t(0, 0, n, 0, \dots, 0, -3), \dots, t(0, \dots, 0, n, -(n-1)\}$$

Soit maintenant λ une valeur propre non nulle de A. Pour trouver l'espace propre associé à λ , il suffit de trouver une solution non nulle au système

(S)
$$\begin{cases} x_1 + 2x_2 + \dots + nx_n = \lambda x_1 \\ 2x_1 = \lambda x_2 \\ \vdots = \vdots \\ nx_1 = \lambda x_n \end{cases} \text{ lequel équivaut,}$$

$$(S') \begin{cases} x_1(\lambda + 4 + \dots + n^2) = \lambda^2 x_1 \\ x_2 = 2x_1/\lambda \\ \vdots = \vdots \\ x_n = nx_n/\lambda \end{cases}$$

On a donc une solution non triviale si et seulement si λ est racine de l'équation du second degré

$$\lambda^2 - \lambda - \sum_{k=2}^{n} k^2 = 0$$

auquel cas le sous-espace propre est engendré par le vecteur

$$X_{\lambda} = {}^{t}(\lambda, 2, 3, \dots, n)$$

Le discriminant de ce polynôme étant donné par $\Delta = 1 + 4\left(\sum_{k=0}^{n}k^2\right)$ donc strictement positif, on a deux autres valeurs propres distinctes dont les sous-espaces propres associés sont de dimension 1. Pour conclure,

Si on note
$$\Delta=1+4\left(\sum\limits_{k=2}^nk^2\right)$$
, le spectre de A est donné par
$$\mathrm{Sp}A=\left\{0,\lambda_1=\frac{1-\sqrt{\Delta}}{2},\lambda_2=\frac{1+\sqrt{\Delta}}{2}\right\}$$
 et des bases des espaces propres $E_0(A),E_{\lambda_1}(A)$ et $E_{\lambda_2}(A)$ sont respectivement données par

$$\left\{ \begin{pmatrix} 0 \\ n \\ 0 \\ \vdots \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ n \\ \vdots \\ 0 \\ -3 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ n \\ -(n-1) \end{pmatrix} \right\} \qquad \left\{ \begin{pmatrix} \lambda_1 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix} \right\} \qquad \text{et} \qquad \left\{ \begin{pmatrix} \lambda_2 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix} \right\}$$

_____ (*) _____ **CCP PC 2019**

Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ et Φ définie sur E par

$$\forall f \in E, \qquad \Phi(f) : x \longmapsto \int_0^x \frac{f(t)}{1+t^2} dt$$

- (a). (i) Montrer que Φ est un endomorphisme de E.
 - (ii) Soit $g \in \text{Im } \Phi$. Montrer que g est de classe \mathcal{C}^1 . Que peut-on en déduire sur Φ ?
- (b). Déterminer les valeurs propres de Φ .
- (a). (i) Soit $f \in E$. L'application $t \mapsto f(t)/(1+t^2)$ est continue par quotient de fonctions continues dont le dénominateur ne s'annule pas. Puisque $\Phi(f)$ est sa primitive qui s'annule en 0, elle est de classe \mathcal{C}^1 et en particulier continue. Ainsi, Φ est bien à valeurs dans E.

Justifions la linéarité. Soient f, g deux éléments de E et λ un réel. Pour tout réel x,

$$\Phi(\lambda f + g)(x) = \int_0^x \frac{(\lambda f + g)(t)}{1 + t^2} dt$$

$$= \lambda \int_0^x \frac{f(t)}{1 + t^2} dt + \int_0^x \frac{g(t)}{1 + t^2}$$

$$\Phi(\lambda f + g)(x) = \lambda \Phi(f)(x) + \Phi(g)(x)$$

Ceci étant vrai pour tout x,

$$\Phi(\lambda f + g) = \lambda \Phi(f) + \Phi(g)$$

Par suite,

L'application Φ est un endomorphisme de E.

(ii) Puisque g appartient à Im Φ , il existe $f \in E$ telle que $g = \Phi(f)$. On a vu à la question précédente que $\Phi(f)$ est alors de classe C^1 car primitive d'une fonction continue. Ainsi,

Si
$$g \in \text{Im } \Phi$$
, alors g est de classe \mathcal{C}^1 .

Cette propriété assure notamment que si g est un élément de E qui n'est pas de classe \mathcal{C}^1 (par exemple $x \longmapsto |x|$), alors elle n'appartient pas à Im Φ . En particulier,

L'endomorphisme Φ n'est pas surjectif.

Remarque : L'énoncé ne le demande pas mais on peut sans trop de problèmes montrer que Φ est en revanche injectif, en justifiant que son noyau est réduit à la fonction nulle.

(b). Raisonnons par analyse-synthèse. Soit λ une valeur propre de Φ et f un vecteur propre associé. Alors, $\Phi(f) = \lambda f$ ce qui montre que f est de classe \mathcal{C}^1 . De plus,

$$\forall x \in \mathbb{R}, \qquad (\Phi(f))'(x) = \frac{f(x)}{1+x^2} = \lambda f'(x) \qquad \text{soit} \qquad \lambda f'(x) \cdot (1+x^2) - f(x) = 0$$

Notons que f étant nécessairement non nulle, λ ne peut pas être nulle ce qui permet d'écrire

$$f'(x) - \frac{1}{\lambda \cdot (1+x^2)} f(x) = 0$$
 (E)

La fonction f est donc solution d'une équation différentielle linéaire du première ordre homogène. Elle est donc de la forme

$$f: x \longmapsto k \exp(A(x))$$

où k est un réel et A une primitive quelconque de $x \mapsto 1/(\lambda \cdot (1+x^2))$, par exemple $x \mapsto (\arctan x)/\lambda$.

Réciproquement, soit k un réel et $f: x \longmapsto k \cdot \exp((\arctan x)/\lambda)$. Alors f est \mathcal{C}^1 et solution de (\mathbf{E}) ce qui montre que f est une primitive de $x \longmapsto f(x)/(\lambda \cdot (1+x^2))$. Mais puisque f(0) = 0, il s'agit de l'unique primitive qui s'annule en 0, ce qui prouve que

$$\forall x \in \mathbb{R}, \qquad f(x) = \int_0^x \frac{f(x)}{\lambda \cdot (1+x^2)} \, \mathrm{d}x = \frac{1}{\lambda} \Phi(f)(x) \qquad \text{d'où} \qquad \Phi(f) = \lambda \, f$$

ce qui montre que f est bien vecteur propre de Φ associé à $\lambda.$ Pour conclure,

$$\boxed{\operatorname{Sp} \Phi = \mathbb{R}^* \quad \text{et} \quad \forall \lambda \in \mathbb{R}^*, \quad E_{\lambda}(\Phi) = \operatorname{Vect} \left\{ x \longmapsto \exp\left((\arctan x)/\lambda \right) \right\}}$$

4

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et v un élément de E non nul. On note

$$E_v = \{u \in \mathcal{L}(E), v \text{ est vecteur propre de } u\}$$

Montrer que E_v est un sous-espace vectoriel de $\mathcal{L}(E)$ et donner sa dimension.

Il est clair que v est vecteur propre de l'endomorphisme nul (pour la valeur propre 0), donc ce dernier appartient à E_v . Par ailleurs, si f et g sont deux éléments de E_v et λ un scalaire, il existe deux réels α et β tels que

$$f(v) = \alpha v$$
 et $g(v) = \beta v$ d'où $(\lambda f + g)(v) = (\lambda \alpha + \beta)v$

Ainsi, v est vecteur propre également de $\lambda f + g$ et ce dernier est élément de E_v . On peut donc conclure

$$E_v$$
 est un sous-espace vectoriel de $\mathcal{L}(E)$.

Complétons maintenant $\{v\}$ en une base $\mathcal{B} = \{v, e_2, \dots, e_n\}$ de E. Un endomorphisme u de $\mathcal{L}(E)$ appartient à E_v si et seulement si sa matrice respectivement à la base \mathcal{B} est de la forme

$$\begin{pmatrix} \lambda \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \text{avec} \qquad \lambda \in \mathbb{K} \text{ et } D \in \mathcal{M}_{n,n-1}(\mathbb{K})$$

Compte tenu de l'isomorphisme $u \longmapsto \mathrm{Mat}_{\mathcal{B}}(u)$, la dimension de E_v est égale à celle des matrices de cette forme soit

$$dim E_v = 1 + n(n-1) = n^2 - n + 1$$

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que AB = 0.

- (a) Montrer que A et B ont un vecteur propre en commun.
- (b) En déduire l'existence de $P \in \mathcal{G}\ell_n(\mathbb{C})$ telle que $P^{-1}AP$ et $P^{-1}BP$ soient toutes deux triangulaires supérieures.

(a) Si Im B est réduit à $\{0\}$, cela signifie que B est nulle et alors, n'importe quel vecteur propre associé à A convient (il en existe un car $A \in \mathcal{M}_n(\mathbb{C})$).

Si Im B est de dimension au moins 1, on peut considérer l'endomorphisme induit par B sur Im B (puisque ce dernier est clairement stable par B). Il admet au moins un vecteur propre (car on est dans \mathbb{C}). Puisque AB = 0, on a Im $B \subset \operatorname{Ker} A$, ce qui prouve que ce vecteur propre est également vecteur propre pour A associé à la valeur propre 0. Finalement dans tous les cas,

A et B ont un vecteur propre commun.

(b) On raisonne par récurrence sur n. Pour n=1, le résultat est évident car toute matrice de $\mathcal{M}_1(\mathbb{C})$ est triangulaire supérieure. Supposons maintenant que toutes matrices C,D de $\mathcal{M}_{n-1}(\mathbb{C})$ vérifiant CD=0 sont simultanément trigonalisables. Soient A,B de taille n telles que AB=0. D'après le (a), on peut trouver un vecteur propre commun, que l'on peut compléter en une base de \mathbb{K}^n . Soit S la matrice de passage de la base canonique à cette nouvelle base. Alors, $S^{-1}AS$ et $S^{-1}BS$ sont de formes respectives

$$A' = S^{-1}AS = \begin{pmatrix} \lambda & \star & \cdots & \star \\ 0 & & & \\ \vdots & & A_2 & \\ 0 & & & \end{pmatrix} \quad \text{et} \quad B' = S^{-1}BS = \begin{pmatrix} \mu & \star & \cdots & \star \\ 0 & & & \\ \vdots & & B_2 & \\ 0 & & & \end{pmatrix}$$

avec λ , μ deux scalaires. Maintenant, puisque AB=0, on a A'B'=0 et donc par produit par blocs, il vient $A_2B_2=0$. On peut donc appliquer l'hypothèse de récurrence à ces deux éléments de $\mathcal{M}_{n-1}(\mathbb{C})$ ce qui prouve l'existence de $Q \in \mathcal{G}\ell_{n-1}(\mathbb{C})$ telle que $Q^{-1}A_2Q$ et $Q^{-1}B_2Q$ soient triangulaires supérieures. Il suffit alors de poser

$$R = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & Q & \\ 0 & & & \end{pmatrix} \quad \text{auquel cas} \quad R^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & Q^{-1} & \\ 0 & & & \end{pmatrix}$$

pour avoir grâce au produit par blocs

$$A'' = R^{-1}A'R = \begin{pmatrix} \lambda & \star & \cdots & \star \\ 0 & & & \\ \vdots & & Q^{-1}A_2Q & \\ 0 & & & \end{pmatrix} \quad \text{et} \quad B'' = R^{-1}BR = \begin{pmatrix} \mu & \star & \cdots & \star \\ 0 & & & \\ \vdots & & Q^{-1}B_2Q & \\ 0 & & & \end{pmatrix}$$

On a donc bien A'' et B'' triangulaires supérieures avec $A'' = P^{-1}AP$ et $B'' = P^{-1}BP$ où l'on a posé P = SR. La propriété est donc vraie pour des matrices de taille n.

Si AB = 0, alors A et B sont simultanément trigonalisables.

6 ______ (*) _____

Pour tout $P \in \mathbb{R}_n[X]$, on pose

$$u(P) = (X+2) P(X) - (X+1) P(X+1)$$

Montrer que l'on définit ainsi un endomorphisme u de $\mathbb{R}_n[X]$. Est-il diagonalisable? Déterminer enfin le rang de u et son noyau.

La linéarité de u est évidente. De plus, pour tout entier $p \in \mathbb{N}$, on a

$$u(X^{p}) = (X+2)X^{p} - (X+1)^{p+1}$$

$$= X^{p+1} + 2X^{p} - \sum_{k=0}^{p+1} {k \choose p} X^{k}$$

$$u(X^{p}) = (1-p)X^{p} - \sum_{k=0}^{p-1} {k \choose p} X^{k}$$

On en déduit que u(P) est de degré au plus p donc $\mathbb{R}_n[X]$ est bien stable par u qui est donc un endomorphisme. Le calcul précédent montre également que la matrice de u respectivement à la base canonique est triangulaire supérieure, avec pour éléments diagonaux $1,0,-1,\ldots,1-n$. Il s'ensuit que u admet n+1 valeurs propres distinctes. Ainsi,

L'application u définit un endomorphisme diagonalisable de $\mathbb{R}_n[X]$.

Il est clair que la matrice de u est de rang n donc rg u = n. D'après le théorème du rang, Ker u est donc de dimension 1. En remarquant que X + 1 appartient à ce noyau, on peut conclure.

u est de dimension 1 et Ker $u = \text{Vect}\{X+1\}.$

_____ (**) ___

Soit J l'élément de $\mathcal{M}_2(\mathbb{R})$ dont tous les coefficients valent 1 et f l'application définie par

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \qquad f(M) = JM - MJ$$

- (a). Montrer que f est un endomorphisme et déterminer sa matrice respectivement à la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- (b). L'endomorphisme f est-il diagonalisable? Déterminer ses valeurs propres et les espaces propres associés.
- (c). Déterminer une base de Ker f et une base de Im f.
- (d). Soit B un élément de $\mathcal{M}_2(\mathbb{R})$. Résoudre l'équation f(M) = B d'inconnue M.
- (a) Le fait que f soit un endomorphisme est trivial. Pour calculer sa matrice respectivement à la base canonique, on détermine les images de la base canonique par f. Pour cela, on écrit que

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies JM - MJ = \begin{pmatrix} c - b & d - a \\ a - d & b - c \end{pmatrix}$$

Cette formule permet aisément le calcul des 4 images de la famille $\mathcal{B} = \{E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}\}$ et on trouve

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

(b) Notons $A = \operatorname{Mat}_{\mathcal{B}}(f)$. Le calcul du polynôme caractéristique est immédiat et donne

$$\chi_f = \chi_A = X^4 - 4X^2 = X^2(X+2)(X-2)$$

Pour vérifier si f est diagonalisable, il suffit donc de vérifier si Ker f est bien de dimension 2. La matrice A étant clairement de rang 2, c'est le cas.

L'endomorphisme f est diagonalisable.

Les sous-espaces propres de A sont respectivement

$$\operatorname{Ker} A = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\} \qquad \operatorname{Ker} \left(A - 2I_4 \right) = \operatorname{Ker} \begin{pmatrix} -2 & -1 & 1 & 0 \\ -1 & -2 & 0 & 1 \\ 1 & 0 & -2 & -1 \\ 0 & 1 & -1 & -2 \end{pmatrix} = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \right\}$$

et pour finir

$$\operatorname{Ker}(A+2I_4) = \operatorname{Ker} \begin{pmatrix} 2 & -1 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2 \end{pmatrix} = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \right\}$$

Par suite, ceux de f sont donnés par

$$E_0(f) = \operatorname{Vect}\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} \qquad E_2(f) = \operatorname{Vect}\left\{ \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \right\} \qquad E_{-2}(f) = \operatorname{Vect}\left\{ \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \right\}$$

(c) La base de Ker f a été donnée à la question précédente. Quand à celle de Im f, il suffit de prendre les vecteurs engendrant les deux autres espaces propres.

$$\operatorname{Im} f = \operatorname{Vect} \left\{ \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \right\}$$

(d) Notons

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Dans un premier temps, l'équation a une solution si et seulement B appartient à Im f. Soit si et seulement si il existe deux réels λ et μ tels que

$$B = \lambda \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} \lambda + \mu & \mu - \lambda \\ \lambda - \mu & -\lambda - \mu \end{pmatrix}$$

ce qui équivaut à la condition a = -d et b = -c. Réciproquement, si cette condition est remplie, on a

$$B = f(M) \qquad \text{avec} \qquad M = \frac{\lambda}{2} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} - \frac{\mu}{2} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

et où λ et μ sont définis par le système

$$\begin{cases} \lambda + \mu = a \\ \mu - \lambda = b \end{cases} \quad \text{soit} \quad \begin{cases} \lambda = (a - b)/2 \\ \mu = (a + b)/2 \end{cases} \quad \text{d'où} \quad M = \frac{1}{2} \begin{pmatrix} -b & -a \\ a & b \end{pmatrix}$$

Les solutions de cette équation linéaire sont obtenues en rajoutant à cette solution particulière un élément du noyau. Pour conclure,

> L'équation f(M) = B a une solution si et seulement si B est de la forme $\begin{pmatrix} a & b \\ -b & -a \end{pmatrix}$ et alors $\mathcal{S} = \left\{ \frac{1}{2} \begin{pmatrix} -b & -a \\ a & b \end{pmatrix} + \alpha \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \beta \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad \alpha, \beta \in \mathbb{R} \right\}$

__ (*) _____

(a). Soit $\alpha, \beta \in \mathbb{C}$ et $\theta \in \mathbb{R}$. Calculer le premier des deux déterminants suivant et en déduire la valeur du second :

$$D_n(\alpha,\beta) = \begin{vmatrix} \alpha+\beta & \alpha\beta & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & \alpha\beta \\ (0) & 1 & \alpha+\beta \end{vmatrix} \qquad P_n(\theta) = \begin{vmatrix} 2\cos\theta & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 2\cos\theta \end{vmatrix}$$

(b). Soit $z \in \mathbb{C}$. La matrice suivante est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{C})$?

$$A_z = \begin{pmatrix} z & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & z \end{pmatrix}$$

(a) Par convention, on pose $\Delta_0 = 1$. Pour $n \geq 2$, on a en développant par rapport à la première colonne la relation de récurrence

$$D_n(\alpha, \beta) = (\alpha + \beta)D_{n-1}(\alpha, \beta) - \alpha\beta D_{n-2}(\alpha, \beta)$$

Il s'agit d'une relation de récurrence linéaire d'ordre 2 à coefficients constants, d'équation caractéristique $r^2 - (\alpha + \beta)r + \beta$ $\alpha\beta=0$ qui admet α et β pour racines. Si $\alpha\neq\beta$, on en déduit l'existence de deux complexes λ et μ tels que

$$\forall n \in \mathbb{N}, \qquad D_n(\alpha, \beta) = \lambda \, \alpha^n + \mu \, \beta^n$$

Les conditions initiales donnent le système

The tell systems
$$\begin{cases} \lambda + \mu = 1 \\ \lambda \alpha + \mu \beta = \alpha + \beta \end{cases} \quad \text{d'où} \quad (\lambda, \mu) = \frac{1}{\beta - \alpha} (-\alpha, \beta)$$
$$D_n(\alpha, \beta) = \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha} \quad \text{si} \quad \alpha \neq \beta \end{cases}$$

et donc

$$D_n(\alpha, \beta) = \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha} \quad \text{si} \quad \alpha \neq \beta$$

Lorsque $\alpha = \beta$, la nature des solutions de la relation de récurrence change. Plutôt que de refaire le calcul, il suffit de remarquer que $\beta \longmapsto D_n(\alpha, \beta)$ est polynomiale en β donc continue, et donc

$$D_n(\alpha, \beta) = \lim_{\beta \to \alpha} \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha}$$

d'où

$$D_n(\alpha, \alpha) = (n+1)\alpha^n$$

Pour calculer $P_n(\theta)$, il suffit d'appliquer le résultat précédent avec $\alpha = e^{i\theta}$ et $\beta = e^{-i\theta}$, qui sont égaux si et seulement si $\theta \equiv 0[\pi]$. Par suite,

$$P_n(\theta) = \begin{cases} (n+1) & \text{si } \theta \equiv 0[2\pi] \\ e^{in\pi}(n+1) = (-1)^n(n+1) & \text{si } \theta \equiv \pi[2\pi] \\ \frac{e^{i(n+1)\theta} - e^{-i(n+1)\theta}}{e^{i\theta} - e^{-i\theta}} = \frac{\sin((n+1)\theta)}{\sin \theta} & \text{sinon} \end{cases}$$

(b) L'expression précédente de $P_n(\theta)$ montre que ce dernier déterminant est nul lorsque $\sin((n+1)\theta)$ est nul et $\sin(\theta)$ non nul. On a donc

$$\forall k \in [1; n], \qquad \begin{vmatrix} 2\cos(\theta_k) & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 2\cos(\theta_k) \end{vmatrix} = 0 \quad \text{avec} \quad \theta_k = \frac{k\pi}{n+1}$$

On en déduit que pour tout complexe λ_k de la forme $z-2\cos(\theta_k)$, la matrice $A_z-\lambda_k I_n$ a un déterminant non nul donc λ_k est valeur propre. Ces valeurs étant deux à deux distinctes, A_z admet n valeurs propres distinctes et donc

Pour tout $z \in \mathbb{C}$, la matrice A_z est diagonalisable.

9 _______ X PC 2019

Soit E un \mathbb{K} -espace vectoriel de dimension finie et u un endomorphisme de E de rang 1. Donner une condition nécessaire et suffisante pour que u soit diagonalisable.

Puisque u est de rang 1, son noyau est de dimension n-1 où n est la dimension de E. Soit donc (e_1,\ldots,e_{n-1}) une base de Ker u que l'on complète en $\mathcal{B}=(e_1,\ldots,e_n)$ base de E. Alors, la matrice de u dans la base \mathcal{B} est de la forme

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & \cdots & 0 & m_{1,n} \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & m_{n,n} \end{pmatrix}$$

De plus, puisque la trace du u est égal à celle de sa matrice dans une base quelconque, on a nécessairement $m_{n,n} = \text{Tr } u$. Par suite, le polynôme caractéristique de u est de la forme

$$\chi_u = X^{n-1}(X - \operatorname{Tr} u)$$

On peut maintenant distinguer deux cas:

- Si u est de trace nulle, alors $\chi_u = X^n$ dont 0 est la seule valeur propre de u et de multiplicité n. L'espace propre associé Ker u étant de dimension n-1, on en déduit que u n'est pas diagonalisable.
- Si u n'est pas de trace nulle, alors χ_u admet deux racines distinctes 0 et Tr u de multiplicités respectives n-1 et 1. L'espace propre associé à 0 est Ker u de dimension n-1. L'espace propre associé à Tr u est nécessairement 1 car Tr u est racine simple du polynôme caractéristique. On en déduit que u est diagonalisable.

Pour conclure, Un endomorphisme de rang 1 est diagonalisable si et seulement si sa trace est non nulle.

______(**) ______

Montrer que si f est un endomorphisme diagonalisable d'un espace vectoriel de dimension finie, alors Ker f et Im f sont supplémentaires. La réciproque est-elle vraie?

Notons $\lambda_1, \ldots, \lambda_p$ les valeurs propres de f. Si 0 n'est pas valeur propre de f, cela signifie que f est bijective auquel cas

$$\operatorname{Ker} f = \{0\} \quad \text{et} \quad \operatorname{Im} f = E \quad \text{d'où} \quad \operatorname{Ker} f \oplus \operatorname{Im} f = E$$

Sinon, on peut sans perdre de généralité supposer $\lambda_1 = 0$ et $\lambda_2, \ldots, \lambda_p \neq 0$. On sait alors que

$$\operatorname{Ker} f = E_{\lambda_1}(f)$$
 et $\bigoplus_{k=2}^p E_{\lambda_k}(f) \subset \operatorname{Im} f$

Le théorème du rang et le caractère diagonalisable de f donnent

dim Ker
$$f$$
 + dim Im f = dim E = $\sum_{k=1}^{p}$ dim $E_{\lambda_k}(f)$

On a donc égalité des dimensions dans l'inclusion précédente, donc égalité des ensembles. Ainsi,

Im
$$f = \bigoplus_{k=2}^{p} E_{\lambda_k}(f)$$

et puisque f est la somme directe de ses espaces propres,

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$

La réciproque n'est bien entendue pas vérifiée. Il suffit par exemple de prendre un endomorphisme non diagonalisable et bijectif, comme par exemple l'endomorphisme $P \longmapsto P + P'$ de $\mathbb{K}_n[X]$. Sa matrice dans la base canonique est triangulaire supérieure

avec ses éléments diagonaux tous égaux à 1. Son spectre est donc réduit à $\{1\}$, ce qui prouve qu'il n'est pas diagonalisable (sinon sa matrice serait semblable à I_{n+1} donc égale à I_{n+1} ce qui n'est pas le cas).

11

_ (**) _

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On définit alors

$$\varphi_f: \ \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$$

$$g \longmapsto f \circ g$$

- (a). Montrer que si λ est valeur propre de f, elle est valeur propre de φ_f et déterminer la dimension de $E_{\lambda}(\varphi_f)$ en fonction de celle de $E_{\lambda}(f)$.
- (b). Que peut-on en déduire si f est diagonalisable?
- (a) Soit $\lambda \in \mathbb{K}$ et $F_{\lambda} = \text{Ker}(f \lambda I_d)$ Soit maintenant $g \in \mathcal{L}(E)$. Alors, on a les équivalences

$$\varphi_f(g) = \lambda g \quad \Longleftrightarrow \quad f \circ g = \lambda g$$

$$\iff \quad \forall x \in E, \quad f(g(x)) = \lambda g(x)$$

$$\iff \quad \forall x \in E, \quad g(x) \in F_\lambda$$

$$\varphi_f(g) = \lambda g \quad \Longleftrightarrow \quad \text{Im } g \subset F_\lambda$$

Si λ est valeur propre de f, alors $E_{\lambda}(f) = F_{\lambda}$ est non réduit à $\{0\}$. L'ensemble des $g \in \mathcal{L}(E)$ tels que $\varphi_f(g) = \lambda g$ est alors non réduit à l'endomorphisme nul et isomorphe à $\mathcal{L}(E, E_{\lambda}(f))$, donc de dimension dim $E \cdot \dim E_{\lambda}(f)$. Finalement,

Si $\lambda \in \operatorname{Sp}(f)$, alors $\lambda \in \operatorname{Sp}(\varphi_f)$ et l'espace propre associé est de dimension $\dim E \cdot \dim E_{\lambda}(f)$.

(b) Si f est diagonalisable, on peut noter $\lambda_1, \ldots, \lambda_p$ ses valeurs propres deux à deux distinctes, auquel cas

$$\dim E = \sum_{i=1}^{p} E_{\lambda_i}(f)$$

D'après ce qui précède, $\lambda_1, \dots, \lambda_p$ sont également valeurs propres de φ_f et la somme des dimensions des espaces propres associés vaut

$$\sum_{i=1}^{p} \dim E \cdot \dim E_{\lambda_i}(f) = \dim E \cdot \sum_{i=1}^{p} E_{\lambda_i}(f) = (\dim E)^2 = \dim \mathcal{L}(E)$$

On en déduit que φ_f n'a pas d'autres valeurs propres que celles de f, et que $\mathcal{L}(E)$ est la somme des espaces propres associés. En d'autres termes,

Si f est diagonalisable, il en est de même de φ_f (qui a aussi le même spectre).

12

_____(**) _____

Mines PC 2010

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ tels que $f \circ f$ est diagonalisable. Montrer que f est diagonalisable si et seulement si Ker $f \cap \text{Im } f = \{0\}$.

Le sens direct est systématiquement vérifié indépendamment de l'hypothèse f^2 diagonalisable. Notons $\lambda_1, \ldots, \lambda_p$ les valeurs propres de f. Si 0 n'est pas valeur propre de f, cela signifie que f est bijective auquel cas

$$\operatorname{Ker} f = \{0\} \quad \text{et} \quad \operatorname{Im} f = E \qquad \text{d'où} \qquad \operatorname{Ker} f \oplus \operatorname{Im} f = E$$

Sinon, on peut sans perdre de généralité supposer $\lambda_1=0$ et $\lambda_2,\ldots,\lambda_p\neq 0$. On sait alors que

$$\operatorname{Ker} f = E_{\lambda_1}(f) \qquad \text{et} \qquad \bigoplus_{k=2}^p E_{\lambda_k}(f) \subset \operatorname{Im} f$$

Le théorème du rang et le caractère diagonalisable de f donnent

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim E = \sum_{k=1}^{p} \dim E_{\lambda_k}(f)$$

On a donc égalité des dimensions dans l'inclusion précédente, donc égalité des ensembles. Ainsi,

Im
$$f = \bigoplus_{k=2}^{p} E_{\lambda_k}(f)$$

et puisque f est la somme directe de ses espaces propres,

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$

Pour la réciproque, remarquons que Ker f et Im f sont stables par f. Puisque leur intersection est réduite à $\{0\}$, ils sont supplémentaires par le théorème du rang, et f est diagonalisable si les endomorphismes induits sur ces espaces le sont. Celui induit sur Ker f est bien entendu nul donc diagonalisable. Notons g celui induit par f sur Im f. g est alors bijectif, car son noyau est Ker $f \cap \text{Im } f = \{0\}$. Ainsi, g^2 est également bijectif. Mais puisqu'il s'agit également de l'induit par f^2 sur Im f, il est aussi diagonalisable. Notons donc $\lambda_1, \ldots, \lambda_p$ ses valeurs propres (non nulles par bijectivité). Alors,

$$\operatorname{Im} f = \bigoplus_{i=1}^{p} E_{\lambda_i}(g^2)$$

Maintenant, g commute avec g^2 donc $E_{\lambda_i}(g^2)$ est stable par g pour tout i. L'induit g_i par g sur cet espace vérifie $g_i^2 = \lambda_i I_d$. Si l'on note μ_i une racine de λ_i dans \mathbb{C} , on a donc $(g_i/\mu_i)^2 = I_d$ donc g_i/μ_i est une symétrie, donc un endomorphisme diagonalisable. Au final, on a donc écrit

$$E = \operatorname{Ker} f \oplus \left[\bigoplus_{i=1}^p E_{\lambda_i}(g^2) \right]$$

et f induit sur chacun des espaces de cette somme directe des endomorphismes diagonalisable (nul sur Ker f, égal à $\mu_i g_i$ sur $E_{\lambda_i}(g^2)$). Par conséquent, f est diagonalisable. On peut donc conclure :

Si f^2 est diagonalisable, alors f l'est si et seulement si Ker $f \cap \text{Im } f = \{0\}.$

13 ______ X PC 2010

Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que A est diagonalisable si et seulement si pour tout polynôme non constant P, on peut trouver $M \in \mathcal{M}_2(\mathbb{C})$ tel que A = P(M).

Supposons A diagonalisable. Il existe Q inversible et deux scalaires λ et μ tels que

$$A = Q^{-1} \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} Q$$

Si maintenant P est un polynôme non constant, l'équation $P(x) = \lambda$ (resp. $P(x) = \mu$) a au moins une solution $\alpha \in \mathbb{C}$ (resp. $\beta \in \mathbb{C}$) en vertu du théorème de d'Alembert. Il suffit alors de poser

$$M = Q^{-1} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} Q$$

pour avoir P(M) = A. Par conséquent, le sens direct est démontré.

Supposons maintenant A non diagonalisable. Il existe cette fois Q inversible et $\lambda \in \mathbb{C}$ tel que

$$A = Q^{-1} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} Q$$

Prenons alors $P = X^2 + \lambda$. Si M est telle que P(M) = A, alors $M^2 = A - \lambda I_2$ soit

$$M^2 = Q^{-1} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} Q \qquad \text{et donc} \qquad M^4 = 0$$

La matrice M est donc nilpotente et de taille 2. Mais on sait que dans un tel cas, $M^2=0$, d'où une absurdité. Ainsi, il n'existe aucune matrice M telle que P(M)=A avec $P=X^2+\lambda$.

Un élément A de $\mathcal{M}_2(\mathbb{C})$ est diagonalisable si et seulement si pour tout polynôme P non constant, l'équation P(M) = A a au moins une solution.

14 ______ (**) ______ CCP PC 2013

Soit A un élément non nul de $\mathcal{M}_3(\mathbb{R})$ tel que $A^3=-A$ et u l'endomorphisme de \mathbb{R}^3 associé à A.

- (a). Montrer que $\mathbb{R}^3 = \text{Ker } u \oplus \text{Ker } (u^2 + I_d)$.
- (a). Montrer que A est semblable à $M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$
- (c). Donner la dimension et une base de C(A).
- (d). Résoudre l'équation $X^6 + X^2 = 0$ dans $\mathcal{M}_3(\mathbb{R})$.

(a) Soit $x \in \text{Ker } u \cap \text{Ker } (u^2 + I_d)$. Alors,

$$u(x) = 0$$
 et $u^{2}(x) + x = 0$ d'où $x = -u(0) = 0$

Par ailleurs, pour tout élément $x \in \mathbb{R}^3$, on a

$$u^{3}(x) = -u(x)$$
 d'où $u(u^{2}(x) + x) = 0$ mais aussi $(u^{2} + I_{d})(u^{2}(x)) = 0$

Cela permet d'écrire

$$x = \underbrace{x + u^2(x)}_{\in \text{Ker } u} - \underbrace{u^2(x)}_{\in \text{Ker } (u^2 + I_d)}$$

Finalement,

$$\boxed{\mathbb{R}^3 = \operatorname{Ker} u \oplus \operatorname{Ker} (u^2 + I_d)}$$

(b) On sait que $u \circ (u^2 + I_d) = 0$. Si $u^2 + I_d$ est injectif, il est bijectif. On en déduit que u = 0, ce qui est contraire aux hypothèses. Si maintenant u est injectif, il est bijectif et on en déduit $u^2 = -I_d$ d'où en passant au déterminant

$$\det(u^2) = \det(u)^2 = \det(-I_d) = -1$$

 $\operatorname{car}\,\mathbb{R}^3$ est de dimension impaire. C'est absurde.

Ces considérations assurent que Ker u et Ker $(u^2 + I_d)$ sont non réduits à $\{0\}$ ce qui permet de choisir x_1 non nul dans Ker u, x_2 non nul dans Ker $(u^2 + I_d)$, et enfin de poser $x_3 = u(x_2)$. Alors, nécessairement $u(x_3) = -x_2$.

Ainsi défini, $\{x_1\}$ est une famille libre de Ker u. Vérifions que $\{x_2, x_3\}$ en est une de Ker $(u^2 + I_d)$. Elle est liée si et seulement si x_2 et x_3 sont colinéaires, soit comme $x_2 \neq 0$ s'il existe $\lambda \in \mathbb{R}$ tel que $x_3 = \lambda x_2$. Mais alors,

$$-x_2 = u(x_3) = \lambda u(x_2) = \lambda x_3 = \lambda^2 x_2$$
 d'où $\lambda^2 = -1$

C'est impossible et $\{x_2, x_3\}$ est libre. Il s'ensuit compte tenu de la somme directe que $\{x_1, x_2, x_3\}$ est libre donc constitue une base de \mathbb{R}^3 dans laquelle la matrice de u est exactement M. Ainsi,

La matrice A est semblable à M.

(c) Il existe $P \in \mathcal{G}\ell_3(\mathbb{R})$ telle que $P^{-1}AP = M$. Soit $X \in \mathcal{M}_3(\mathbb{R})$. Alors,

$$AX = XA \iff PMP^{-1}X = XPMP^{-1} \iff MY = YM \text{ avec } Y = P^{-1}XP$$

Déterminons donc les matrices qui commutent avec M. Notons $Y = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Alors,

$$MY - YM = 0 \iff \begin{pmatrix} 0 & -c & b \\ -g & -f - h & e - i \\ d & e - i & f + h \end{pmatrix} = 0 \iff \begin{cases} f = -h \\ i = e \\ b = c = g = d = 0 \end{cases}$$

Finalement, Y commute avec M si et seulement si elle est de la forme $\begin{pmatrix} a & 0 & 0 \\ 0 & e & f \\ 0 & -f & e \end{pmatrix}$ soit

$$C(M) = \text{Vect} \{E_{1,1}, E_{2,2} + E_{3,3}, E_{2,3} - E_{3,2}\}$$

et d'après l'équivalence précédente,

Soit $P \in \mathcal{G}\ell_3(\mathbb{R})$ telle que $P^{-1}AP = M$. Alors, le sous-espace vectoriel des matrices commutant avec A est de dimension 3 et précisément,

$$C(A) = \text{Vect}\left\{P^{-1}E_{1,1}P^{-1}, (E_{2,2} + E_{3,3})P^{-1}, P(E_{2,3} - E_{3,2})P^{-1}\right\}$$

(d) Soit X telle que $X^6 + X^2 = 0$. On note $A = X^2$. Si $X^2 \neq 0$, alors $A \neq 0$ et donc, d'après le (b), il existe $P \in \mathcal{G}\ell_3(\mathbb{R})$ telle que $X^2 = PMP^{-1}$. Notons alors $Y = P^{-1}XP$ de sorte que $Y^2 = M$. On en déduit facilement que Y et M commutent, donc d'après le (c), il existe $a, e, f \in \mathbb{R}$ tels que

$$Y = \begin{pmatrix} a & 0 & 0 \\ 0 & e & -f \\ 0 & f & e \end{pmatrix} \qquad \text{d'où} \qquad Y^2 = \begin{pmatrix} a^2 & 0 & 0 \\ 0 & e^2 - f^2 & -2ef \\ 0 & 2ef & e^2 - f^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

On en déduit que a=0, ainsi que $e^2=f^2$ et ef=1/2. On a donc |e|=|f|, ainsi que e et f de mêmes signes, donc $e=f=\pm 1/\sqrt{2}$. Pour conclure,

$$Y = \pm Y_0$$
 avec $Y_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$

et donc $X = PYP^{-1}$. Réciproquement, on vérifie facilement que toute matrice X nilpotente d'ordre 2 ou de la forme $\pm PY_0P^{-1}$ avec P inversible vérifie l'équation.

Les solutions de l'équation $X^6 + X^2 = 0$ d'inconnue $X \in \mathcal{M}_3(\mathbb{R})$ sont les matrices nilpotentes d'ordre 2, et les matrices de la forme

$$X = \pm \frac{1}{\sqrt{2}} P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} P^{-1}$$
 avec P inversible

15 ______ X PC 2010

Déterminer les matrices $A \in \mathcal{M}_2(\mathbb{C})$ telles que $A^2 + A + I_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Notons J la matrice de droite. On commence par remarquer que J est diagonalisable, de valeurs propres 1 et -1 et de sousespaces propres associés

$$E_1 = \operatorname{Vect}\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$$
 et $E_{-1} = \operatorname{Vect}\left\{ \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$

Si A est telle que $A^2 + A + I_2 = J$, alors A et J commutent, car J est un polynôme en A. Les sous-espaces propres de J sont donc stables par A, ce qui signifie que si l'on note P la matrice de passage de la base canonique à la base des vecteurs propres de J, alors $P^{-1}AP$ est diagonale. Il existe donc deux complexes α et β tels que

$$D = P^{-1}AP = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \qquad \text{et donc} \qquad D^2 + D + I_2 = \begin{pmatrix} \alpha^2 + \alpha + 1 & 0 \\ 0 & \beta^2 + \beta + 1 \end{pmatrix} = P^{-1}JP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Par conséquent, $\left\{ \begin{array}{ll} \alpha^2 + \alpha = 0 \\ \beta^2 + \beta + 2 = 0 \end{array} \right. \quad \text{d'où} \quad \alpha \in \{-1, 0\} \quad \text{et} \quad \beta \in \left\{ \frac{-1 + i\sqrt{7}}{2}, \frac{-1 - i\sqrt{7}}{2} \right\}$

L'équation admet finalement au plus quatre solutions, mais on vérifie facilement en reprenant les calculs en sens inverse qu'elles conviennent. Précisément,

Les solutions de l'équation $A^2 + A + I_2 = J$ sont les matrices de la forme

$$P\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P^{-1} \quad \text{avec} \quad \left\{ \begin{array}{l} P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ \alpha \in \{-1, 0\} \\ \beta \in \left\{ \frac{-1 + i\sqrt{7}}{2}, \frac{-1 - i\sqrt{7}}{2} \right\} \end{array} \right.$$

______(**) _____

Soit $a \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} \frac{1}{n} \begin{pmatrix} 0 & 1 + \frac{a^2}{n^2} \\ -1 & 2 \end{pmatrix}^n$

Notons $A_n = \begin{pmatrix} 0 & 1 + \frac{a^2}{n^2} \\ -1 & 2 \end{pmatrix}$

 $\chi_A = X^2 - \text{Tr } A X + \det A$ $= X^2 - 2X + 1 + \frac{a^2}{n^2}$ $= (X - 1)^2 + \frac{a^2}{n^2}$ $\chi_A = \left(X - 1 - \frac{ia}{n}\right) \left(X - 1 + \frac{ia}{n}\right)$

Le spectre de A est donc $\{\lambda_n, \overline{\lambda_n}\}$ avec $\lambda_n = 1 + ia/n$.

1er cas : $a \neq 0$

Les deux valeurs propres sont distinctes donc la matrice est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$. Cherchons un vecteur propre associé à la première valeur propre. Soit $X = {}^t(x,y) \in \mathbb{C}^2$. Alors,

$$AX = \lambda_n X \iff -x + \overline{\lambda_n} y = 0 \iff X \in \operatorname{Vect}\left\{\begin{pmatrix} \overline{\lambda_n} \\ 1 \end{pmatrix}\right\}$$

La matrice A_n étant réelle, on en déduit qu'un vecteur propre associé à $\overline{\lambda_n}$ est $t(\lambda_n, 1)$. Au final, on a donc

$$P_n^{-1}A_nP_n = \begin{pmatrix} \lambda_n & 0\\ 0 & \overline{\lambda_n} \end{pmatrix}$$
 avec $P_n = \begin{pmatrix} \overline{\lambda_n} & \lambda_n\\ 1 & 1 \end{pmatrix}$ et $P_n^{-1} = \frac{1}{\overline{\lambda_n} - \lambda_n} \begin{pmatrix} 1 & -\lambda_n\\ -1 & \overline{\lambda_n} \end{pmatrix}$

puis

$$\frac{1}{n}A_n^n = \frac{1}{n}P_n \begin{pmatrix} \lambda_n^n & 0\\ 0 & \overline{\lambda_n}^n \end{pmatrix} P_n^{-1}$$

$$= \frac{-1}{2ia} \begin{pmatrix} \overline{\lambda_n} & \lambda_n\\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_n^n & 0\\ 0 & \overline{\lambda_n}^n \end{pmatrix} \begin{pmatrix} 1 & -\lambda_n\\ -1 & \overline{\lambda_n} \end{pmatrix}$$

Il est clair que $\lambda_n \xrightarrow[n \to +\infty]{} 1$. De plus, on peut écrire

$$\lambda_n = \rho_n e^{i\alpha_n}$$
 avec $\rho_n = \sqrt{1 + \frac{a^2}{n^2}}$ et $\alpha_n = \arctan(a/n)$

donc

$$\lambda_n^n = \rho_n^n e^{in\alpha_n} = \exp\left(\frac{n}{2}\ln\left(1 + \frac{a^2}{n^2}\right) + in\arctan\left(\frac{a}{n}\right)\right)$$

Grâce aux développements limités de $t \longmapsto \ln(1+t)$, arctan et la continuité de l'exponentielle complexe, il s'ensuit que

$$\lambda_n^{\ n} = \left(1 + \frac{ia}{n}\right)^n \xrightarrow[n \to +\infty]{} e^{ia}$$

On en déduit donc que

$$\frac{1}{n}A_n{}^n\xrightarrow[n\to+\infty]{}\frac{-1}{2ia}\begin{pmatrix}1&1\\1&1\end{pmatrix}\begin{pmatrix}e^{ia}&0\\0&e^{-ia}\end{pmatrix}\begin{pmatrix}1&-1\\-1&1\end{pmatrix}=\frac{\sin a}{a}\begin{pmatrix}-1&1\\-1&1\end{pmatrix}$$

2ème cas : a=0

La matrice A_n ne dépend plus de n donc on la note A. On a 1 pour unique valeur propre et A n'est pas l'identité donc elle n'est pas diagonalisable. Elle est en revanche trigonalisable, et précisément

$$A = P \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} P^{-1}$$
 avec $P = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$

puis pour $n \ge 1$

$$\frac{1}{n}A^n = \frac{1}{n}P\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}P^{-1} \xrightarrow[n \to +\infty]{} P\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}P^{-1} = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$$

Finalement, quitte à prolonger $\sin a/a$ en 0 par 1, on obtient dans les deux cas

$$\boxed{\frac{1}{n} A_n^n \xrightarrow[n \to +\infty]{} \frac{\sin a}{a} \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}}$$

Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$. Déterminer la dimension de $\{B \in \mathcal{M}_3(\mathbb{R}), AB = BA\}$.

La matrice A est triangulaire supérieure donc son spectre est égal à l'ensemble de ses coefficients diagonaux, soit $\{1,4,6\}$. Elle admet trois valeurs propres distinctes donc elle est diagonalisable. Soit donc $P \in \mathcal{G}\ell_3(\mathbb{R})$ telle que

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix} = D$$

Notons que si $B \in \mathcal{M}_3(\mathbb{R})$, alors

$$AB = BA \iff (PDP^{-1})B = B(PDP^{-1}) \iff D(P^{-1}BP) = (P^{-1}BP)D$$

En d'autres termes, B commute avec A si et seulement si $P^{-1}BP$ commute avec D. Puisque $M \mapsto P^{-1}MP$ est un isomorphisme, il s'ensuit que

$$\dim \{B \in \mathcal{M}_3(\mathbb{R}), AB = BA\} = \dim \{C \in \mathcal{M}_3(\mathbb{R}), CD = DC\}$$

18

____ (**) _

Centrale PC 2008

Déterminer les matrices $A \in \mathcal{M}_2(\mathbb{C})$ telles que A et A^2 soient semblables. On exprimera le résultat sous la forme $A = PBP^{-1}$ avec P inversible arbitraire et B la plus simple possible.

Soit $A \in \mathcal{M}_2(\mathbb{C})$ semblable à son carré. On distingue deux cas.

• Supposons A diagonalisable. Il existe deux complexes λ et μ , pas nécessairement distincts, et une matrice P inversible tels que

$$A = P^{-1} \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} P$$
 d'où $A^2 = P^{-1} \begin{pmatrix} \lambda^2 & 0 \\ 0 & \mu^2 \end{pmatrix} P$

Les matrices A et A^2 étant semblables, on en déduit qu'elles ont mêmes spectres donc

$$\left\{ \begin{array}{l} \lambda = \lambda^2 \\ \mu = \mu^2 \end{array} \right. \quad \text{soit} \quad \left\{ \lambda, \mu \right\} \subset \left\{ 0, 1 \right\} \qquad \text{ou} \qquad \left\{ \begin{array}{l} \lambda = \mu^2 \\ \mu = \lambda^2 \end{array} \right. \quad \text{d'où} \quad \left(\lambda, \mu \right) \in \left\{ (0, 0), (j, j^2), (j^2, j) \right\}$$

avec $j = \exp(2i\pi/3)$.

• Supposons A non diagonalisable. Il existe un complexe λ et une matrice inversible P tels que

$$A = P^{-1} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} P$$
 d'où $A^2 = P^{-1} \begin{pmatrix} \lambda^2 & 2\lambda \\ 0 & \lambda^2 \end{pmatrix} P$

A et A^2 ayant même spectre, on en déduit que $\lambda^2 = \lambda$ donc $\lambda = 1$ ou $\lambda = 0$. Mais le deuxième cas est à exclure car alors, A^2 est nulle sans que A le soit.

On a donc justifié que si A est semblable à A^2 , elle est nécessairement semblable à l'une des cinq matrices suivantes.

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} j & 0 \\ 0 & j^2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \tag{\star}$$

La réciproque est évidente puisque ces cinq matrices sont semblables à leur carré. Au final,

Les éléments de $\mathcal{M}_2(C)$ semblables à leur carré sont celles de la forme $P^{-1}MP$ avec P inversible et M l'une des cinq matrices de (\star)

19

_____ (**) _____

X PC 2010

Déterminer les sous-espaces vectoriels de \mathbb{R}^3 stables par l'endomorphisme canoniquement associé à

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Notons u l'endomorphisme canoniquement associé à A. Remarquons dans un premier temps que u admet 1 et 2 pour valeurs propres, et que les espaces propres associés sont de dimension 1. Précisément, en notant (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 ,

$$E_1(u) = \text{Vect}\{e_3\}$$
 et $E_2(u) = \text{Vect}\{e_1\}$

Soit F un sous-espace vectoriel stable par u. Si F est de dimension 0, c'est nécessairement $\{0\}$. S'il est de dimension 3, c'est forcément \mathbb{R}^3 . S'il est de dimension 1, il est engendré par un vecteur propre de u. Un tel vecteur étant colinéaire soit à e_1 , soit à e_3 , on en déduit que F est l'un des deux espaces propres.

Reste le cas où F est de dimension 2. Notons \widetilde{u} l'endomorphisme induit par u sur F. Alors $\chi_{\widetilde{u}}$ divise $\chi_u = (X-1)(X-2)^2$. Distinguons les deux cas :

- Si $\chi_{\widetilde{u}} = (X-1)(X-2)$, alors 1 et 2 sont valeurs propres, et \widetilde{u} admet deux vecteurs propres associés. Comme précédemment, il s'ensuit nécessairement que $F = E_1(u) + E_2(u)$.
- Si $\chi_{\widetilde{u}} = (X-2)^2$, alors \widetilde{u} est trigonalisable, et sa matrice dans une base $\mathcal{B} = (f_1, f_2)$ avec f_1 vecteur propre pour la valeur propre 2 est de la forme

$$M = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 2 & \alpha \\ 0 & \beta \end{pmatrix}$$

Le spectre de u étant réduit à $\{2\}$, on a nécessairement $\beta=2$ et par suite, on constate que

$$(M - 2I_2)^2 = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}^2 = 0$$

Cela se traduit par $\tilde{u}^2 = 0$, et donc $F \subset \text{Ker}(u - 2I_d)^2$. On vérifie facilement que $\text{Ker}(u - 2I_d)^2 = \text{Vect}\{e_1, e_2\}$, qui est de dimension 2, et on peut donc conclure que $F = \text{Ker}(u - 2I_d)^2$.

Pour conclure,

Les sous-espaces vectoriels de \mathbb{R}^3 stables par u sont

____ (***) ____

$$\{0\}, \quad E_1(u), \quad E_2(u), \quad E_1(u) + E_2(u), \quad \operatorname{Ker}(u - I_d)^2 \quad \text{et} \quad \mathbb{R}^3$$

20

_ X PC 2010

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$ tels que $f \circ g = f + g$.

- (a) Montrer que Ker f = Ker g et Im f = Im g.
- (b) On suppose f et g diagonalisables. Montrer que $f \circ g$ est diagonalisable et que son spectre est inclus dans $\mathbb{R} \setminus [0; 4]$.
- (a) Soit $x \in \text{Ker } g$. Alors

$$(f \circ g)(x) = f(0) = 0 = f(x) + g(x) = f(x)$$

On a donc Ker $g \subset \text{Ker } f$. Considérons maintenant $x \in \text{Im } g$. Il existe a tel que

$$x = g(a) = (f \circ g)(a) - f(a) = f(g(a) - a)$$

Il s'ensuit que Im $g \subset \text{Im } f$. Appliquons maintenant le théorème du rang. En vertu des inclusions précédentes, on a

$$\dim E = \dim \operatorname{Ker} \, g + \dim \operatorname{Im} \, g \leq \dim \operatorname{Ker} \, f + \dim \operatorname{Im} \, f \leq \dim E$$

Nécessairement, on a donc dim Ker $g = \dim \operatorname{Ker} f$ et dim Im $g = \dim \operatorname{Im} f$. Ayant égalité des dimensions et inclusions, on en déduit que

$$Ker f = Ker g \quad et \quad Im f = Im g$$

(b) Soit \mathcal{B} une base de diagonalisation de f. Notons $A = \operatorname{Mat}_{\mathcal{B}}(f)$ et $B = \operatorname{Mat}_{\mathcal{B}}(g)$. Alors, A est diagonale et on a AB = A + B soit

$$\forall i \in [1; n], \quad a_{i,i}b_{i,i} = a_{i,i} + b_{i,i} \quad (\star) \quad \text{et} \quad \forall i \neq j, \quad a_{i,i}b_{i,j} = b_{i,j} \quad (\star\star)$$

La propriété (\star) prouve que pour tout $i \in [1; n]$, $a_{i,i} \neq 1$ (sans quoi on aurait une égalité absurde). La propriété $(\star\star)$ prouve alors que $b_{i,j} = 0$ pour tous $i \neq j$. Ainsi, B est diagonale, et AB également par voie de conséquence. Par suite,

L'endomorphisme
$$f \circ g$$
 est diagonalisable.

Le spectre de $f \circ g$ est constitué des éléments diagonaux de AB, c'est-à-dire des réels $a_{i,i}b_{i,i}$ sachant que

$$\forall i \in [1; n], \quad a_{i,i}b_{i,i} = a_{i,i} + b_{i,i}$$

Notons alors

$$P = (X - a_{i,i})(X - b_{i,i}) = X^2 - (a_{i,i} + b_{i,i})X + a_{i,i}b_{i,i}$$

Ce polynôme admet deux racines réelles donc son discriminant Δ est positif. Or,

$$\Delta = (a_{i,i} + b_{i,i})^2 - 4a_{i,i}b_{i,i} = a_{i,i}b_{i,i} (a_{i,i}b_{i,i} - 4) \ge 0$$

Il s'ensuit que $a_{i,i}b_{i,i}$ n'est pas compris strictement entre 0 et 4. Au final,

Le spectre de $f \circ g$ est inclus dans $\mathbb{R} \setminus [0; 4[$.