

Mathématiques 2

PC C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Le sujet est composée de trois parties.

Dans la partie I, on définit une suite $(\alpha_n)_n$ d'entiers naturels via le développement en série entière d'une fonction auxiliaire et on s'intéresse en particulier à la suite extraite $(\alpha_{2n+1})_n$ formée des termes de rang impair.

Dans la partie II, on détermine un équivalent, lorsque n tend vers l'infini, de α_{2n+1} en faisant appel à des outils analytiques et notamment à la fonction zêta de Riemann.

Dans la partie III, on définit les permutations alternantes. On procède d'abord à leur dénombrement, avant de s'intéresser à des aspects probabilistes.

La partie II fait appel, très ponctuellement, à des résultats de la partie I. La partie III utilise des résultats des parties I et II.

I Introduction d'une fonction auxiliaire

Soit l'intervalle $I=]-\pi/2,\pi/2[$. On considère la fonction f définie sur I par

$$\forall x \in I, \qquad f(x) = \frac{\sin x + 1}{\cos x}.$$

On note $f^{(n)}$ la dérivée d'ordre n de f et, par convention, $f^{(0)} = f$.

I.A - Dérivées successives

- **Q 1.** Exprimer les dérivées f', f'' et $f^{(3)}$ à l'aide des fonctions usuelles.
- **Q 2.** Montrer qu'il existe une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ à coefficients réels telle que

$$\forall n \in \mathbb{N}, \ \forall x \in I, \qquad f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}.$$

On explicitera les polynômes P_0 , P_1 , P_2 , P_3 et, pour tout entier naturel n, on exprimera P_{n+1} en fonction de P_n et P'_n .

Q 3. Justifier que, pour tout entier $n \ge 1$, le polynôme P_n est unitaire, de degré n et que ses coefficients sont des entiers naturels.

Q 4. Montrer

$$\forall x \in I, \qquad 2f'(x) = f(x)^2 + 1.$$

Pour tout entier naturel n, on pose $\alpha_n = f^{(n)}(0) = P_n(0)$.

Q 5. Montrer
$$2\alpha_1 = \alpha_0^2 + 1$$
 et

$$\forall n \in \mathbb{N}^{\star}, \qquad 2\alpha_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \alpha_k \alpha_{n-k}.$$

III Permutations alternantes

Soit n un entier supérieur ou égal à 2 et soit $(x_1,x_2,...,x_n)$ une liste de n nombres réels. On dit que la liste $(x_1,...,x_n)$ est alternante montante si $(-1)^i(x_i-x_{i-1})>0$ pour tout $i\in [\![2,n]\!]$. On dit qu'elle est alternante descendante si $(-1)^i(x_i-x_{i-1})<0$ pour tout $i\in [\![2,n]\!]$.

Autrement dit, la liste $(x_1,...,x_n)$ est alternante montante si elle vérifie les inégalités $x_1 < x_2 > x_3 < x_4 > \cdots$. Elle est alternante descendante si elle vérifie les inégalités inverses.

Par exemple, (1,5,3,11,8,9) est alternante montante car 1<5>3<11>8<9 et (7,4,5,2,12) est alternante descendante car 7>4<5>2<12.

On dit qu'une permutation σ de l'ensemble [1,n] est alternante montante (respectivement alternante descendante) si la liste $(\sigma(1),...,\sigma(n))$ est alternante montante (respectivement alternante descendante).

Par exemple, avec n=7 et en représentant toute permutation σ par la liste des images $(\sigma(1),...,\sigma(7))$, on constate que (1,5,4,6,2,7,3) représente une permutation alternante montante et (3,2,6,4,7,1,5) une permutation alternante descendante.

III.A - Dénombrement des permutations alternantes

- **Q 32.** Déterminer les permutations alternantes montantes de [1,n] pour n=2, n=3, n=4.
- Q 33. Montrer, pour tout $n \ge 2$, que le nombre de permutations alternantes montantes est égal au nombre de permutations alternantes descendantes.
- Si $n \ge 2$, on note β_n le nombre de permutations alternantes montantes de $[\![1,n]\!]$, et on convient que $\beta_0 = \beta_1 = 1$.
- **Q 34.** Soient k et n deux entiers tels que $2 \le k \le n$ et A une partie à k éléments de $[\![1,n]\!]$. On considère les listes $(x_1,...,x_k)$ constituées de k éléments deux à deux distincts de A. Montrer que le nombre de ces listes qui sont alternantes montantes est égal à β_k .

Le nombre de celles qui sont alternantes descendantes est le même, mais on ne demande pas de le justifier.

Q 35. Montrer, pour tout entier
$$n \ge 1$$
, $2\beta_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \beta_k \beta_{n-k}$.

Pour $k\in [\![0,n]\!]$, dénombrer les permutations σ alternantes (montantes ou descendantes) de $[\![1,n+1]\!]$ telles que $\sigma(k+1)=n+1$.

Q 36. En déduire que $\beta_n = \alpha_n$ pour tout $n \in \mathbb{N}$.