Matrices de Hurwitz

Notations

- n désigne un entier naturel non nul.
- K désigne R ou C.
- $M_n(\mathbf{K})$ désigne l'espace vectoriel des matrices carrées de taille n et à coefficients dans \mathbf{K} et pour une matrice M de $M_n(\mathbf{K})$, on note χ_M son polynôme caractéristique.
- $\mathbf{K}[X]$ désigne l'espace vectoriel des polynômes à coefficients dans \mathbf{K} , $\mathbf{K}_n[X]$ désigne le sous-espace vectoriel de $\mathbf{K}[X]$ des polynômes de degré inférieur ou égal à n.
- Re⁻ = $\{z \in \mathbb{C} / \operatorname{Re}(z) < 0\}$.
- On désigne par $\langle .,. \rangle$ le produit scalaire usuel de \mathbb{R}^n et $\|.\|$ sa norme associée :

$$\langle (x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \rangle = \sum_{i=1}^n x_i y_i$$

 $\|(x_1, x_2, ..., x_n)\| = \sqrt{\sum_{i=1}^n x_i^2}.$

- On confondra abusivement, pour le calcul matriciel, le vecteur $X=(x_1,x_2,...,x_n)$ de \mathbf{K}^n

avec la matrice colonne
$$X=\left(\begin{array}{c} x_1\\x_2\\ \vdots\\x_n\end{array}\right)$$
 de ses coordonnées dans la base canonique de \mathbf{K}^n .

- Pour $X=(x_1,x_2,...,x_n)$ de ${\bf C}^n$, on notera son conjugué $\overline{X}=(\overline{x_1},\overline{x_2},...,\overline{x_n})$, sa partie réelle $Re(X)=\frac{X+\overline{X}}{2}$ et sa partie imaginaire $Im(X)=\frac{X-\overline{X}}{2i}$.
- Si $M \in M_n(\mathbf{R})$, l'endomorphisme de \mathbf{R}^n (respectivement \mathbf{C}^{n}) canoniquement associé à M est

Rappels

1) Deux matrices A et B de $M_n(\mathbf{K})$ sont semblables dans $M_n(\mathbf{K})$ si il existe une matrice P de $M_n(\mathbf{K})$ inversible telle que $A = PBP^{-1}$.

Deux matrices A et B de $M_n(\mathbf{R})$ sont semblables dans $M_n(\mathbf{C})$ si il existe une matrice P de $M_n(\mathbf{C})$ inversible telle que $A = PBP^{-1}$.

2) Soient R et S deux polynômes de $\mathbf{K}[X]$. R est un diviseur de S s'il existe un polynôme $Q \text{ de } \mathbf{K}[X] \text{ tel que } S = QR.$

Les polynômes irréductibles de $\mathbf{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 dont le discriminant est strictement négatif.

Objectifs

- Il s'agit d'établir pour un système différentiel linéaire d'ordre 1, une équivalence entre des propriétés qualitatives des solutions et des conditions portant sur la nature de la matrice associée à ce système et de son polynôme caractéristique.
- La partie 1 concerne l'étude de propriétés de matrices semi-simples.
- La partie 2 propose de trouver une caractérisation de matrices diagonalisables de $M_n(\mathbf{C})$.
- La partie 3 est consacrée à l'étude des polynômes de Hurwitz.
- Les parties 1, 2 et 3 sont indépendantes.
- La partie 4, sur l'équivalence anoncée pour les systèmes différentiels, utilise des résultats des parties 1 et 3.

1 Matrices semi-simples

Définition 1 Une matrice de $M_n(\mathbf{R})$ est dite **semi-simple** si elle est diagonalisable dans $M_n(\mathbf{C})$.

Définition 2 Une matrice M de $M_n(\mathbf{R})$ est dite **presque diagonale** s'il existe :

- i) deux entiers naturels p et q;
- *ii)* q réels $a_1, a_2, ..., a_q$;
- *iii)* q réels non nuls $b_1, b_2, ..., b_q$;
- iv) une matrice D diagonale de $M_p(\mathbf{R})$ tels que p+2q=n et M est la matrice bloc suivante :

$$M = \begin{pmatrix} D & 0 & 0 & 0 & \dots & \dots & 0 \\ 0 & M(a_1, b_1) & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & M(a_2, b_2) & 0 & \dots & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & M(a_q, b_q) \end{pmatrix}$$

où, $\forall j \in [1:q]: M(a_j,b_j) = \begin{pmatrix} a_j & b_j \\ -b_j & a_j \end{pmatrix}$. Si p=0, la matrice D n'est pas présente dans la matrice diagonale par blocs M. De même, si q=0, alors M=D.

Soit A la matrice de $M_2(\mathbf{R})$ définie par :

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$

 $1 \triangleright \text{La matrice } A \text{ est-elle semi-simple } ?$

Soit B la matrice de $M_2(\mathbf{R})$ définie par :

$$B = \begin{pmatrix} 3 & 2 \\ -5 & 1 \end{pmatrix}$$

 $\mathbf{2} \triangleright \text{Démontrer que } B$ est semi-simple et en déduire l'existence d'une matrice Q de $M_2(\mathbf{R})$ inversible et de deux réels a et b à déterminer tels que :

$$B = Q \begin{pmatrix} a & b \\ -b & a \end{pmatrix} Q^{-1}.$$

Indication: on pourra, pour un vecteur propre V de B, introduire les vecteurs $W_1 = Re(V)$ et $W_2 = Im(V)$.

Soit M une matrice de $M_2(\mathbf{R})$.

On suppose dans la question 3) seulement que M admet deux valeurs propres complexes $\mu = a + ib$ et $\overline{\mu} = a - ib$ avec $a \in \mathbf{R}$ et $b \in \mathbf{R}^*$.

 $\mathbf{3} \triangleright \text{Démontrer que } M$ est semi-simple et semblable dans $M_2(\mathbf{R})$ à la matrice :

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

- $\mathbf{4} \triangleright \text{D\'emontrer}$ que M est semi-simple si et seulement si l'une des conditions suivantes est satisfaite :
 - i) M est diagonalisable dans $M_2(\mathbf{R})$;
 - ii) χ_M admet deux racines complexes conjuguées de partie imaginaire non nulle.
- $\mathbf{5} \triangleright \text{Soit } N$ une matrice de $M_n(\mathbf{R})$ semblable à une matrice presque diagonale. Démontrer que N est semi-simple.
- 6 ▷ Soit N une matrice de $M_n(\mathbf{R})$. Donner la forme factorisée de χ_N dans $\mathbf{C}[X]$, en précisant dans les notations, les racines réelles et les racines complexes conjuguées. En déduire que si N est semi-simple alors elle est semblable dans $M_n(\mathbf{R})$ à une matrice presque diagonale.

2 Une caractérisation des matrices diagonalisables de $M_n(\mathbf{C})$

Dans cette partie, E désigne un C-espace vectoriel de dimension n et u désigne un endomorphisme de E.

On suppose dans les questions 7), 8) et 9) que u est diagonalisable. On note $\mathcal{B} = (v_1, v_2, ..., v_n)$ une base de E formée de vecteurs propres de u. Soit F un sous-espace vectoriel de E, différent de $\{0_E\}$ et de E.

7 ▷ Démontrer qu'il existe $k \in [1 ; n]$ tel que $v_k \notin F$ et qu'alors F et la droite vectorielle engendrée par v_k sont en somme directe.

On note alors

$$\mathcal{A} = \Big\{ H \text{ sous-espace vectoriel de } E \text{ tel que } u(H) \subset H \text{ et } F \cap H = \{0_E\} \Big\}$$

et

$$\mathcal{L} = \Big\{ p \in \mathbf{N}^* \ \exists H \in \mathcal{A} : p = \ \dim(H) \Big\}.$$

- 8 > Démontrer que $\mathcal L$ admet un plus grand élément que l'on nommera r.
- $\mathbf{9} \, \triangleright \,$ Démontrer que F admet un supplémentaire G dans E, stable par u.
- 10 ▷ On suppose que tout sous-espace vectoriel de E possède un supplémentaire dans E, stable par u. Démontrer que u est diagonalisable. En déduire une caractérisation des matrices diagonalisables de $M_n(\mathbf{C})$.

Indication : on pourra raisonner par l'absurde et introduire un sous-espace vectoriel, dont on justifiera l'existence, de dimension n-1 et contenant la somme des sous-espaces propres de u.