IV. ALGÈBRE LINÉAIRE

24 La quatrième colonne de A est nulle, donc A n'est pas inversible et

$$A \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

On peut en déduire que

Le réel 0 est valeur propre de A et $(0,0,0,1)^{\top}$ est un vecteur propre de A associé à la valeur propre 0.

Soit $t \in \mathbb{R}$. Par définition, en développant le déterminant par rapport à la dernière colonne, puis par rapport à la troisième,

$$\chi_{\mathcal{A}}(t) = \det(\mathcal{A} - t\mathcal{I}_{4})
= \begin{vmatrix} p - t & 0 & p & 0 \\ q & q - t & 0 & 0 \\ 0 & p & -t & 0 \\ 0 & 0 & q & -t \end{vmatrix}
= -t \begin{vmatrix} p - t & 0 & p \\ q & q - t & 0 \\ 0 & p & -t \end{vmatrix}
= -tp \begin{vmatrix} q & q - t \\ 0 & p \end{vmatrix} + t^{2} \begin{vmatrix} p - t & 0 \\ q & q - t \end{vmatrix}
= -tp(qp) + t^{2}(p - t)(q - t)
= -p^{2}qt + t^{2}(pq - (p + q)t + t^{2})
= t^{4} - (p + q)t^{3} + pqt^{2} - p^{2}qt
\chi_{\mathcal{A}}(t) = t^{4} - t^{3} + pqt^{2} - p^{2}qt$$

Pour tout $\underline{t} \in \mathbb{R}$, $\chi_{A}(t) = t^4 - t^3 + \alpha t^2 + \beta t + \gamma$ avec $\alpha = pq$; $\beta = -p^2q$; $\gamma = 0$.

Le programme officiel définit le polynôme caractéristique de A comme étant $\det(t\mathrm{I}_n-\mathrm{A})=(-1)^n\det(\mathrm{A}-t\mathrm{I}_n)$ pour être unitaire en toute dimension $n\in\mathbb{N}^*$, notamment pour n impair. Le coefficient devant t^{n-1} est $-\mathrm{Tr}\ (\mathrm{A})$ et le coefficient constant est $(-1)^n\det\mathrm{A}$. Ici, on est en dimension 4, $-\mathrm{Tr}\ (\mathrm{A})=-p-q=-1$ et $\gamma=\det\mathrm{A}=0$.

On peut également calculer le déterminant avec la règle de Sarrus:

$$-t \begin{vmatrix} p-t & 0 & p \\ q & q-t & 0 \\ 0 & p & -t \end{vmatrix} = -t ((p-t)(q-t)(-t) + qp^2)$$

ce qui conduit au même résultat.

26 Soient $t \in \mathbb{R}$ et S la matrice colonne de l'énoncé. On a

$$S = tAS + L \iff S - tAS = L \iff (I_4 - tA)S = L$$

D'où

Pour tout $t \in \mathbb{R}$, S est solution de (E_t) si et seulement si $(I_4 - tA)S = L$.

27 Soit $t \in \mathbb{R}^*$. Comme le déterminant en dimension 4 est 4-linéaire, on a

$$t^{4}\chi_{A}\left(\frac{1}{t}\right) = t^{4}\det\left(A - \frac{1}{t}I_{4}\right) = \det\left(t\left(A - \frac{1}{t}I_{4}\right)\right) = \det\left(tA - I_{4}\right) = \psi_{A}(t)$$
Ainsi,
$$\forall t \in \mathbb{R}^{*} \quad \psi_{A}(t) = t^{4}\chi_{A}\left(\frac{1}{t}\right)$$

28 Soit $t \in \mathbb{R}^*$. D'après les questions 25 et 27,

$$\psi_{\mathbf{A}}(t) = t^4 \chi_{\mathbf{A}}\left(\frac{1}{t}\right) = t^4 \left(\frac{1}{t^4} - \frac{1}{t^3} + pq\frac{1}{t^2} - p^2q\frac{1}{t}\right) = 1 - t + pqt^2 - p^2qt^3$$

Les fonctions polynomiales

$$t \longmapsto \psi_{\mathcal{A}}(t)$$
 et $t \longmapsto 1 - t + pqt^2 - p^2qt^3$

sont égales sur \mathbb{R}^* . Par continuité, ces fonctions sont égales sur \mathbb{R} , d'où

$$\forall t \in \mathbb{R} \quad \psi_{\mathcal{A}}(t) = -p^2qt^3 + pqt^2 - t + 1$$

29 Le polynôme ψ_A vérifie $\psi_A(0) = 1 \neq 0$. Par continuité, il existe $\varepsilon > 0$ tel que $\psi_A(t) \neq 0$ pour tout $t \in]-\varepsilon$; ε [. Or $\psi_A(t) = \det(I_4 - tA)$, donc pour un tel t la matrice $I_4 - tA$ est inversible, et le système linéaire $(I_4 - tA)S = L$ d'inconnue S admet une unique solution $S = (I_4 - tA)^{-1}L$. Ainsi,

Pour t dans un voisinage de 0, l'équation (E_t) admet une unique solution S.

30 Notons $U_k = (u_{0,k}, u_{1,k}, u_{2,k}, u_{3,k})^{\top}$ la k^e colonne de $I_4 - tA$, pour $k \in [1; 4]$, et $L = (\ell_0, \ell_1, \ell_2, \ell_3)^{\top}$. Soit $t \in \mathbb{R}$ tel que $S = (S_0, S_1, S_2, S_3)^{\top}$ soit solution de (E_t) . On a $(I_4 - tA)S = L$, et par définition du produit de matrices, pour tout $i \in [0; 3]$,

$$\ell_i = \sum_{k=0}^{3} u_{i,k+1} S_k$$

C'est aussi le terme de la ligne i-1 de la matrice $U_1S_0 + U_2S_1 + U_3S_2 + U_4S_3$. D'où

$$L = U_1 S_0 + U_2 S_1 + U_3 S_2 + U_4 S_3$$

Le déterminant en dimension 4 est une forme 4-linéaire alternée. Calculons
$$\begin{split} \det_{\mathscr{B}}(U_1,U_2,U_3,L) &= \det_{\mathscr{B}}(U_1,U_2,U_3,U_1S_0 + U_2S_1 + U_3S_2 + U_4S_3) \\ &= S_0 \det_{\mathscr{B}}(U_1,U_2,U_3,U_1) + S_1 \det_{\mathscr{B}}(U_1,U_2,U_3,U_2) \\ &+ S_2 \det_{\mathscr{B}}(U_1,U_2,U_3,U_3) + S_3 \det_{\mathscr{B}}(U_1,U_2,U_3,U_4) \\ &= S_3 \det_{\mathscr{B}}(U_1,U_2,U_3,U_4) \end{split}$$
 $\det_{\mathscr{B}}(U_1,U_2,U_3,L) = S_3 \cdot \psi_A(t)$

car le déterminant d'une matrice est aussi celui de la famille des vecteurs colonnes qui la composent. Finalement,

$$\det_{\mathscr{B}}(\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3, \mathbf{L}) = \mathbf{S}_3 \cdot \psi_{\mathbf{A}}(t)$$

Soit $t \in \mathbb{R}$. D'une part, calculons ce déterminant en développant par rapport à la dernière colonne.

$$\det_{\mathscr{B}}(\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3, \mathbf{L}) = \begin{vmatrix} 1 - tp & 0 & -tp & 1\\ -tq & 1 - tq & 0 & 0\\ 0 & -tp & 1 & 0\\ 0 & 0 & -tq & 0 \end{vmatrix} = - \begin{vmatrix} -tq & 1 - tq & 0\\ 0 & -tp & 1\\ 0 & 0 & -tq \end{vmatrix} = pq^2t^3$$

car le déterminant d'une matrice triangulaire supérieure est le produit de ses termes diagonaux. D'autre part, d'après la question 31,

$$\det_{\mathscr{B}}(U_1, U_2, U_3, L) = S_3 \cdot \psi_A(t)$$

Or, d'après la question 29, $\psi_{\rm A}(t)$ ne s'annule pas pour t dans un voisinage de 0. Dans un tel voisinage,

$$S_3 = \frac{\det_{\mathscr{B}}(U_1, U_2, U_3, L)}{\psi_A(t)}$$

et d'après la question 28, $\psi_{\rm A}(t)=-p^2qt^3+pqt^2-t+1$

On obtient

$$S_3 = \frac{pq^2t^3}{-p^2qt^3 + pqt^2 - t + 1} \text{ pour } t \text{ au voisinage de } 0.$$

33 Le déterminant d'une matrice carrée est égal à celui de sa transposée. On obtient

$$\det (A^{\top} - \lambda I_4) = \det ((A - \lambda I_4)^{\top}) = \det (A - \lambda I_4) = 0$$

car $A - \lambda I_4$ n'est pas inversible. Ainsi,

Le complexe λ est une valeur propre de A^{\top} .

34 D'après la question 33, λ est également une valeur propre de A^{\top} . On peut alors noter $X = (x_1, x_2, x_3, x_4)^{\top}$ un vecteur propre associé. Le système $A^{\top}X = \lambda X$ s'écrit

$$\begin{cases} px_1 + qx_2 = \lambda x_1 \\ qx_2 + px_3 = \lambda x_2 \\ px_1 + qx_4 = \lambda x_3 \\ 0 = \lambda x_4 \end{cases}$$

Comme $\lambda \neq 0$, on a $x_4 = 0$, en conséquence x_1, x_2, x_3 ne sont pas tous nuls car X est un vecteur propre, donc non nul. Les trois premières lignes du système $A^{\top}X = \lambda X$ s'écrivent

$$\begin{cases} px_1 + qx_2 = \lambda x_1 \\ qx_2 + px_3 = \lambda x_2 \text{ où } (x_1, x_2, x_3) \neq (0, 0, 0). \\ px_1 = \lambda x_3 \end{cases}$$

35 Suivant l'indication de l'énoncé, on distingue trois cas.

• Cas (i). On a $M = |x_3| > 0$. La troisième ligne du système \mathcal{H} donne

$$|\lambda| = p \frac{|x_1|}{|x_3|} \leqslant p < 1 \qquad \text{car } \frac{|x_1|}{|x_3|} \leqslant 1$$

• Cas (ii). On a M = $|x_2| > 0$ et $|x_2| > |x_3|$. La seconde ligne du système \mathcal{H} donne, en utilisant l'inégalité triangulaire, puis $\frac{|x_3|}{|x_2|} < 1$,

$$|\lambda| = \frac{|qx_2 + px_3|}{|x_2|} \le \frac{|qx_2| + |px_3|}{|x_2|} = q + p\frac{|x_3|}{|x_2|} < q + p = 1$$

• Cas (iii). On a M = $|x_1| > 0$, $|x_1| > |x_2|$, et $|x_1| > |x_3|$. La première ligne du système \mathcal{H} donne, en utilisant l'inégalité triangulaire, puis $\frac{|x_2|}{|x_1|} < 1$,

$$|\lambda| = \frac{|px_1 + qx_2|}{|x_1|} \le \frac{|px_1| + |qx_2|}{|x_1|} = p + q\frac{|x_2|}{|x_1|}$$

En conclusion, si $\lambda \in \mathbb{C}^*$ est une valeur propre de A, alors $|\lambda| < 1$.

Cette méthode peut servir à montrer que les valeurs propres d'une matrice stochastique (où la somme des éléments de chaque ligne est égale à 1 et les coefficients sont positifs) sont de module inférieur ou égal à 1.

36 D'après la question 25, 0 est racine simple de χ_A , car le coefficient devant t est $-p^2q \neq 0$. Ainsi, 0 est une valeur propre de A de multiplicité 1. Le polynôme χ_A est scindé dans $\mathbb{C}[X]$, notons $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ ses racines non nulles. Ce sont les valeurs propres complexes non nulles de A. On peut supposer qu'elles sont rangées par ordre croissant de module, c'est-à-dire $0 < |\lambda_1| \leq |\lambda_2| \leq |\lambda_3|$. D'après la question 35, on a $|\lambda_3| < 1$, d'où, comme χ_A est unitaire,

Il existe
$$\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$$
 tels que $0 < |\lambda_1| \le |\lambda_2| \le |\lambda_3| < 1$ et $\chi_{\mathbf{A}}(t) = t(t - \lambda_1)(t - \lambda_2)(t - \lambda_3)$.

37 D'après la question 27, pour tout $t \in \mathbb{R}^*$,

$$\psi_{A}(t) = t^{4} \chi_{A} \left(\frac{1}{t}\right)$$

$$= t^{4} \frac{1}{t} \left(\frac{1}{t} - \lambda_{1}\right) \left(\frac{1}{t} - \lambda_{2}\right) \left(\frac{1}{t} - \lambda_{3}\right)$$

$$= (1 - t\lambda_{1})(1 - t\lambda_{2})(1 - t\lambda_{3})$$

$$= -\lambda_{1} \lambda_{2} \lambda_{3} \left(\frac{-1}{\lambda_{1}} + t\right) \left(\frac{-1}{\lambda_{2}} + t\right) \left(\frac{-1}{\lambda_{3}} + t\right)$$

$$\psi_{A}(t) = \mu(t - a)(t - b)(t - c)$$

$$\mu = -\lambda_{1} \lambda_{2} \lambda_{3} ; \quad a = \frac{1}{\lambda_{2}} ; \quad b = \frac{1}{\lambda_{2}} ; \quad c = \frac{1}{\lambda_{1}}$$

avec

Par continuité, cette égalité est encore vraie pour t=0. On a bien, d'après la question 36,

$$\mu \neq 0, \quad 1 < |a| \leqslant |b| \leqslant |c| \quad \text{ et } \quad \forall t \in \mathbb{R} \quad \psi_{\mathrm{A}}(t) = \mu(t-a)(t-b)(t-c)$$