II Propriétés de $\mathcal{M}_0(n, \mathbb{K})$

- La lettre n désigne un entier supérieur ou égal à 1.
- On note K le corps des nombres réels ou le corps des nombres complexes.
- On note respectivement $\mathcal{M}(n, \mathbb{K})$, $GL(n, \mathbb{K})$, $\mathcal{D}(n, \mathbb{K})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{K} , le groupe des matrices inversibles de $\mathcal{M}(n, \mathbb{K})$, le sous-espace vectoriel de $\mathcal{M}(n, \mathbb{K})$ formé des matrices diagonales.
- On désigne par $\mathcal{M}_0(n,\mathbb{K})$ l'ensemble des matrices de $\mathcal{M}(n,\mathbb{K})$ de trace nulle.
- On note I_n la matrice identité et 0 la matrice nulle de $\mathcal{M}(n, \mathbb{K})$.
- On dit qu'une matrice A de $\mathcal{M}(n, \mathbb{K})$ est nilpotente s'il existe un entier naturel non nul r tel que $A^r = 0$. De la même manière, on dit qu'un endomorphisme f est nilpotent s'il existe un entier naturel non nul r tel que $\underbrace{f \circ \cdots \circ f}_{} = 0$.
- Pour tout couple (A, B) d'éléments de $\mathcal{M}(n, \mathbb{K})$, le crochet [A, B] est défini par [A, B] = AB BA.
- Pour tout $A \in \mathcal{M}(n, \mathbb{K})$, on définit l'endomorphisme

$$\Phi_A: \mathcal{M}(n, \mathbb{K}) \longrightarrow \mathcal{M}(n, \mathbb{K}) \\
B \longmapsto [A, B]$$

• On dit qu'un triplet (X, H, Y) de trois matrices non nulles de $\mathcal{M}(n, \mathbb{K})$ est un triplet admissible si les trois relations suivantes sont vérifiées :

$$[H,X] = 2X$$
 ; $[X,Y] = H$; $[H,Y] = -2Y$

On pose:

$$X_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad ; \quad H_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad ; \quad Y_0 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad ; \quad J_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

II.A - Généralités

II.A.1) Montrer que $\mathcal{M}_0(n, \mathbb{K})$ est un \mathbb{K} -espace vectoriel; en préciser la dimension.

II.A.2) Justifier que, pour tout couple (A, B) d'éléments de $\mathcal{M}(n, \mathbb{K})$, la matrice [A, B] appartient à $\mathcal{M}_0(n, \mathbb{K})$.

II.B - Un isomorphisme

Montrer que l'application

$$j: \quad \mathbb{K}^3 \quad \longrightarrow \quad \mathcal{M}_0(2, \mathbb{K})$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \longmapsto \quad \begin{pmatrix} x & y+z \\ y-z & -x \end{pmatrix}$$

est un isomorphisme de K-espaces vectoriels

II.C - Caractérisation des matrices nilpotentes

Soit A une matrice non nulle de $\mathcal{M}_0(2,\mathbb{K})$. Montrer que les propriétés suivantes sont équivalentes :

- i. La matrice A est nilpotente;
- ii. Le spectre de A est égal à $\{0\}$;
- iii. La matrice A est semblable à la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

II.D – Le cas complexe

On suppose dans cette question que $\underline{\mathbb{K}}$ est égal à \mathbb{C} .

II.D.1) Montrer que deux matrices non nulles de $\mathcal{M}_0(2,\mathbb{C})$ sont semblables si et seulement si elles ont le même polynôme caractéristique.

II.D.2) Ce résultat reste-t-il vrai pour deux matrices non nulles de $\mathcal{M}_0(n,\mathbb{C})$, avec $n \geq 3$?

II.E - Le cas réel

On suppose dans cette question que \mathbb{K} est égal à \mathbb{R} .

II.E.1) Soit A une matrice de $\mathcal{M}_0(2,\mathbb{R})$. On suppose que son polynôme caractéristique vaut $X^2 + r^2$, où r est un réel non nul.

a) Justifier l'existence d'une matrice $P \in GL(2,\mathbb{C})$ vérifiant : $irH_0 = P^{-1}AP$. Que vaut la matrice $A^2 + r^2I_2$?

- b) Soit f l'endomorphisme de \mathbb{R}^2 canoniquement associé à la matrice A, c'est-à-dire qui à un vecteur colonne u de \mathbb{R}^2 associe le vecteur Au. Soit w un vecteur non nul de \mathbb{R}^2 . Prouver que la famille $\left(\frac{1}{r}f(w),w\right)$ est une base de \mathbb{R}^2 , et donner la matrice de f dans cette base.
- **II.E.2**) Montrer que deux matrices non nulles de $\mathcal{M}_0(2,\mathbb{R})$ sont semblables dans $\mathcal{M}(2,\mathbb{R})$ si et seulement si elles ont le même polynôme caractéristique.

II.F - Un lemme

Soient A, B et M trois éléments de $\mathcal{M}_0(2, \mathbb{K})$.

- **II.F.1)** Exprimer la trace de la matrice M^2 en fonction du déterminant de M.
- II.F.2) Démontrer que la matrice M est nilpotente si et seulement si la trace de la matrice M^2 est nulle.
- **II.F.3)** On suppose que les matrices A et [A, B] commutent.

Démontrer que la matrice [A, B] est nilpotente.

II.G - Description des triplets admissibles de $\mathcal{M}_0(2,\mathbb{K})$

- **II.G.1)** Déterminer les matrices M de $\mathcal{M}(2,\mathbb{K})$ qui commutent avec X_0 . Quelles sont les matrices M de $\mathcal{M}_0(2,\mathbb{K})$ qui commutent avec X_0 ?
- **II.G.2)** Soit P une matrice de $GL(2,\mathbb{K})$. Vérifier que $(PX_0P^{-1},PH_0P^{-1},PY_0P^{-1})$ est un triplet admissible. On se propose de démontrer que, réciproquement, tous les triplets admissibles de $\mathcal{M}_0(2,\mathbb{K})$ sont de cette forme. Pour toute la suite de la question II.G, soient X, H, Y trois éléments de $\mathcal{M}_0(2,\mathbb{K})$ tels que (X, H, Y) forme un triplet admissible.
- II.G.3) Montrer en utilisant les questions II.F et II.C qu'il existe une matrice $Q \in GL(2, \mathbb{K})$ vérifiant $X = QX_0Q^{-1}$.

On fixe pour la suite de la question II.G une telle matrice $Q \in GL(2, \mathbb{K})$.

II.G.4) On définit les vecteurs
$$u = Q \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 et $v = Q \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- a) En calculant le vecteur [H,X]u de deux manières différentes, démontrer que u est un vecteur propre de la matrice H.
- b) En calculant le vecteur [H, X]v de deux manières différentes, prouver l'existence d'un scalaire t vérifiant l'identité : $H = Q \begin{pmatrix} 1 & t \\ 0 & -1 \end{pmatrix} Q^{-1}$.
- c) Trouver une matrice $T \in GL(2, \mathbb{K})$ commutant avec X_0 et vérifiant la relation $H = QTH_0(QT)^{-1}$. On pose désormais P = QT.
- **II.G.5)** Soit $Y' \in \mathcal{M}_0(2, \mathbb{K})$ telle que (X, H, Y') soit un triplet admissible.
- a) Déduire de la question II.G.1 les matrices de $\mathcal{M}_0(2, \mathbb{K})$ qui commutent avec X.
- b) Calculer les matrices $\Phi_X(Y-Y')$ et $\Phi_H(Y-Y')$.
- c) En déduire que l'on a Y' = Y.
- **II.G.6)** Démontrer l'identité $(X, H, Y) = (PX_0P^{-1}, PH_0P^{-1}, PY_0P^{-1}).$