Dans tout le chapitre, on considère des fonctions d'un intervalle I de $\mathbb R$ dans $\mathbb K$. On notera comme de coutume

- $\mathcal{B}(I, \mathbb{K}) = \{ f : I \longrightarrow \mathbb{K} \text{ born\'ees} \}.$
- $\forall f \in \mathcal{B}(I, \mathbb{K}), \quad ||f||_{\infty} = \sup_{x \in I} |f(x)|$
- Si maintenant J est un intervalle J inclus dans I, on notera $||f||_{\infty,J} = \sup_{x \in J} |f(x)|$

1 Modes de convergence d'une suite ou d'une série de fonctions

1.1 Convergence simple

Définition 1

On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f si pour tout $x\in I$, la suite de réels $(f_n(x))_{n\in\mathbb{N}}$ converge vers f(x). On note alors $f_n\xrightarrow[n\to+\infty]{s} f$.

Remarque 1

Si une suite $(f_n)_{n\in\mathbb{N}}$ converge simplement, sa limite est unique et est donnée par

$$f: x \longmapsto \lim_{n \to +\infty} f_n(x)$$

(Définition 2)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions. On dit que la série de fonction $\sum f_n$ converge simplement sur I si pour tout $x\in I$, la série $\sum f_n(x)$ est convergente. Dans ce cas, on appelle somme de la série l'application

$$\sum_{n=0}^{+\infty} f_n: \quad I \longrightarrow \mathbb{K}$$
$$x \longmapsto \sum_{n=0}^{+\infty} f_n(x)$$

Remarque 2

La convergence simple de la série équivaut donc à la convergence simple de la suite des sommes partielles.

Exemple 1

• La suite $(f_n)_{n\in\mathbb{N}}$ d'application de [0;1] dans lui-même définies par $f_n: x \longmapsto x^n$ converge simplement vers

$$f: [0;1] \longrightarrow [0;1]$$

$$x \longmapsto \begin{cases} 0 & \text{si } x < 1 \\ 1 & \text{sinon} \end{cases}$$

• Soit f continue, constante égale à 0 (resp. 1) sur $]-\infty;-1]$ (resp. sur $[1;+\infty[)$, et affine sur [-1;1]. On pose pour tout entier n

$$g_n: x \longmapsto f(x+n)$$
 et $h_n: x \longmapsto f(x-n)$

Alors $(g_n)_{n\in\mathbb{N}}$ (resp. $(h_n)_{n\in\mathbb{N}}$) converge simplement sur \mathbb{R} vers la fonction constante égale à 1 (resp. la fonction nulle).

• La série de fonction $\sum_{n\geq 1} f_n$ où $f_n: x \longmapsto 1/n^x$ converge simplement sur $]1; +\infty[$.

1.2 Convergence uniforme

(Définition 3)

On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si on a la propriété suivante :

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad \forall x \in I, \qquad |f_n(x) - f(x)| \le \epsilon$$

On note alors $f_n \xrightarrow[n \to +\infty]{u} f$.

Une série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément par définition si la suite de ses sommes partielles converge uniformément.

Remarque 3

La convergence simple d'une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions vers f s'écrit

$$\forall x \in I, \quad \forall \epsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \qquad |f_n(x) - f(x)| \le \epsilon$$

La définition de la convergence uniforme s'obtient en inversant l'ordre de certains quantificateurs,

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall x \in I, \quad \forall n \ge N, \qquad |f_n(x) - f(x)| \le \epsilon$$

Avec cette nouvelle définition, le rang N à partir duquel la majoration est valide ne dépend plus ici que de ϵ et il est notamment indépendant de x).

Proposition 1

- La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si et seulement il existe $N\in\mathbb{N}$ tel que f_n-f est bornée pour $n\geq N$ avec $||f_n-f||_{\infty}\xrightarrow[n\to+\infty]{}0$.
- La convergence uniforme d'une suite (resp. série) de fonctions implique sa convergence simple et la limite (resp. somme) est inchangée.

Exemple 2

- Pour la suite $(f_n)_{n\in\mathbb{N}}$ où $f_n: x \longmapsto x^n$, la convergence n'est pas uniforme car $||f_n (\lim f_n)||_{\infty} = 1$ pour tout entier n.
- La série $\sum_{n\geq 1} f_n$ avec $f_n: x \longmapsto 1/n^x$ ne converge pas uniformément sur $]1; +\infty[$ car pour tout entier n, le

reste $\sum_{k=n+1}^{+\infty} f_k$ n'est pas une fonction bornée sur]1; $+\infty$ [.

Remarque 4

Pour déterminer la nature de la convergence d'une suite, on peut donc

- Vérifier si pour pour tout x, $(f_n(x))_{n\in\mathbb{N}}$ converge, auquel cas on note f(x) sa limite et on a convergence simple,
- Déterminer ou majorer $||f_n f||_{\infty}$ et vérifier si cette quantité tend vers 0, auquel cas on a en plus convergence uniforme.

Pour les séries de fonctions, on utilise en général plutôt la notion de convergence normale pour démontrer la convergence uniforme.

Exercice 1 (Mines)

On pose $f_n: x \mapsto e^{-nx} - (1-x)^n$. Etudier la convergence uniforme sur [0; 1].

1.3 Convergence normale des séries de fonctions

Définition 4

On dit que la série de fonctions $\sum f_n$ converge normalement sur I si

- Pour tout entier n, f_n est bornée sur I.
- La série à termes positifs $\sum ||f_n||_{\infty}$ est convergente.

Proposition 2

Toute série de fonctions normalement convergente est uniformément, et donc simplement convergente.

Remarque 5

La réciproque est fausse (la convergence simple n'assure même pas le fait que chacune des f_n soit bornée). Il suffit de considérer par exemple $\sum f_n$ avec

$$\forall n \in \mathbb{N}, \qquad f_n: \]0;1[\longrightarrow]0;1[\\ x \longmapsto x^n$$

Proposition 3

Soit $\sum f_n$ une série de fonctions avec $f_n \in \mathcal{B}(I, \mathbb{K})$ pour tout n.

- S'il existe une suite $(v_n)_{n\in\mathbb{N}}$ positive telle que la série $\sum v_n$ converge et telle que $||f_n||_{\infty} \leq v_n$ pour tout n, alors la série $\sum f_n$ est normalement convergente.
- S'il existe une suite $(x_n)_{n\in\mathbb{N}}$ telle que $\sum |f_n(x_n)|$ diverge, alors la série $\sum f_n$ n'est pas normalement convergente.

Exemple 3

La série $\sum_{n\geq 1} f_n$ avec $f_n: x\longmapsto 1/n^x$ ne converge pas normalement sur $]1;+\infty[$ car $||f_n||_{\infty,]1;+\infty[}$ est égal à 1/n qui est le terme général d'une série divergente. En revanche, on a convergence normale (donc uniforme) sur tout intervalle de la forme $[a;+\infty[$ avec a>1.

(Exercice 2)

Etudier la convergence de la série de fonctions $\sum_{n\geq 0} x^2 \exp(-x\sqrt{n})$.

2 Régularité de la limite d'une suite de fonctions

Théorème 1 (Continuité de la limite d'une suite de fonctions)

Si une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues sur I converge uniformément vers f sur I, alors f est continue sur I.

Remarque 6

- Le résultat reste conservé si on suppose seulement que la convergence est uniforme sur tout segment de I (ou sur n'importe quelle famille d'intervalles qui recouvre I).
- Le résultat est faux si l'on suppose seulement la convergence simple, comme le montre l'exemple $f_n: x \mapsto x^n$ sur [0;1] (la limite n'est pas continue en 1). Sur l'intervalle [0;1[cependant, le résultat s'applique sur tous les segments et assure la continuité de la limite.

Théorème 2 (Interversion limite-intégrale sur un segment)

Si une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues sur un segment [a;b] converge uniformément vers une fonction f, alors

$$\lim_{n \to +\infty} \int_a^b f_n(f) \, \mathrm{d}t = \int_a^b f(t) \, \mathrm{d}t$$

Remarque 7 (Suite de Dirac)

Le résultat devient faux si on suppose seulement la convergence simple. Le contre-exemple classique est celui d'un pic de Dirac par exemple,

$$\forall n \in \mathbb{N}, \qquad f_n : x \longmapsto \begin{cases} n^2 x & \text{si } x \in [0; 1/n] \\ n^2 (2/n - x) & \text{si } x \in [1/n; 2/n] \\ 0 & \text{si } x > 2/n \end{cases}$$

Alors, $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction nulle mais pas uniformément, mais l'intégrale de f_n ne tend pas vers 0 car elle est constante égale à 1.

Exercice 3

Montrer que pour toute fonction g continue sur [0; 1],

$$\lim_{n \to +\infty} \int_0^1 f_n(t)g(t) \, \mathrm{d}t = g(0)$$

Théorème 3 (Dérivabilité de la limite d'une suite de fonctions)

Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions de classe \mathcal{C}^1 sur I qui converge simplement sur I vers une fonction f, et telle que la suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers une fonction g, alors f est de classe \mathcal{C}^1 sur I et f'=g.

Corollaire 1 (Extension aux fonctions de classe \mathcal{C}^k)
Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de classe \mathcal{C}^k sur I avec $k\geq 1$. On suppose que

- Pour tout $j \in [0; k-1]$, la suite $(f_n^{(j)})_{n \in \mathbb{N}}$ converge simplement vers une fonction g_j .
- La suite $(f_n^{(k)})_{n\in\mathbb{N}}$ converge uniformément vers une fonction g_k .

Alors, la limite g_0 de la suite $(f_n)_{n\in\mathbb{N}}$ est de classe \mathcal{C}^k et pour tout $j\in[0;k]$, $g_0^{(j)}=g_j$.

Remarque 8

- En d'autres termes, les dérivées de la limite sont égale aux limites des dérivées.
- Le résultat reste là aussi conservé si on suppose seulement la convergence uniforme sur tout segment (ou sur n'importe quelle famille d'intervalles qui recouvre I) de la suite des dérivées k-ièmes.

Régularité de la somme d'une série de fonctions 3

Théorème 4 (Continuité de la somme d'une série de fonctions)

Soit $\sum f_n$ une série de fonctions continues sur I qui converge uniformément sur I. Alors la somme $\sum_{n=1}^{\infty} f_n$ est continue sur I.

Remarque 9

- Le résultat reste là aussi conservé si on suppose seulement la convergence uniforme sur tout segment (ou sur n'importe quelle famille d'intervalles qui recouvre I) de la série.
- La convergence normale de $\sum f_n$ implique la convergence uniforme sur I et donc la continuité de la somme à nouveau si les $(f_n)_{n\in\mathbb{N}}$ sont continues.
- Si $(f_n)_{n\in\mathbb{N}}$ est une suite décroissante de fonctions positves et qui converge simplement vers 0, alors $\sum_{n\geq 0} (-1)^n f_n$ converge simplement sur I par CSA. Dans la plupart des cas, la majoration des restes d'une série alternée permet également d'obtenir la convergence uniforme.

Exemple 4

Pour tout $n \in \mathbb{N}$, on pose $f_n : x \longmapsto x^n/n!$. La série de fonctions continues $\sum f_n$ est normalement convergente sur tout segment de \mathbb{R} donc la somme est continue.

On remarquera notamment qu'aucune des fonctions f_n n'est bornée sur \mathbb{R} .

Exercice 4

Etudier la convergence et la continuité de la somme de la série $\sum_{n\geq 1} f_n$ avec

(1)
$$f_n: x \longmapsto \frac{\arctan(nx)}{n^2}$$
 (2) $f_n: x \longmapsto \frac{(-1)^n}{x^2 + n}$

Théorème 5 (Théorème de la double limite)

Soit $\sum f_n$ une série de fonctions définies sur I et a une borne de I (éventuellement infinie). On suppose que

- Pour tout entier n, f_n a une limite finie ℓ_n en a.
- La série de fonctions $\sum f_n$ converge uniformément sur I.

Alors la série $\sum \ell_n$ converge et

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n \right)(x) = \sum_{n=0}^{+\infty} \ell_n \quad \text{soit} \quad \lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n \right)(x) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

Remarque 10

• Attention, on ne peut pas ici se contenter de vérifier la convergence uniforme sur les segments de I. Le résultat est faux **même** en cas de convergence normale sur tout segment de I. Il suffit de considérer par exemple $\sum f_n$ avec

$$f_n: [0;1[\longrightarrow [0;1[x \longmapsto x^n(1-x)]]$$

On peut néanmoins restreindre l'étude à un sous-intervalle J de I du moment que celui-ci a également a comme borne.

• Le nom officiel du théorème est emprunté à la même version du théorème pour les suites de fonctions (qui est similaire, mais pas au programme de PC). Il eût été plus judicieux de le nommer « interversion somme/limite ».

Exercice 5

On note

$$F: x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n(1+nx^2)}$$

Justifier les équivalents

$$F(x) \underset{x \to 0^+}{\sim} -2 \ln x$$
 et $F(x) \underset{x \to +\infty}{\sim} \frac{\pi^2}{6} \cdot \frac{1}{x^2}$

Théorème 6 (Intégration terme à terme sur un segment)

Soit $\sum f_n$ une série de fonctions continues qui converge uniformément sur un segment [a;b]. Alors, la série

$$\sum \int_a^b f_n(t) dt$$
 converge et l'on a

$$\int_{a}^{b} \left(\sum_{n=0}^{+\infty} f_n(x) \right) dx = \sum_{n=0}^{+\infty} \left(\int_{a}^{b} f_n(x) dx \right)$$

Remarque 11

Le résultat est à nouveau faux sans l'hypothèse de convergence uniforme. Il suffit de prendre une suite $(f_n)_{n\in\mathbb{N}}$ de Dirac et de poser $g_0 = f_0$ puis $g_n = f_n - f_{n-1}$ pour tout $n \ge 1$.

Exemple 5 (Version (très) simplifiée du théorème des résidus)

Soit $z_0 \in \mathbb{C}$ et $r \in \mathbb{R}_+$ tel que $|z_0| \neq r$. Alors,

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{z_0 - re^{i\theta}} = \left\{ \begin{array}{cc} 2\pi/z_0 & \mathrm{si}\ r < |z_0| \\ 0 & \mathrm{si}\ r > |z_0| \end{array} \right.$$

Théorème 7 (Théorème de dérivation terme à terme)

Soit $\sum f_n$ une série de fonctions avec f_n de classe \mathcal{C}^1 pour tout entier n. On fait les hypothèses suivantes :

- La série $\sum f_n$ converge simplement sur I.
- $\bullet \,$ La série $\sum \! {f_n}'$ converge uniformément sur I.

Alors la fonction $\sum_{n=0}^{+\infty} f_n$ est de classe C^1 sur I et

$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

Corollaire 2 (Extension aux séries de fonctions de classe \mathcal{C}^k)

Soit $k \in \mathbb{N}^*$ et $\sum f_n$ une série de fonctions avec f_n de classe C^k pour tout entier n. On suppose que

- Pour tout $p \in [0; k-1]$, la série $\sum f_n^{(p)}$ converge simplement sur I.
- La série $\sum f_n^{(k)}$ converge uniformément sur I.

Alors la fonction $\sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^k sur I et pour tout $p \in [1; k]$,

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(p)} = \sum_{n=0}^{+\infty} f_n^{(p)}$$

Remarque 12

Le résultat reste là aussi conservé si on suppose seulement la convergence uniforme sur tout segment (ou sur n'importe quelle famille d'intervalles qui recouvre I) de la série $\sum f_n^{(k)}$.

Exemple 6 (Fonction ζ de Riemann)

L'application $x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est de classe \mathcal{C}^{∞} sur]1; $+\infty$ [et de limite 1 en $+\infty$.

Exercice 6 (Mines)

- Retour sur $f_n: x \longmapsto \frac{\arctan(nx)}{n^2}$. La somme $\sum_{n=1}^{+\infty} f_n$ est-elle de classe \mathcal{C}^1 ?
- Montrer que $x \longmapsto \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}$ est de classe \mathcal{C}^{∞} sur $]-1;+\infty[$.