Mines Maths 1 PC 2007 — Corrigé

I. Préliminaires

1 Soient $M \in \mathcal{M}_{n,r}(\mathbb{K})$ et $N \in \mathcal{M}_{r,m}(\mathbb{K})$. Rappelons la formule définissant le produit matriciel: MN appartient à $\mathcal{M}_{n,m}(\mathbb{K})$ et

$$\forall (i,j) \in \llbracket \, 1 \, ; \, n \, \rrbracket \times \llbracket \, 1 \, ; \, m \, \rrbracket \qquad (\mathrm{MN})(i,j) = \textstyle \sum\limits_{k=1}^r \mathrm{M}(i,k) \, \mathrm{N}(k,j)$$

Donc

$$\|\mathbf{MN}\| = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{m} \left| (\mathbf{MN})(i,j) \right| = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{m} \left| \sum_{k=1}^{r} \mathbf{M}(i,k) \, \mathbf{N}(k,j) \right|$$

Soit $i \in [1; n]$. D'après l'inégalité triangulaire,

$$\forall j \in [1; m]$$
 $\left|\sum_{k=1}^{r} M(i, k) N(k, j)\right| \leqslant \sum_{k=1}^{r} |M(i, k)| |N(k, j)|$

d'où

$$\sum_{j=1}^{m} \left| \sum_{k=1}^{r} M(i,k) N(k,j) \right| \leq \sum_{j=1}^{m} \sum_{k=1}^{r} |M(i,k)| |N(k,j)|$$

Commençons par intervertir ces deux sommes finies:

$$\sum_{j=1}^{m} \left| \sum_{k=1}^{r} \mathcal{M}(i,k) \, \mathcal{N}(k,j) \right| \leqslant \sum_{k=1}^{r} \underbrace{\sum_{j=1}^{m} \left| \mathcal{M}(i,k) \right| \left| \mathcal{N}(k,j) \right|}_{(\mathbf{S})}$$

Dans la somme (S), les termes M(i, k) sont indépendants de l'indice de sommation, qui est j, ce qui permet de les mettre en facteur:

$$\sum_{j=1}^{m} \left| \sum_{k=1}^{r} \mathcal{M}(i,k) \, \mathcal{N}(k,j) \right| \leqslant \sum_{k=1}^{r} \left| \mathcal{M}(i,k) \right| \sum_{j=1}^{m} \left| \mathcal{N}(k,j) \right|$$

Puis, par définition de ||N||, on a

$$\forall k \in [1; r]$$

$$\sum_{j=1}^{m} |\mathcal{N}(k, j)| \leq ||\mathcal{N}||$$

d'où

$$\sum_{i=1}^{m} \left| \sum_{k=1}^{r} M(i,k) N(k,j) \right| \leq \|N\| \sum_{k=1}^{r} |M(i,k)| \leq \|N\| \|M\|$$

Cette inégalité est valable pour tout $i \in [1; n]$. On conclut donc

$$\|MN\|\leqslant \|M\|\,\|N\|$$

2 P est une matrice stochastique de $\mathcal{M}_{n,n}(\mathbb{K})$, ce qui signifie que $\mathrm{PJ}_n = \mathrm{J}_n$. Autrement dit, puisque J_n est la matrice colonne dont tous les coefficients valent 1,

$$\forall i \in [1; n] \qquad (\mathrm{PJ}_n)(i, 1) = 1$$

En exprimant le terme général de PJ_n à l'aide de la définition du produit matriciel,

$$\forall i \in [1; n]$$

$$\sum_{k=1}^{n} P(i, k) = 1$$

P est positive donc chacun de ses coefficient est positif, égal à sa valeur absolue, d'où

$$\forall i \in [1; n]$$
 $\sum_{k=1}^{n} |P(i, k)| = 1$

Par suite,

$$\max_{1 \leqslant i \leqslant n} \sum_{k=1}^{r} |\mathbf{P}(i,k)| = 1$$

Autrement dit,

$$\|\mathbf{P}\| = 1$$

3 On définit, pour tout entier k non nul, la propriété $\mathcal{Q}(k)$: « P^k est une matrice stochastique. »

- $\mathcal{Q}(1)$ est vraie par hypothèse.
- $\mathcal{Q}(k) \Longrightarrow \mathcal{Q}(k+1)$: \mathbf{P}^k et P sont stochastiques. Alors

$$P^{k+1}J_n = P^k(PJ_n) = P^kJ_n = J_n$$

En outre, d'après la formule définissant le produit matriciel, les coefficients de P^{k+1} sont des sommes de produits de coefficients de P et P^k . Ces deux matrices étant à coefficients positifs, P^{k+1} est également à coefficients positifs. C'est donc une matrice stochastique et $\mathcal{Q}(k+1)$ est vraie.

• Conclusion: $\mathcal{Q}(k)$ est vraie pour tout entier k non nul.

Pour tout entier k non nul, P^k est stochastique.

II. PSEUDO-INVERSE

4 Supposons que A admet un pseudo-inverse A'. Notons a' l'endomorphisme de \mathbb{R}^n canoniquement associé à A'. Les relations matricielles entre A et A' se traduisent en termes d'endomorphismes de la manière suivante:

$$aa' = a'a$$
 $a = aa'a$ et $a' = a'aa'$

Rappelons la relation suivante, triviale, qui peut être considérée comme du cours : si f et g sont deux endomorphismes d'un espace vectoriel E, alors $\operatorname{Im}(fg) \subset \operatorname{Im} f$. Cela tient simplement au fait que

$$\operatorname{Im}(fg) = fg(\mathbf{E}) = f(g(\mathbf{E})) \subset f(\mathbf{E}) = \operatorname{Im} f$$

Si E est, de plus, de dimension finie, on a rang $(fg) \leq rang f$ puisque le rang d'une application linéaire est la dimension de son image.

Les deux premières relations donnent $a=a^2a'$. D'après la formule rappelée en remarque, rang $a=\operatorname{rang}(a^2a')\leqslant \operatorname{rang} a^2$. Mais on a aussi $a^2=a\circ a$ donc, toujours d'après cette formule, rang $a^2\leqslant \operatorname{rang} a$. Par suite,

Si A admet un pseudo-inverse, alors a et a^2 ont le même rang.

5 Observons d'abord que $\operatorname{Im} a = \operatorname{Im} a^2$. En effet, l'inclusion $\operatorname{Im} a^2 \subset \operatorname{Im} a$ est triviale; de plus, d'après la question précédente, ces deux sous-espaces ont la même dimension, à savoir rg a.

Maintenant, soit $y \in \mathbb{R}^n$. Par définition, a(y) appartient à $\operatorname{Im} a$, qui est égal à $\operatorname{Im} a^2$ comme on vient de le voir. Il existe donc $x \in \mathbb{R}^n$ tel que $a(y) = a^2(x)$, et on a

$$0 = a(y) - a^{2}(x) = a(y - a(x))$$

Autrement dit, y - a(x) appartient à Ker a. On peut alors écrire

$$y = \underbrace{y - a(x)}_{\in \operatorname{Ker} a} + \underbrace{a(x)}_{\in \operatorname{Im} a}$$

ce qui montre que

$$\mathbb{R}^n = \operatorname{Ker} a + \operatorname{Im} a$$

De plus,

$$\dim \mathbb{R}^n = \dim \operatorname{Ker} a + \dim \operatorname{Im} a$$

d'après le théorème du rang. Ces deux relations impliquent ensemble que $\mathop{\rm Ker} a$ et $\mathop{\rm Im} a$ sont en somme directe. D'où

$$\operatorname{Ker} a \oplus \operatorname{Im} a = \mathbb{R}^n$$

6 Donnons-nous une base (e_1, \ldots, e_r) de Im a et (e_{r+1}, \ldots, e_n) une base de Ker a.

En effet, rang a = r donc Im a est de dimension r: ses bases sont de cardinal r. De plus, Ker a est de dimension n - r d'après le théorème du rang : ses bases sont de cardinal n - r.

Ainsi, $\mathscr{B} = (e_1, \ldots, e_r, e_{r+1}, \ldots, e_n)$ est une base de \mathbb{R}^n , puisque Im a et Ker a sont supplémentaires d'après la question 5. Notons M la matrice de a dans cette base. Notant W la matrice de passage de la base canonique de \mathbb{R}^n à \mathscr{B} , on a $A = WMW^{-1}$.

Par définition du noyau de a,

$$\forall i \in [r+1; n] \qquad a(e_i) = 0$$

Les n-r dernières colonnes de M sont donc nulles. Et par définition de l'image de a,

$$\forall i \in [1; n]$$
 $a(e_i) \in \operatorname{Im} a = \operatorname{Vect}(e_1, \dots, e_r)$

Par conséquent, les n-r dernières lignes de M sont nulles. Ainsi, M est de la forme

$$M = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$$
 avec $B \in \mathcal{M}_{r,r}(\mathbb{R})$

Comme le rang de M est la dimension du sous-espace engendré par ses colonnes, M et B ont même rang. Mais rappellons que $A = WMW^{-1}$; W et W^{-1} étant inversibles, A et M ont aussi même rang. D'où

$$r = \operatorname{rang} A = \operatorname{rang} M = \operatorname{rang} B$$

B est donc inversible, puisque carrée et de même rang que sa taille.

Il existe
$$B \in \mathcal{M}_{r,r}(\mathbb{R})$$
 et $W \in \mathcal{M}_{n,n}(\mathbb{R})$, inversibles, telles que
$$A = W \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} W^{-1}$$

$$A' = W \begin{pmatrix} B^{-1} & 0 \\ 0 & 0 \end{pmatrix} W^{-1}$$

où les matrices W et B sont celles que nous avons trouvées à la question 6. En utilisant les règles de calcul avec les matrices par blocs, on constate que

$$AA' = A'A = W \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} W^{-1}$$

$$AA'A = W \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} W^{-1} = A$$

et

$$A'AA'=W\begin{pmatrix}B^{-1}&0\\0&0\end{pmatrix}W^{-1}=A'$$

Finalement, $Si \operatorname{rang} A = \operatorname{rang} A^2$, la matrice A admet un pseudo-inverse.

8 Rappelons que les relations (1), (2) et (3) entre A et A' se traduisent en

$$\underbrace{aa'=a'a}_{(\mathbf{1}')}$$
 $\underbrace{a=aa'a}_{(\mathbf{2}')}$ et $\underbrace{a'=a'aa'}_{(\mathbf{3}')}$

D'après le cours, comme a et a' commutent,

$$\operatorname{Ker} a$$
 et $\operatorname{Im} a$ sont stables par a' .

L'existence d'un pseudo-inverse pour A implique, d'après la question 4, que a et a' ont même rang. Puis, la question 5 nous dit que Ker a et Im a sont supplémentaires dans \mathbb{R}^n . On conserve les notations de la question $6: \mathcal{B} = (e_1, \ldots, e_r, e_{r+1}, \ldots, e_n)$ est une base de \mathbb{R}^n adaptée à la somme directe $\mathbb{R}^n = \operatorname{Im} a \oplus \operatorname{Ker} a$ et W est la matrice de passage de la base canonique à \mathcal{B} . Notons N la matrice de a' relativement à \mathcal{B} , de sorte que $A' = \operatorname{WNW}^{-1}$, et construisons N.

D'après les relations (1') et (3'),

$$\forall i \in [r+1; n]$$
 $a'(e_i) = a'aa'(e_i) = a'^2a(e_i) = 0$

Les n-r dernières colonnes de N sont donc nulles. Et comme Im a est stable par a',

$$\forall i \in [1; n]$$
 $a'(e_i) \in \operatorname{Im} a = \operatorname{Vect}(e_1, \dots, e_r)$

Les n-r dernières lignes de N sont nulles. Par suite, N admet l'écriture par blocs

$$N = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$
 avec $D \in \mathcal{M}_{r,r}(\mathbb{R})$ d'où

Il existe
$$D \in \mathcal{M}_{r,r}(\mathbb{R})$$
 telle que $A' = W \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} W^{-1}$.

 $\fbox{ \ \, 9\ \, }$ En utilisant la relation (3') et l'associativité de la composition

$$(aa')^2 = (aa')(aa') = a(a'aa') = aa'$$

donc

$$aa'$$
 est un projecteur.

On a Ker $a \subset \text{Ker } (aa')$ puisque si a(x) = 0 alors aa'(x) = a'a(x) = 0. Réciproquement, si x appartient à Ker (aa'), on a d'après la relation (2')

$$a(x) = aa'a(x) = a(aa'(x)) = 0$$

et x appartient à Ker a. Donc

$$\operatorname{Ker}(aa') = \operatorname{Ker} a$$

Le théorème du rang assure que

$$\dim \operatorname{Ker} a + \dim \operatorname{Im} a = n$$
 et $\dim \operatorname{Ker} (aa') + \dim \operatorname{Im} (aa') = n$

Comme Ker (aa') et Ker a ont la même dimension — on vient de voir qu'ils sont égaux, il s'ensuit que Im (aa') et Im a ont aussi la même dimension. En combinant ceci avec l'inclusion Im $(aa') \subset \text{Im } a$, rappelée en remarque à la question 4, on obtient

$$\mathrm{Im}\,(aa')=\mathrm{Im}\,a$$

On vient de démontrer que aa' est la projection sur $\operatorname{Im} a$ parallèlement à $\operatorname{Ker} a$. En d'autres termes, aa' agit comme l'identité sur $\operatorname{Im} a$ et annule les éléments de $\operatorname{Ker} a$. La matrice de aa' dans la base $\mathscr B$ est donc

$$\begin{pmatrix} \mathbf{I}_r & 0 \\ 0 & 0 \end{pmatrix}$$

et les formules de changement de base assurent alors que

$$AA' = W \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} W^{-1} \quad \text{ou aussi} \quad W^{-1}AA'W = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

10 D'après la question 9, on a

$$\mathbf{W}^{-1}\mathbf{A}\mathbf{A}'\mathbf{W} = \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Mais en utilisant les règles de multiplication des matrices par blocs et les expressions de A et A' obtenues aux questions 6 et 8, on trouve aussi

$$W^{-1}AA'W = \begin{pmatrix} BD & 0\\ 0 & 0 \end{pmatrix}$$

donc

$$BD = I_r$$

Or, on sait que B est inversible donc $D=B^{-1},$ ce qui montre que A' est déterminé de manière unique.

On retrouve d'ailleurs la matrice exhibée à la question 7 dans le but de montrer que A admet des pseudo-inverses.

A admet un et un seul pseudo-inverse.