(*)

Etudier la convergence quand $n \to +\infty$ et la limite éventuelle de l'intégrale

$$\int_0^{+\infty} \frac{\cos(x/n)}{1+x^2} \, \mathrm{d}x$$

Notons pour tout $n \ge 1$

$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{\cos(x/n)}{1+x^2}$$

Appliquons le théorème de convergence dominée à la suite $(f_n)_{n\in\mathbb{N}^*}$

- Pour tout entier $n \in \mathbb{N}^*$, f_n est intégrable sur \mathbb{R}_+ car continue et dominée au voisinage de $+\infty$ par $1/x^2$.
- La suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers $f: x \longmapsto \frac{1}{1+x^2}$, qui est continue sur \mathbb{R}_+ .
- Pour tout entier n, on a $|f_n| \leq f$, qui est intégrable sur \mathbb{R}_+ .

Le théorème s'applique et prouve que

$$\int_0^{+\infty} f_n(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{\pi}{2}$$

soit

$$\int_0^{+\infty} \frac{\cos(x/n)}{1+x^2} dx \xrightarrow[n \to +\infty]{} \frac{\pi}{2}$$

2

_____(*) ___

Etudier la convergence quand $n \to +\infty$ et la limite éventuelle de l'intégrale

$$\int_0^{+\infty} \frac{n \sin(x/n)}{x(1+x^2)} \, \mathrm{d}x$$

Notons pour tout $n \ge 1$

$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{n \sin(x/n)}{x(1+x^2)}$$

Appliquons le théorème de convergence dominée à la suite $(f_n)_{n\in\mathbb{N}^*}$. On rappelle que $u\longmapsto (\sin u)/u$ est prolongeable par continuité en 0 par 1, et majorée (en valeur absolue) par 1 sur \mathbb{R}_+^* . Ainsi,

- Pour tout entier $n \in \mathbb{N}^*$, f_n est intégrable sur \mathbb{R}_+^* car continue, prolongeable par continuité en 0, et équivalente à n/x^3 en $+\infty$.
- La suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers $f:x\longmapsto \frac{1}{1+x^2}$, qui est continue sur \mathbb{R}_+ .
- Pour tout entier n, on a $|f_n| \leq f$, qui est intégrable sur \mathbb{R}_+ .

Le théorème s'applique et prouve que

$$\int_0^{+\infty} f_n(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{\pi}{2}$$

soit

$$\int_0^{+\infty} \frac{n \sin(x/n)}{x(1+x^2)} dx \xrightarrow[n \to +\infty]{} \frac{\pi}{2}$$

_ (**)

Etudier la convergence quand $n \to +\infty$ et la limite éventuelle de l'intégrale

$$\int_{0}^{n} \left(1 - \frac{x}{n}\right)^{n} \cos x \, \mathrm{d}x$$

Notons pour tout $n \ge 1$

$$x \longmapsto \begin{cases} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto \begin{cases} \left(1 - \frac{x}{n}\right)^n \cos x & \text{si } x \in [0; n] \\ 0 & \text{sinon} \end{cases}$$

Appliquons le théorème de convergence dominée à la suite $(f_n)_{n\in\mathbb{N}^*}$.

- Pour tout entier $n \in \mathbb{N}^*$, f_n est intégrable sur \mathbb{R}_+ car continue et nulle à partir d'un certain rang.
- Pour tout $x \in \mathbb{R}$, on a $n \geq x$ à partir d'un certain rang et alors

$$f_n(x) = e^{n \ln(1 - x/n)} \cos x = e^{-x + o(1)} \cos x \xrightarrow[n \to +\infty]{} e^{-x} \cos x$$

Ainsi, $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction $x\longmapsto e^{-x}\cos x$ continue sur \mathbb{R}_+ .

• Par concavité de la fonction ln, on a $\ln(1+t) \le t$ pour tout t > -1, et donc

$$\forall n \in \mathbb{N}, \quad \forall x \in [0; n[, \quad 0 \le |f_n(x)| \le e^{n \ln(1 - x/n)} \le e^{-x}$$

Cette majoration reste bien entendu valable sur $[n; +\infty[$ et la fonction $x \longmapsto e^{-x}$ est intégrable sur \mathbb{R}_+ .

Le théorème de convergence dominée s'applique et prouve que $\int_0^{+\infty} f_n(x) dx$ converge vers $\int_0^{+\infty} e^{-x} \cos x dx$. Pour calculer cette dernière rapidement, il suffit de passer par les complexes. En effet,

$$\int_0^{+\infty} e^{-x} \cos x \, dx = \Re \left(\int_0^{+\infty} e^{(i-1)x} \, dx \right) = \Re \left[\frac{e^{(i-1)x}}{i-1} \right]_0^{+\infty} = \Re \left(\frac{1}{1-i} \right)$$

et finalement

$$\left| \int_0^n \left(1 - \frac{x}{n} \right)^n \cos x \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \frac{1}{2} \right|$$

Soit a > 0. Etudier l'existence et la valeur de $\lim_{n \to +\infty} \int_0^{+\infty} \frac{\mathrm{d}x}{(a^2 + x^2)^n}$.

Notons pour tout $n \in \mathbb{N}$,

$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

 $x \longmapsto (a^2 + x^2)^{-n}$

Pour tout n, l'application f_n est continue sur \mathbb{R}_+ et équivalente à $1/x^{2n}$ au voisinage de $+\infty$. Par suite, elle est intégrale lorsque $n \ge 1$. Etudions maintenant la limite simple de la suite. On distingue plusieurs cas suivant la valeur de a.

- Si a > 1, alors $x^2 + a^2 > 1$ et $f_n(x) \xrightarrow[n \to +\infty]{} 0$ quel que soit $x \in \mathbb{R}_+$.
- Si a=1, alors de même $f_n(x) \xrightarrow[n \to +\infty]{} 0$ pour tout x>0 et $f_n(0) \xrightarrow[n \to +\infty]{} 1$.
- Enfin si a < 1, la suite $(f_n(0))_{n \in \mathbb{N}}$ tend vers $+\infty$.

Ainsi, la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ seulement si $a\geq 1$, auquel la limite simple est continue par morceaux et nulle sur \mathbb{R}_+^* . En remarquant que f_1 majore f_n pour tout entier n, on peut donc appliquer le théorème de convergence dominée et conclure que

Si
$$a \ge 1$$
, alors $\int_0^{+\infty} \frac{\mathrm{d}x}{(a^2 + x^2)^n} \xrightarrow[n \to +\infty]{} 0$.

Reste le cas a < 1 pour lequel on n'a ni convergence simple, ni domination de $(f_n)_{n \in \mathbb{N}}$. Fixons $b \in]a; 1[$. et utilisons la continuité de $f_1 : x \longmapsto 1/(a^2 + x^2)$ en 0. Puisque $f_1(0) = 1/a^2 > 1/b^2$, il existe $\delta > 0$ tel que

$$\forall x \in [0; \delta], \qquad f_1(x) \ge \frac{1}{b^2}$$

puis

$$\int_0^{+\infty} f_n(x) \, \mathrm{d}x = \int_0^{+\infty} (f_1(x))^n \, \mathrm{d}x \ge \int_0^{\delta} (f_1(x))^n \, \mathrm{d}x \ge \int_0^{\delta} \frac{1}{b^{2n}} \, \mathrm{d}x = \frac{\delta}{b^{2n}}$$

Puisque l'on a pris b < 1, le terme de droite tend vers $+\infty$ quand n tend vers $+\infty$, on en déduit par minoration que

Si
$$a < 1$$
, alors $\int_0^{+\infty} \frac{\mathrm{d}x}{(a^2 + x^2)^n} \xrightarrow[n \to +\infty]{} +\infty$.

5

____ (*) ____

Pour tout entier n, on pose

$$f_n: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{e^{-x}}{1+x^n}$$

(a). Etudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$.

(b). A-t-on
$$\int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx = \lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx?$$

(a). Soit $x \in \mathbb{R}_+$. On distingue trois cas.

$$f_n(x) \xrightarrow[n \to +\infty]{} \begin{cases} e^{-x} & \text{si } x < 1 \\ 1/(2e) & \text{si } x = 1 \\ 0 & \text{sinon} \end{cases}$$

Par suite

La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ .

- (b). Appliquons le théorème de convergence dominée.
 - Pour tout entier n, la fonction f_n est intégrable sur \mathbb{R}_+ car continue et dominée par $x \longmapsto e^{-x}$ au voisinage de $+\infty$.
 - La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ vers une fonction continue par morceaux.
 - Pour tout entier n et tout $x \ge 0$, on a $|f_n(x)| \le e^{-x}$, cette fonction de domination étant intégrable sur \mathbb{R}_+ .

Le théorème de convergence dominée s'applique et prouve que

$$\int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx = \lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx$$

Au passage, la dite-limite est égale à $\int_0^1 e^{-x} dx$ soit $1 - e^{-1}$.

6 ______ (***) ____

- (a). Justifier l'existence et donner la valeur pour tout $n \in \mathbb{N}^*$ de $\int_0^{+\infty} \frac{e^{-x} e^{-nx}}{x} dx$.
- (b). Justifier l'égalité $\int_0^{+\infty} e^{-x} \left(\frac{1}{1 e^{-x}} \frac{1}{x} \right) dx = \lim_{n \to +\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n \right)$

On prouvera l'existence de l'intégrale uniquement (pas la convergence de la suite).

(a) Pour tout $n \in \mathbb{N}^*$, l'application $x \longmapsto (e^{-x} - e^{-nx})/x$ est continue sur \mathbb{R}_+^* , prolongeable par continuité en 0, et dominée par $1/x^2$ en $+\infty$. Elle est donc intégrable ce qui assure la convergence de l'intégrale.

Pour la calculer, fixons $\alpha, \beta > 0$. En séparant les intégrales puis en faisant un changement de variable affine, on obtient

$$\int_{\alpha}^{\beta} \frac{e^{-x} - e^{-nx}}{x} dx = \int_{\alpha}^{\beta} \frac{e^{-x}}{x} dx - \int_{n\alpha}^{n\beta} \frac{e^{-x}}{x} dx = \int_{\alpha}^{n\alpha} \frac{e^{-x}}{x} dx - \int_{\beta}^{n\beta} \frac{e^{-x}}{x} dx$$

Lorsque β tend vers $+\infty$, on peut écrire grâce à l'intégrabilité de $x \longmapsto e^{-x}/x$ au voisinage de $+\infty$

$$\int_{\beta}^{n\beta} \frac{e^{-x}}{x} dx = \int_{\beta}^{+\infty} \frac{e^{-x}}{x} dx - \int_{n\beta}^{+\infty} \frac{e^{-x}}{x} dx \xrightarrow{\beta \to +\infty} 0$$

Par ailleurs, on peut écrire lorsque x tend vers 0,

$$e^{-x} = 1 - x + o(x)$$
 d'où $\frac{e^{-x}}{x} - \frac{1}{x} = -1 + o(x)$

Ainsi, l'application $x \mapsto (e^{-x} - 1)/x$ est bornée au voisinage de 0. On peut donc trouver $M \in \mathbb{R}_+$ et $\epsilon > 0$ tels que

$$\forall x \in]0; \epsilon[, \qquad \left| \frac{e^{-x}}{x} - \frac{1}{x} \right| \le M$$

d'où pour $x < \epsilon/n$, en intégrant entre α et $n\alpha$,

$$\left| \int_{\alpha}^{n\alpha} \frac{e^{-x}}{x} \, dx - \int_{\alpha}^{n\alpha} \frac{1}{x} \, dx \right| \le \int_{\alpha}^{n\alpha} M \, dt = M(n-1)\alpha \xrightarrow[\alpha \to 0]{} 0$$

Sachant que $\int_{\alpha}^{n\alpha} \frac{1}{x} dx = \ln n$, cela signifie que

$$\int_{\alpha}^{n\alpha} \frac{e^{-x}}{x} \, \mathrm{d}x \xrightarrow[\alpha \to 0]{} \ln n$$

On en déduit la convergence de l'intégrale et sa valeur.

$$\int_0^{+\infty} \frac{e^{-x} - e^{-nx}}{x} \, \mathrm{d}x = \ln n$$

(b) On va appliquer le théorème de convergence dominée à une suite de fonctions bien choisie. Remarquons pour cela que pour tout x > 0,

$$\frac{e^{-x}}{1 - e^{-x}} = \sum_{k=1}^{+\infty} e^{-kx} = \lim_{n \to +\infty} \sum_{k=1}^{n} e^{-kx}$$

Notons par conséquent pour tout entier $n \ge 1$,

$$f_n: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \left(\sum_{k=1}^n e^{-kx}\right) - \frac{e^{-x} - e^{-nx}}{x}$$

Vérifions les hypothèses du théorème.

• Pour tout entier $n \in \mathbb{N}^*$, la fonction f_n est intégrable sur \mathbb{R}_+^* comme somme de fonctions intégrales (les exponentielles négatives, et la fonction de la question (a)).

• La suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers $f: x \longmapsto e^{-x}\left(\frac{1}{1-e^{-x}} - \frac{1}{x}\right)$, qui est continue sur \mathbb{R}_+^* .

• Ecrivons enfin que pour tout entier n,

$$f_n(x) = \frac{e^{-x} - e^{-(n+1)x}}{1 - e^{-x}} - \frac{e^{-x}}{x} + \frac{e^{-nx}}{x} = f(x) + e^{-nx} \left(\frac{1}{x} - \frac{e^{-x}}{1 - e^{-x}}\right)$$

d'où pour tout $n \ge 1$,

$$|f_n(x)| \le |f(x)| + \left| \frac{1}{x} - \frac{e^{-x}}{1 - e^{-x}} \right|$$

On pourrait déterminer le signe de f et de la seconde quantité sous la valeur absolue, mais c'est inutile. La fonction de domination est continue sur \mathbb{R}_+^* , prolongeable par continuité en 0 et dominée par $1/x^2$ en $+\infty$. Elle est donc intégrable.

Finalement, le théorème s'applique et prouve que f est intégrable sur \mathbb{R}_+^* avec

$$\int_0^{+\infty} f_n(x) dx \xrightarrow[n \to +\infty]{} \int_0^{+\infty} f(x) dx$$

Sachant que $\int_0^{+\infty} e^{-kx} dx = \frac{1}{k}$ pour tout $k \ge 1$, on en déduit à l'aide de la valeur obtenue en (a) que

$$\int_0^{+\infty} e^{-x} \left(\frac{1}{1 - e^{-x}} - \frac{1}{x} \right) dx = \lim_{n \to +\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right)$$

7 ______ (*) ______ PC X 2008

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ de classe \mathcal{C}^{∞} telle que f(0) = 0, f'(0) = 1 et $f(x) \geq x$ pour tout x. Déterminer

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{n}{1 + n^2 f(x)^2} \, \mathrm{d}x$$

Pour tout entier n, on note

$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{n}{1 + n^2 f(x)^2}$$

L'application f_n est continue sur \mathbb{R}_+ , et dominée par $1/x^2$ au voisinage de $+\infty$ (en vertu de l'hypothèse $f(x) \geq x$ pour tout x). Elle est donc intégrable sur \mathbb{R}_+ , ce qui permet pour $n \geq 1$ d'effectuer le changement de variable u = nx. Ainsi, du = n dx et

$$\int_0^{+\infty} \frac{n \, dx}{1 + n^2 f(x)^2} = \int_0^{+\infty} \frac{du}{1 + n^2 f(u/n)^2}$$

Notons pour tout $n \ge 1$

$$g_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$u \longmapsto \frac{1}{1 + n^2 f(u/n)^2}$$

et appliquons le théorème de convergence dominée à cette nouvelle suite d'intégrales.

- Pour tout entier $n \ge 1$, la fonction g_n est intégrable sur \mathbb{R}_+ d'après le changement de variable précédent.
- \bullet Compte tenu des hypothèses sur f, on peut effectuer un développement limité à l'ordre 1 en 0 et ainsi

$$f(t) \underset{t\to 0}{=} t + o(t)$$
 d'où $n^2 f(u/n)^2 \xrightarrow[n \to +\infty]{} u^2$

On a donc convergence simple de $(g_n)_{n\geq 1}$ vers $h: u \longmapsto \frac{1}{1+u^2}$ continue.

• L'hypothèse $f(x) \ge x$ pour tout $x \in \mathbb{R}_+$ implique immédiatement la majoration $0 \le g_n \le h$ pour tout entier n, où h est intégrable sur \mathbb{R}_+ .

Le théorème s'applique et prouve que

$$\int_0^{+\infty} g_n(u) \, \mathrm{d}u \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \frac{\mathrm{d}u}{1 + u^2} = \frac{\pi}{2}$$

soit

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{n}{1 + n^2 f(x)^2} \, \mathrm{d}x = \frac{\pi}{2}$$

8

_ (**) ___

On admet la version suivante du théorème de Fubini : si I et J sont deux segments de \mathbb{R} et si $f:J\times I\longrightarrow\mathbb{R}$ est continue, alors

$$\int_{I} \left(\int_{J} f(x,t) \, dx \right) \, dt = \int_{J} \left(\int_{I} f(x,t) \, dt \right) \, dx$$

Soit $f:[a;b]\times\mathbb{R}\longrightarrow\mathbb{C}$ continue. On suppose qu'il existe $g:\mathbb{R}\longrightarrow\mathbb{R}_+$, continue par morceaux et intégrable sur \mathbb{R} telle que

$$\forall x \in [a; b], \quad \forall t \in \mathbb{R}, \qquad |f(x, t)| \le g(t)$$

Pour tout $t \in \mathbb{R}$, on pose $F(t) = \int_a^b f(x,t) dx$ et pour tout $x \in [a;b]$, on pose $H(x) = \int_{-\infty}^{+\infty} f(x,t) dx$.

- (a). Montrer que F est continue, intégrable sur $\mathbb R$ et que H est continue sur [a;b].
- (b). Montrer que $\int_{-\infty}^{+\infty} F(t) dt = \int_{a}^{b} H(x) dx$. On pourra considérer $\int_{a}^{b} H_{n}(x) dx$ avec $H_{n}(x) = \int_{-n}^{n} f(x,t) dt$.
- (a) Appliquons le théorème de continuité sous le signe somme pour établir la continuité de F.
 - Pour tout réel x, l'application $t \mapsto f(x,t)$ est continue, car f l'est.
 - Pour tout réel t, l'application $x \mapsto f(x,t)$ est intégrable sur [a;b], car elle est continue sur ce segment.
 - Enfin, pour tout segment $[c;d] \in \mathbb{R}$, et tout couple $(x,t) \in [a;b] \times [c;d]$,

$$|f(x,t)| \le g(t) \le \sup_{[c;d]} g$$

cette dernière quantité étant constante, donc intégrable sur le segment [a;b].

Le théorème de continuité sous le signe somme, avec domination locale s'applique et prouve que F est continue. Pour l'intégrabilité, il suffit de remarquer que pour tout $t \in \mathbb{R}$,

$$|F(t)| \le \int_a^b |f(x,t)| dt \le \int_a^b g(t) = (b-a)g(t)$$

La fonction g étant intégrable sur \mathbb{R} , il en est de même de F par domination. Ainsi,

L'application F est continue et intégrable sur \mathbb{R} .

Appliquons le même théorème pour établir la continuité de H.

- Pour tout réel t, l'application $x \mapsto f(x,t)$ est continue, car f l'est.
- Pour tout réel x, l'application $t \mapsto f(x,t)$ est intégrable sur \mathbb{R} , car elle est dominée par hypothèse par g.
- Enfin, on dispose immédiatement d'une fonction de domination par l'hypothèse de l'énoncé.

Par suite,

La fonction H est continue sur [a;b].

(b) Appliquons le théorème de convergence dominée à la suite $(H_n)_{n\in\mathbb{N}}$ définie par l'énoncé.

- On montre immédiatement comme pour la fonction H que pour tout entier n, H_n est continue. Elle est donc intégrable sur le segment [a;b].
- Par définition, la suite $(H_n)_{n\in\mathbb{N}}$ converge simplement sur [a;b] vers la fonction H.
- Pour tout entier n et tout réel x, l'intégrabilité de g sur \mathbb{R}_+ permet d'écrire

$$|H_n(x)| \le \int_{-n}^n |f(x,t)| \, \mathrm{d}t \le \int_{-n}^n g(t) \, \mathrm{d}t \le \int_{-\infty}^{+\infty} g(t) \, \mathrm{d}t$$

sachant qu'une constante est toujours intégrable sur un segment.

Le théorème s'applique et prouve que

$$\int_{a}^{b} H_{n}(x) dx \xrightarrow[n \to +\infty]{} \int_{a}^{b} H(x) dx$$

Remarquons maintenant qu'en vertu du théorème de Fubini, la fonction f étant continue

$$\int_a^b H_n(x) \, \mathrm{d}x = \int_a^b \left(\int_{-n}^n f(x,t) \, \mathrm{d}t \right) \, \mathrm{d}x = \int_{-n}^n \left(\int_a^b f(x,t) \, \mathrm{d}x \right) \, \mathrm{d}t = \int_{-n}^n F(t) \, \mathrm{d}t$$

Le terme de droite admet $\int_{-\infty}^{+\infty} F(t) dt$ lorsque n tend vers $+\infty$ puisque F est intégrable sur \mathbb{R} . Par unicité de la limite,

$$\int_{-\infty}^{+\infty} F(t) dt = \int_{a}^{b} H(x) dx$$

9

_____(**) _____

Mines PC 2013

On pose pour tout entier $n \geq 3$,

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{\sqrt{x^n + x^{-n}}}$$

Justifier l'existence de I_n pour $n \geq 3$ et déterminer la limite de $(I_n)_{n \in \mathbb{N}}$ puis un équivalent simple de I_n .

Pour tout $n \geq 3$, on pose

$$f_n: x \longmapsto \frac{1}{\sqrt{x^n + x^{-n}}}$$

L'application f_n est continue sur \mathbb{R}_+^* et aux bornes de ce domaine de définition, on a les équivalents

$$f_n(x) \underset{x \to +\infty}{\sim} \frac{1}{x^{n/2}}$$
 et $f_n(x) \underset{x \to 0^+}{\sim} x^{n/2}$

Ces deux équivalents suffisent, d'après le critère de Riemann, à prouver l'intégrabilité de f_n sur \mathbb{R}_+^* . Ainsi,

La quantité I_n est bien définie pour $n \geq 3$.

Appliquons maintenant le théorème de convergence dominée à la suite $(I_n)_{n>3}$.

- Soit $x \in \mathbb{R}_+^*$. On distingue trois cas :
 - \circ si x = 1, alors $f_n(x) = 1/\sqrt{2} \xrightarrow[n \to +\infty]{} 1/\sqrt{2}$;
 - \circ si x > 1, alors $f_n(x) \underset{n \to +\infty}{\sim} 1/x^{n/2} \xrightarrow[n \to +\infty]{} 0$;
 - \circ enfin si x < 1, alors $f_n(x) \underset{n \to +\infty}{\sim} x^{n/2} \xrightarrow[n \to +\infty]{} 0$.

Finalement, $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction f nulle sur $\mathbb{R}_+^*\setminus\{1\}$ et égale à $1/\sqrt{2}$ en 1, cette dernière étant continue par morceaux sur \mathbb{R}_+^* .

• Pour tout entier $n \geq 3$ et tout $x \geq 1$, on a

$$f_n(x) = \frac{1}{x^{n/2}\sqrt{x^{2n} + 1}} \le \frac{1}{\sqrt{x}\sqrt{x^2 + 1}}$$

tandis que pour $x \in]0;1[$,

$$f_n(x) = \frac{x^{n/2}}{\sqrt{1 + x^{-2n}}} \le x^{3/2}$$

Ainsi, pour tout $n \geq 3$, la fonction f_n est majorée par la fonction φ définie sur \mathbb{R}_+^* par

$$\varphi(x) = \begin{cases} x^{3/2} & \text{si } x \le 1\\ \frac{1}{\sqrt{x}\sqrt{1+x^2}} & \text{si } x \ge 1 \end{cases}$$

et cette dernière est intégrable sur \mathbb{R}_+^* car prolongeable par continuité en 0 et équivalente à $x \longmapsto 1/x^{3/2}$ en $+\infty$.

Le théorème de convergence dominée peut donc s'appliquer et prouve que

La suite
$$(I_n)_{n\geq 3}$$
 est de limite nulle.

Pour obtenir un équivalent de I_n lorsque n tend vers $+\infty$, effectuons le changement de variable $u=x^n$ (avec $x\longmapsto x^n$ bijective \mathcal{C}^1 et strictement croissante). Ainsi, pour $n\geq 3$,

$$I_n = \frac{1}{n} \int_0^{+\infty} \frac{u^{1/n-1}}{\sqrt{u+1/u}} \, du = \frac{1}{n} \int_0^{+\infty} \frac{u^{1/n} \, du}{\sqrt{u}\sqrt{1+u^2}}$$

Appliquons une nouvelle fois le théorème de convergence dominée.

• Pour tout u > 0,

$$\frac{u^{1/n}}{\sqrt{u}\sqrt{1+u^2}} \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{u}\sqrt{1+u^2}}$$

• Pour tout u > 0 et tout entier $n \ge 3$, on a

$$u^{1/n} \le \begin{cases} 1 & \text{si } x \le 1 \\ u^{1/3} & \text{si } x \ge 1 \end{cases} \qquad \text{d'où} \qquad 0 \le \frac{u^{1/n}}{\sqrt{u}\sqrt{1+u^2}} \le \frac{\max(1, u^{1/3})}{\sqrt{u}\sqrt{1+u^2}}$$

La quantité de droite est intégrable sur \mathbb{R}_+^* car équivalente à $1/\sqrt{u}$ en 0^+ et à $1/u^{7/6}$ en $+\infty$.

Le théorème de convergence dominée s'applique et prouve que l'intégrale en facteur du 1/n converge vers l'intégrale de la limite simple de l'intégrande. Par suite,

$$I_n \underset{n \to +\infty}{\sim} \frac{1}{n} \int_0^{+\infty} \frac{\mathrm{d}u}{\sqrt{u}\sqrt{1+u^2}}$$

Remarque : Le logiciel de calcul formel Maple ne donne comme expression simple de l'intégrale intervenant dans l'équivalent de I_n qu'une formule faisant intervenir la fonction β d'Euler. Cette dernière est réliée à la fonction Γ par la relation

$$\forall \alpha, \beta > 0, \qquad B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Dans le cas de l'intégrale ci-dessus, Maple affirme donc que

$$\int_0^{+\infty} \frac{\mathrm{d}u}{\sqrt{u}\sqrt{1+u^2}} = \frac{1}{2}B\left(\frac{1}{4}, \frac{1}{4}\right)$$

et il n'y a sans doute pas d'expression plus simple.

10

PC Mines 2009

Montrer que l'intégrale $I = \int_0^{+\infty} \frac{x}{\mathrm{ch}x} \, \mathrm{d}x$ converge, puis que $I = 2\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$.

L'application $f: x \longmapsto x/\operatorname{ch} x$ est continue sur \mathbb{R}_+ et négligeable devant $t \longmapsto 1/t^2$ au voisinage de $+\infty$. Elle est donc intégrable et I est bien définie. Pour calculer, notons que pour tout x > 0,

$$f(x) = \frac{2x}{e^x + e^{-x}} = \frac{2xe^{-x}}{1 + e^{-2x}} = 2xe^{-x} \sum_{n=0}^{+\infty} (-e^{-2x})^n = \sum_{n=0}^{+\infty} (-1)^n 2xe^{-(2n+1)x}$$

Notons que si les égalités intermédiaires nécessitent d'avoir x>0, cette dernière égalité reste valable pour x=0. Appliquons le théorème d'intégration terme à terme sur un intervalle quelconque à $\sum_{n>0} f_n$ avec $f_n: x \longmapsto (-1)^n 2xe^{-(2n+1)x}$.

- Pour tout entier n, la fonction f_n est continue et intégrable sur \mathbb{R}_+ car négligeable devant $x \longmapsto 1/x^2$ en $+\infty$.
- Par construction, la série $\sum\limits_{n\geq 0}f_n$ converge simplement vers f sur \mathbb{R}_+ , qui est continue.
- Pour tout entier n,

$$\int_0^{+\infty} |f_n(x)| \, \mathrm{d}x = \int_0^{+\infty} 2x e^{-(2n+1)x} \, \mathrm{d}x = \left[-2x \frac{e^{-(2n+1)x}}{2n+1} \right]_0^{+\infty} + 2 \int_0^{+\infty} \frac{e^{-(2n+1)x}}{2n+1} \, \mathrm{d}x = \frac{2}{(2n+1)^2}$$

qui est le terme général d'une série convergente.

Le théorème s'applique et prouve que

$$\int_0^{+\infty} f(x) dx = \sum_{n=0}^{+\infty} \int_0^{+\infty} f_n(x) dx$$

soit bien

L'intégrale
$$I$$
 converge et $I=2\sum\limits_{n=0}^{+\infty}\frac{(-1)^n}{(2n+1)^2}$

(b) Notons

Remarque : La valeur I/2 porte le nom de constante de Catalan. Il n'y a pas d'expression simple de ce réel et on ignore encore s'il s'agit d'un rationnel ou d'un irrationnel.

11 ______ (*) ______ CCP PC 2011

- (a) Convergence et calcul de $I_n = \int_0^{+\infty} te^{-nt} dt$.
- (b) Convergence et calcul de $I = \int_0^{+\infty} \frac{e^{-\sqrt{t}}}{1 e^{-\sqrt{t}}} dt$.
- (a) Pour tout entier $n \in \mathbb{N}^*$, l'application $t \longmapsto t \, e^{-nt}$ est continue sur \mathbb{R}_+ et négligeable devant $t \longmapsto 1/t^2$ au voisinage de $+\infty$. Elle est donc intégrable sur cet intervalle, ce qui assure que I_n est bien définie.

Pour le calcul, on peut effectuer le changement de variable affine u = nt et reconnaître alors la fonction Γ puisqu'alors

$$I_n = \frac{1}{n^2} \int_0^{+\infty} u \, e^{-u} \, \mathrm{d}u = \frac{\Gamma(2)}{n^2}$$

Sachant que $\Gamma(k) = (k-1)!$ pour tout $k \in \mathbb{N}^*$, on peut conclure que

$$\forall n \in \mathbb{N}^*, \qquad I_n = \int_0^{+\infty} t \, e^{-nt} \, \mathrm{d}t = \frac{1}{n^2}$$

L'application f est continue sur \mathbb{R}_+^* et

$$f: t \longmapsto \frac{e^{-\sqrt{t}}}{1 - e^{-\sqrt{t}}}$$

$$f(t) \underset{t \to 0^+}{=} \frac{1 + O(\sqrt{t})}{1 - \left(1 + \sqrt{t} + O(t)\right)} = \frac{1 + O(\sqrt{t})}{\sqrt{t} + O(t)} \underset{t \to 0^+}{\sim} \frac{1}{\sqrt{t}}$$

Cet équivalent assure l'intégrabilité de f en 0. Par ailleurs, en $+\infty$

$$f(t) \sim e^{-\sqrt{t}} = O\left(\frac{1}{(\sqrt{t})^4}\right) = O\left(\frac{1}{t^2}\right)$$

Ainsi, f est intégrable sur \mathbb{R}_+^* , ce qui justifie que I est bien définie.

Pour calculer cette intégrale, utilisons le théorème d'intégration terme à terme. Pour tout réel t > 0, on a $e^{-\sqrt{t}} \in]0;1[$ donc

$$f(t) = e^{-\sqrt{t}} \cdot \frac{1}{1 - e^{-\sqrt{t}}} = e^{-\sqrt{t}} \sum_{n=0}^{+\infty} \left(e^{-\sqrt{t}} \right)^n = \sum_{n=1}^{+\infty} e^{-n\sqrt{t}}$$

après utilisation de la somme des termes d'une suite géométrique puis changement d'indice. Notons par conséquent, $g_n: t \longmapsto e^{-n\sqrt{t}}$ pour tout $n \in \mathbb{N}^*$.

- Pour tout entier $n \in \mathbb{N}^*$, la fonction g_n est intégrable sur \mathbb{R}_+ car continue et négligeable devant $t \longmapsto 1/t^2$ au voisinage de $+\infty$.
- Par construction, la série de fonctions $\sum_{n\geq 0}g_n$ converge simplement sur \mathbb{R}_+^* vers la fonction f, qui est continue.
- Enfin, pour tout entier $n \in \mathbb{N}^*$, en effectuant le changement de variable $u = \sqrt{t}$, il vient

$$\int_0^{+\infty} |g_n(t)| \, dt = \int_0^{+\infty} e^{-n\sqrt{t}} \, dt = 2 \int_0^{+\infty} u \, e^{-nu} \, du = \frac{2}{n^2}$$

d'après la première question. Ce dernier terme est bien le terme général d'une série convergente.

Le théorème peut donc s'appliquer et permet d'établir que

$$\int_{0}^{+\infty} f(t) dt = \sum_{n=1}^{+\infty} \int_{0}^{+\infty} g_n(t) dt = \sum_{n=1}^{+\infty} \frac{2}{n^2}$$

et finalement, sachant que $\zeta(2) = \pi^2/6$,

$$I = \int_0^{+\infty} \frac{e^{-\sqrt{t}}}{1 - e^{-\sqrt{t}}} \, \mathrm{d}t = \frac{\pi^2}{3}$$

12

Soit f définie par

$$ho \pi/2$$

$$f(x) = \int_0^{\pi/2} (\sin t)^x \, \mathrm{d}t$$

Donner le domaine de définition de f et étudier sa monotonie, puis déterminer ses limites en $(-1)^+$ et $+\infty$.

Notons

$$h: \ \mathbb{R} \times]0; \pi/2] \longrightarrow \mathbb{R}$$
$$(x,t) \longmapsto (\sin t)^x$$

Pour tout $x \in \mathbb{R}$, l'application $t \mapsto (\sin t)^x$ est continue sur $]0; \pi/2]$ et h(x,t) est équivalent en 0 à t^x . Le critère de Riemann assure aussitôt qu'elle est intégrable sur $]0; \pi/2]$ si et seulement si x > -1. Par suite, f(x) est bien défini seulement pour x > -1. Remarquons ensuie que pour tout $t \in]0; \pi/2]$, l'application $x \mapsto h(x,t)$ est décroissante. Par croissance de l'intégrale, on peut conclure que

La fonction
$$f$$
 est définie et décroissante sur $]-1;+\infty[.$

Pour déterminer la limite en $+\infty$, on passe par la caractérisation séquentielle et le TCD. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels dans $]-1;+\infty[$. On note $f_n:t\longmapsto (\sin t)^{x_n}$ pour tout entier n.

- Pour tout $n \in \mathbb{N}$, f_n est intégrable sur $]0; \pi/2]$ d'après ce qui précède (sachant que $x_n > 1$).
- La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $]0;\pi/2[$ vers la fonction nulle (on extrait du domaine de définition la borne $\pi/2$ pour s'épargner un cas particulier).
- Puisque $x_n \xrightarrow[n \to +\infty]{} +\infty$, on a $x_n \ge 0$ à partir d'un certain rang et alors, $|f_n| \le 1$, qui est intégrable sur $]0; \pi/2[$ car l'intervalle est borné.

Le théorème de convergence dominée s'applique et prouve que $\int_0^{\pi/2} f_n(t) dt = f(x_n)$ tend vers 0 quand n tend vers $+\infty$. La suite $(x_n)_{n\in\mathbb{N}}$ ayant été choisie arbitraire, il vient par caractérisation séquentielle que

La fonction f est de limite nulle en $+\infty$.

Pour la limite en 0, on peut remarquer que $\int_0^{\pi/2} \frac{dt}{\sin t}$ est divergente, ce qui incite à montrer que la limite de f en 0 est $+\infty$. Il suffit pour cela de minorer f. Or, pour x < 0, on a

$$\forall t \in]0; \pi/2[, \quad (\sin t)^x \ge t^x \quad \text{puis} \quad f(x) \ge \int_0^{\pi/2} t^x \, dt = \frac{(\pi/2)^{x+1}}{x+1}$$

Lorsque x tend vers $(-1)^+$, le terme de droite tend vers $+\infty$ donc par minoration,

La fonction f est de limite $+\infty$ en 0.

13

_ (**)

Soit $x \in \mathbb{R}$. On définit

$$u(x) = \int_{0}^{+\infty} \cos(tx) \frac{e^{-t}}{\sqrt{t}}$$
 et $v(x) = \int_{0}^{+\infty} \sin(tx) \frac{e^{-t}}{\sqrt{t}}$

- (a). Montrer que u et v sont définies sur \mathbb{R} .
- (b). En introduisant z = u + iv, déterminer une équation différentielle vérifiée par z. En déduire une expression de z, puis de u et v. On pourra utiliser l'égalité

$$\int_0^{+\infty} e^{-t^2} \, \mathrm{d}t = \sqrt{\pi/2}$$

(a) Il suffit de remarquer que pour tout réel x,

$$\left|\cos(xt)\frac{e^{-t}}{\sqrt{t}}\right| \le \frac{e^{-t}}{\sqrt{t}}$$
 et $\left|\sin(xt)\frac{e^{-t}}{\sqrt{t}}\right| \le \frac{e^{-t}}{\sqrt{t}}$

Or, la fonction $h:t\longmapsto e^{-t}/\sqrt{t}$ est intégrable sur \mathbb{R}_+^* : la quantité h(t) est équivalente à $1/\sqrt{t}$ en 0, et négligeable devant $1/t^2$ au voisinage de $+\infty$ ce qui permet d'appliquer le critère de Riemann. Par domination, les deux intégrales définissant u(x) et v(x) sont donc convergentes et

Les fonctions u et v sont définies sur \mathbb{R} .

(b) Par définition, pour tout $x \in \mathbb{R}$,

$$z(x) = \int_0^{+\infty} \frac{e^{(ix-1)t}}{\sqrt{t}} \, \mathrm{d}t$$

Notons donc $f:(x,t)\longmapsto e^{(ix-1)t}/\sqrt{t}$, définie sur $\mathbb{R}\times\mathbb{R}_+^*$. Elle admet une dérivée partielle par rapport à x donnée pour tout x>0 par

$$\frac{\partial f}{\partial x}(x,t) = i\sqrt{t} e^{(ix-1)t}$$

Appliquons le théorème de dérivation sous le signe intégral.

- Pour tout t > 0, l'application $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur \mathbb{R} (car la fonction exponentielle complexe est continue).
- Pour tout $x \in \mathbb{R}$, on a obtenu l'intégrabilité de $t \longmapsto f(x,t)$, car sa partie réelle et ss partie imaginaire le sont. Il est est de même de $t \longmapsto \frac{\partial f}{\partial x}(x,t)$, qui est cette fois prolongeable par continuité en 0 dont intégrable en 0 (en $+\infty$, on a à nouveau un $o(1/t^2)$.
- Enfin, pour tout réel x, on a $\left| \frac{\partial f}{\partial x}(x,t) \right| \leq \sqrt{t} e^{-t}$ qui est une quantité intégrable sur \mathbb{R}_+^* .

Le théorème s'appliqe donc et prouve que z est de classe \mathcal{C}^1 sur \mathbb{R} avec pour tout réel x,

$$z'(x) = i \int_0^{+\infty} \sqrt{t} \, e^{(ix-1)t} \, \mathrm{d}t$$

Pour retrouver une équation différentielle, effectuons une intégration par parties. Quitte à passer par un segment, on peut écrire que

$$(x+i)z'(x) = \int_0^{+\infty} \sqrt{t} \left[(ix-1)e^{(ix-1)t} \right] dt$$
$$= \left[\sqrt{t} e^{(ix-1)t} \right]_0^{+\infty} - \frac{1}{2} \int_0^{+\infty} \frac{e^{(ix-1)t}}{\sqrt{t}} dt$$
$$(x+i)z'(x) = -\frac{1}{2}z(x)$$

Calculons par conséquent la primitive de $x \mapsto -1/(x+i)$:

$$\int \frac{\mathrm{d}x}{x+i} = \int \left(\frac{x}{x^2+1} - i\frac{1}{x^2+1}\right) \, \mathrm{d}x = \frac{1}{2}\ln(1+x^2) - i\arctan(x)$$

et donc pour tout réel x,

$$z(x) = z(0) \exp\left(-\frac{1}{4}\ln(1+x^2) + \frac{i}{2}\arctan(x)\right)$$

Pour calculer z(0), on effectue le changement de variable $u = \sqrt{t}$ (sachant que $t \mapsto \sqrt{t}$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}_+^* dans lui-même) d'où $t = u^2$ et $dt = 2u \, du$ donc

$$z(0) = \int_{0}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_{0}^{+\infty} e^{-u^{2}} du = \sqrt{\pi}$$

Finalement, en séparant parties réelles et parties imaginaires, on trouve

$$\forall x \in \mathbb{R}, \qquad u(x) = \sqrt{\pi} \frac{\cos(\arctan(x)/2)}{(1+x^2)^{1/4}} \quad \text{et} \quad v(x) = \sqrt{\pi} \frac{\sin(\arctan(x)/2)}{(1+x^2)^{1/4}}$$

14

Etudier la fonction $f: x \longmapsto \int_0^{+\infty} \frac{1 - \cos(xt)}{t^2} e^{-t} dt$.

Notons

$$\begin{array}{ccc} h: & \mathbb{R} \times \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ & (x,t) \longmapsto (1-\cos(xt))e^{-t}/t^2 \end{array}$$

Pour tout réel x, l'application $t \mapsto h(x,t)$ est prolongeable par continuité en 0 (par la valeur $x^2/2$) et dominée au voisinage de $+\infty$ par $t \mapsto 1/t^2$. Ainsi, elle est intégrable sur \mathbb{R}_+^* et

La fonction f est définie sur \mathbb{R} .

Justifions que f est de classe C^2 sur \mathbb{R} . Il est clair que h admet une dérivée partielle par rapport à x jusqu'à l'ordre 2 avec pour tout (x,t),

$$\frac{\partial h}{\partial x}(x,t) = \frac{\sin(xt)}{t}e^{-t} \qquad \text{et} \qquad \frac{\partial^2 f}{\partial x^2}(x,t) = \cos(xt)e^{-t}$$

Appliquons maintenant le théorème de dérivation sous le signe intégral.

- Pour tout réel t > 0, l'application $t \longmapsto \frac{\partial^2 f}{\partial x^2}(x,t)$ est continue sur \mathbb{R} .
- Pour tout réel x et tout $p \in [0; 2]$, l'application $t \mapsto \frac{\partial^p f}{\partial x^p}(x, t)$ est continue et intégrable sur \mathbb{R}_+^* , car prolongeable par continuité en 0 et dominée par $t \mapsto 1/t^2$ en $+\infty$.
- Pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$, on a

$$\left| \frac{\partial^2 f}{\partial x^2}(x,t) \right| \le e^{-t}$$

avec $t \longmapsto e^{-t}$ intégrable sur \mathbb{R}_+^* .

Le théorème s'applique et prouve donc que

La fonction
$$f$$
 est de classe C^2 sur \mathbb{R} avec pour tout réel x ,
$$f'(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt \quad \text{et} \quad f''(x) = \int_0^{+\infty} \cos(xt) e^{-t} dt$$

Cette dernière intégrale se calcule immédiatement en passant en complexes. En effet, pour tout réel x,

$$f''(x) = \Re\left(\int_0^{+\infty} e^{(ix-1)t} dt\right) = \Re\left[\frac{e^{(ix-1)t}}{ix-1}\right]_0^{+\infty} = \Re\left(\frac{1}{1-ix}\right) = \frac{1}{1+x^2}$$

Par intégration successives, on en déduit dans un premier temps que

$$f'(x) = f'(0) + \arctan x$$
 puis $f(x) = xf'(0) + f(0) + x \arctan x - \frac{1}{2}\ln(1+x^2)$

Les expressions de f' et f donnent immédiatement les égalités f(0) = f'(0) = 0. On en déduit finalement que

$$\forall x \in \mathbb{R}, \qquad f(x) = x \arctan x - \frac{1}{2} \ln(1 + x^2)$$

Soit f définie par

$$f(x) = \int_0^{+\infty} \frac{\arctan(xt)}{1 + t^2} dt$$

- (a). Déterminer le domaine de définition de f et étudier la continuité de f. Que dire de la limite de f en $+\infty$?
- (b). Montrer que f est dérivable sur \mathbb{R}^* , calculer f'(x) pour tout réel x non nul. La fonction f est-elle dérivable en 0?
- (c). Calculer la valeur de l'intégrale $\int_0^{+\infty} \frac{\ln x}{x^2 1} dx$, l'intégrande étant prolongée par continuité en 1.

(a) Notons
$$h: \mathbb{R} \times \mathbb{R}_+ \longrightarrow \mathbb{R} \qquad \text{et} \qquad \varphi: \mathbb{R} \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$(x,t) \longmapsto \frac{\arctan(xt)}{1+t^2} \qquad (x,t) \longmapsto \frac{\pi}{2(1+t^2)}$$

Il est clair que pour tout réel x, on a $0 \le h(x,t) \le \varphi(t)$. Cette dernière fonction étant intégrable sur \mathbb{R}_+ , on en déduit aussitôt que $t \longmapsto h(x,t)$ est intégrable sur \mathbb{R}_+ pour tout x. Par conséquent, f est définie sur \mathbb{R} . La continuité s'obtient par une application immédiate du théorème adéquat :

- Pour tout $t \in \mathbb{R}_+$, $x \mapsto h(x,t)$ est continue sur \mathbb{R} .
- Pour tout $x \in \mathbb{R}$, l'application $t \longmapsto h(x,t)$ est continue et intégrable sur \mathbb{R}_+ d'après ce qui précède.
- Pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+$, on a $|h(x,t)| \leq \varphi(t)$, cette dernière quantité étant intégrable sur \mathbb{R}_+ .

Le théorème de continuité sous le signe intégral s'applique et prouve que f est continue. Enfin, pour déterminer la limite de f en $+\infty$, il suffit de passer par la caractérisation séquentielle des limites et la convergence dominée. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels positifs de limite $+\infty$, et $h_n: t\longmapsto h(x_n,t)$.

- Pour tout $n \in \mathbb{N}$, h_n est intégrable sur \mathbb{R}_+ .
- La suite $(h_n)_{n\in\mathbb{N}}$ converge simplement vers φ sur \mathbb{R}_+ , qui est continue.
- Pour tout $n \in \mathbb{N}$, la fonction h_n est majoré par φ , qui est intégrable sur \mathbb{R}_+ .

Le théorème de convergence dominée s'applique et prouve que

$$f(x_n) = \int_0^{+\infty} h_n(t) dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \varphi(t) dt = \frac{\pi}{2} \int_0^{+\infty} \frac{dt}{1 + t^2} = \frac{\pi^2}{4}$$

et donc, par caractérisation séquentielle des limites, f est de limite $\pi^2/4$ en $+\infty$. Pour conclure,

La fonction f est définie et continue sur \mathbb{R} , et de limite $\pi^2/4$ en $+\infty$.

(b) Appliquons le théorème de dérivation sous le signe intégral à la restriction de f sur \mathbb{R}_+^* (la fonction étant clairement impaire, la dérivabilité sur \mathbb{R}^* s'en déduira aussitôt). La fonction h admet une dérivée partielle par rapport à x donnée par

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+, \qquad \frac{\partial h}{\partial x}(x,t) = \frac{t}{1+x^2t^2} \frac{1}{1+t^2}$$

- Pour tout $t \in \mathbb{R}_+$, $x \longmapsto \frac{\partial h}{\partial x}(x,t)$ est continue sur \mathbb{R}_+^* .
- Pour tout $x \in \mathbb{R}_+^*$, l'application $t \longmapsto h(x,t)$ est continue et intégrable sur \mathbb{R}_+ d'après ce qui précède. De plus, $t \longmapsto \frac{\partial h}{\partial x}(x,t)$ est également continue sur \mathbb{R}_+ et intégrable, car équivalente à $t \longmapsto 1/(x^2t^3)$ en $+\infty$.
- Pour tout segment [a;b] inclus dans \mathbb{R}_+^* , pour tout $(x,t) \in [a;b] \times \mathbb{R}_+$, on a

$$\left| \frac{\partial h}{\partial x}(x,t) \right| \le \frac{t}{(1+a^2t^2)(1+t^2)}$$

cette dernière quantité étant intégrable sur \mathbb{R}_+ .

Le théorème de dérivation avec domination locale peut donc s'appliquer et prouve que

La fonction f est de classe \mathcal{C}^1 sur \mathbb{R}^* avec pour tout x non nul

$$f'(x) = \int_0^{+\infty} \frac{t \, dt}{(1 + x^2 t^2)(1 + t^2)}$$

Si l'on remplace x par 0 dans l'expression de f'(x), on obtient une intégrale divergente, ce qui laisse présager d'une limite infinie de f' en 0. Justifions-le. Soit $A \in \mathbb{R}$. Il existe $\delta > 0$ tel que

$$\int_0^\delta \frac{t \, \mathrm{d}t}{1 + t^2} \ge A + 1$$

Par ailleurs, pour tout réel x,

$$f'(x) \ge \int_0^\delta \frac{t \, dt}{(1 + x^2 t^2)(1 + t^2)}$$

On prouve facilement grâce aux techniques habituelles (caractérisation séquentielle des limites et convergence dominée) que

$$\int_0^{\delta} \frac{t \, dt}{(1+x^2t^2)(1+t^2)} \xrightarrow[x \to 0]{} \int_0^{\delta} \frac{t \, dt}{(1+x^2t^2)(1+t^2)} \ge A+1$$

donc il existe un réel $\epsilon > 0$ tel que pour tout $x \in]0; \epsilon[$,

$$\int_0^\delta \frac{t \, \mathrm{d}t}{(1+x^2t^2)(1+t^2)} \ge A \qquad \text{d'où} \qquad f'(x) \ge A$$

Le réel A ayant été choisi arbitraire, on a démontré que f' est de limite $+\infty$ en 0. On sait alors via un résultat de cours que nécessairement

La fonction
$$f'$$
 est de limite $+\infty$ en 0.

(c) Remarquons déjà que $x \mapsto \ln x/(x^2-1)$ prolongée par continuité en 1 est intégrable sur \mathbb{R}_+^* car dominée par $x \mapsto 1/x^{3/2}$ en $+\infty$ et par $x \mapsto 1/\sqrt{x}$ en 0 par croissances comparées.

Pour x > 0, cherchons une expression de f'(x) sans symbole intégral. Pour $x \neq 1$, on peut écrire pour tout t > 0,

$$\frac{1}{(1+x^2t^2)(1+t^2)} = \frac{1}{1-x^2} \left[\frac{1}{1+t^2} - \frac{x^2}{1+x^2t^2} \right]$$

d'où

$$f'(x) = \frac{1}{1 - x^2} \int_0^{+\infty} \left[\frac{t}{1 + t^2} - \frac{x^2 t}{1 + x^2 t^2} \right] dt = \frac{1}{1 - x^2} \left[\frac{1}{2} \ln \left(\frac{1 + t^2}{1 + x^2 t^2} \right) \right]_0^{+\infty} = \frac{\ln x}{x^2 - 1}$$

Notons que l'égalité reste valable quitte à prolonger $x \mapsto \ln(x)/(x^2-1)$ par continuité en 1 (par 1/2) car f' est continue. Cette expression prouve que pour tout réel ϵ ,

$$\int_{\epsilon}^{1/\epsilon} \frac{\ln x}{x^2 - 1} \, \mathrm{d}x = \int_{\epsilon}^{1/\epsilon} f'(x) \, \mathrm{d}x = f(1/\epsilon) - f(\epsilon)$$

En faisant tendre ϵ vers 0, on obtient compte tenu de la limite de f en $+\infty$ et de sa valeur nulle en 0,

$$\int_0^{+\infty} \frac{\ln x}{x^2 - 1} \, \mathrm{d}x = \frac{\pi^2}{4}$$

16 ______ (**) _____ Centrale PC 2012

- (a) L'application $\theta \mapsto \ln(1-\sin^2\theta)$ est-elle intégrable sur $[0; \pi/2]$?
- (b) On note $F(x) = \int_0^{\pi/2} \ln(1 + x \sin^2 \theta) \, \mathrm{d}\theta$

Montrer que F est continue sur $[-1; +\infty[$.

- (c) Montrer que F est de classe C^1 sur $]-1;+\infty[$ et calculer F'(x).
- (d) Exprimer F'(x) sans intégrale. En déduire une expression simple de F(x) pour tout $x \ge -1$.
- (a) L'application $\theta \mapsto \ln(1-\sin^2\theta)$ est continue sur $[0;\pi/2[$ et lorsque θ tend vers 0, on a avec $u=\pi/2-\theta$,

$$\ln(1 - \sin^2 \theta) = \ln(1 - \cos^2 u) = 2\ln\sin u \sim 2\ln u = o(1/\sqrt{u}) = o\left(\frac{1}{\sqrt{\pi/2 - \theta}}\right)$$

Cette domination assure donc que

L'application
$$\theta \longmapsto \ln(1-\sin^2\theta)$$
 est intégrable sur $[0;\pi/2[$.

(b) Notons $J=[-1;+\infty[,\,I=[0;\pi/2[$ puis $h:\ J\times I\longrightarrow \mathbb{R}$ $(x,t)\longmapsto \ln(1+x\sin^2\theta)$

Appliquons le théorème de continuité sous le signe intégral.

- Pour tout réel $\theta \in I$, l'application $x \mapsto h(x,t)$ est continue car l'argument du ln ne s'annule pas.
- Pour tout réel $x \in J$, l'application $t \mapsto h(x,t)$ est continue et intégrable sur I: c'est le résultat de la question (a) pour x = -1, et pour x > -1, elle admet un prolongement par continuité en $\pi/2$.
- Pour tout segment $[a;b] \subset J$, et tout $(x,\theta) \in [a;b] \times I$,

$$a \le x \le b$$
 puis $1 + a \sin^2 \theta \le 1 + x \sin^2 \theta \le 1 + b \sin^2 \theta$

et finalement

$$|h(x,\theta)| \le \max\left\{ \left| \ln(1 + a\sin^2\theta) \right|, \left| \ln(1 + b\sin^2\theta) \right| \right\}$$

$$\le \left| \ln(1 + a\sin^2\theta) \right| + \left| \ln(1 + b\sin^2\theta) \right|$$

le terme de droite étant intégrable sur I comme somme de deux fonctions intégrables (car $a, g \ge -1$).

Le théorème de continuité avec domination locale s'applique et prouve que

La fonction
$$F$$
 est continue sur $[-1; +\infty[$.

(c) On conserve les notations précédentes. L'application h admet une dérivée partielle par rapport à x donnée par

$$\forall (x,t) \in J \times I, \qquad \frac{\partial h}{\partial x}(x,t) = \frac{\sin^2 \theta}{1 + x \sin^2 \theta}$$

Appliquons le théorème de dérivation sous le signe somme à la restriction de F à $]-1;+\infty[$.

- Pour tout réel $\theta \in I$, l'application $x \mapsto \frac{\partial h}{\partial x}(x,t)$ est continue car le dénominateur ne s'annule pas.
- Pour tout réel $x \in J$, on sait déjà que l'application $t \longmapsto h(x,t)$ est continue et intégrable sur I. Il en est de même de $t \longmapsto \frac{\partial h}{\partial x}(x,t)$ qui est prolongeable par continuité en $\pi/2$ lorsque x > -1.
- Pour tout segment $[a;b] \subset]-1; +\infty[$, et tout $(x,\theta) \in [a;b] \times I$,

$$\left| \frac{\partial h}{\partial x}(x,t) \right| \le \frac{\sin^2 \theta}{1 + a \sin^2 \theta}$$

cette dernière quantité étant intégrable sur $[0; \pi/2]$ car prolongeable par continuité en $\pi/2$.

Le théorème s'applique et prouve que

La fonction F est de classe \mathcal{C}^1 sur $]-1;+\infty[$ avec pour tout x>-1

$$F'(x) = \int_0^{\pi/2} \frac{\sin^2 \theta}{1 + x \sin^2 \theta} \, \mathrm{d}\theta$$

(c) Pour calculer F'(x), on effectue le changement de variable $u = \tan \theta$, avec $\theta \longmapsto \tan \theta$ un \mathcal{C}^1 -difféomorphisme de $[0; \pi/2[$ dans \mathbb{R}_+ . Ainsi,

$$\theta = \arctan u$$
 $d\theta = \frac{du}{1+u^2}$ et $\sin^2 \theta = \frac{\tan^2 \theta}{1+\tan^2 \theta} = \frac{u^2}{1+u^2}$

et donc

$$F'(x) = \int_0^{+\infty} \frac{u^2/(1+u^2)}{1+xu^2/(1+u^2)} \frac{\mathrm{d}u}{1+u^2} = \int_0^{+\infty} \frac{u^2}{(1+u^2)(1+(x+1)u^2)} \,\mathrm{d}u$$

Remarquons alors que pour tout x non nul et tout $u \geq 0$,

$$\frac{u^2}{(1+u^2)(1+(x+1)u^2)} = \frac{1}{x} \left[\frac{1}{1+u^2} - \frac{1}{1+(x+1)u^2} \right]$$

d'où

$$F'(x) = \frac{1}{x} \left[\int_0^{+\infty} \frac{\mathrm{d}u}{1+u^2} - \int_0^{+\infty} \frac{\mathrm{d}u}{1+(x+1)u^2} \right] = \frac{1}{x} \left[\frac{\pi}{2} - \frac{\pi}{2\sqrt{1+x}} \right]$$

On peut obtenir une expression valable pour tout x > -1 en utilisant la continuité de F' et en écrivant que

$$1 - \frac{1}{\sqrt{x+1}} = \frac{\sqrt{x+1} - 1}{\sqrt{x+1}} = \frac{(x+1) - 1}{\sqrt{x+1}(\sqrt{x+1} + 1)} = \frac{x}{x+1+\sqrt{x+1}}$$

et ainsi,

$$\forall x > -1, \qquad F'(x) = \frac{\pi}{2(x+1+\sqrt{x+1})}$$

Pour calculer F, on intègre cette expression entre 0 et x en remarquant que F(0) = 0. A l'aide du changement de variable $u = \sqrt{t+1}$, il vient

$$t = u^2 - 1$$
 $dt = 2u du$ et $F(x) = \frac{\pi}{2} \int_0^x \frac{dt}{t + 1 + \sqrt{t + 1}} = \pi \int_1^{\sqrt{x+1}} \frac{du}{u+1}$

et on peut finalement conclure

$$\forall x > -1, \quad F(x) = \pi \ln \left(\frac{1 + \sqrt{x+1}}{2} \right)$$

17 ______(**)

Soient f et g définies pour tout réel x respectivement par

$$f(x) = \left(\int_0^x e^{-t^2} dt\right)^2$$
 et $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$

- (a). Montrer que f et g sont de classe \mathcal{C}^1 sur \mathbb{R} et que f'(x)+g'(x)=0 pour tout réel x.
- (b). Prouver que $g \xrightarrow[+\infty]{} 0$ et en déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

(a) Il est clair que f est de classe \mathcal{C}^1 comme carré d'une primitive d'une fonction \mathcal{C}^{∞} . Pour la fonction g, il n'y a qu'à appliquer le théorème de dérivaton sous le signe intégral. Notons

$$\begin{array}{ccc} h: & \mathbb{R} \times [0;1] \longrightarrow \mathbb{R} \\ & (x,t) \longmapsto \frac{e^{-x^2(1+t^2)}}{1+t^2} \end{array}$$

Alors, h admet pour dérivée partielle par rapport à x l'application $(x,t) \longmapsto -2xe^{-x^2(1+t^2)}$. Ensuite,

- Pour tout $t \in [0; 1]$, l'application $\frac{\partial h}{\partial x}(x, t)$ est continue.
- Pour tout $x \in \mathbb{R}$, les applications $t \mapsto h(x,t)$ et $t \mapsto \frac{\partial h}{\partial x}(x,t)$ sont continues et donc intégrables sur [0;1].
- Pour tout segment [a;b] de \mathbb{R} , et tout $(x,t) \in [a;b] \times [0;1]$, on a $\left| \frac{\partial h}{\partial x}(x,t) \right| \leq \max(|a|,|b|)$, cette constante étant intégrable sur le segment [0;1].

Le théorème avec domination locale s'applique et prouve que g est de classe \mathcal{C}^1 sur \mathbb{R} avec

$$\forall x \in \mathbb{R}, \qquad g'(x) = -2x \int_0^1 e^{-x^2(1+t^2)} dt$$

Remarquons pour finir que pour tout réel x, en posant u = xt,

$$g'(x) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt = -2e^{-x^2} \int_0^x e^{-u^2} du$$

On reconnaît immédiatement l'opposé de la dérivée de f. Par conséquent,

Les fonctions f et g sont de classe C^1 sur \mathbb{R} avec f' + g' = 0.

- (b) Déterminons la limite de g en $+\infty$ à l'aide de la caractérisation séquentielle des limites. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels de limite $+\infty$. On note $h_n: t\longmapsto h(x_n,t)$.
 - Pour tout entier n, l'application h_n est continue donc intégrable sur [0;1].
 - La suite $(h_n)_{n\in\mathbb{N}}$ converge simplement vers ma fonction nulle sur [0;1].
 - Pour tout entier n, on a $|h_n| \leq 1$, cette dernière quantité étant intégrable sur [0;1].

Le théorème de convergence dominée s'applique et prouve que

$$\int_0^1 h_n(t) dt \xrightarrow[n \to +\infty]{} 0 \quad \text{soit} \quad g(x_n) \xrightarrow[n \to +\infty]{} 0$$

La suite $(x_n)_{n\in\mathbb{N}}$ ayant été choisie arbitrairement, il vient que

La fonction g est de limite nulle en $+\infty$.

On sait que f + g est constante, car sa dérivée est nulle. De plus, il est clair que f(0) = 0 et $g(0) = \pi/4$. Il s'ensuit que pour tout réel x,

$$f(x) = \left(\int_0^x e^{-t^2} dt\right)^2 = \frac{\pi}{4} - g(x) \xrightarrow[x \to +\infty]{} \frac{\pi}{4}$$

On en déduit aussitôt que

$$\int_0^{+\infty} e^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2}$$

18 ______ (**) _____ Mines PC 2013

Soit f définie par $f(x) = \int_0^{+\infty} \frac{e^{-t}}{t+x} \, \mathrm{d}t$

Après l'étude classique de f (domaine de définition, continuité, dérivabilité), déterminer des équivalents simples de cette fonction en 0^+ et en $+\infty$.

Pour x < 0, l'application $t \mapsto e^{-t}/(t+x)$ n'est pas définie sur \mathbb{R}_+^* donc f ne l'est pas non plus. Si x = 0, elle est équivalente à $t \mapsto 1/t$ en 0, donc n'est pas intégrable. Enfin, si x > 0, elle est définie sur \mathbb{R}_+ et dominée par $t \mapsto 1/t^2$ donc intégrable cette fois. Ainsi,

La fonction f est définie sur \mathbb{R}_+^* .

Montrons maintenant que f est de classe \mathcal{C}^{∞} . On note

$$h: \ \mathbb{R}_+^* \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$(x,t) \longmapsto e^{-t}/(t+x)$$

Soit $k \in \mathbb{N}^*$. L'application h admet des dérivées partielles jusqu'à l'ordre k par rapport à x avec pour tout $p \in [1; k]$ et tout $(x,t) \in \mathbb{R}_+^* \times \mathbb{R}_+$,

$$\frac{\partial^p h}{\partial x^p}(x,t) = (-1)^k k! \frac{e^{-t}}{(t+x)^{k+1}}$$

Vérifions les hypothèses du théorème.

- Pour tout réel $t \geq 0$, l'application $x \longmapsto \frac{\partial^k}{\partial x^k}(x,t)$ est continue.
- Pour tout réel x > 0 et tout $p \in [1; k]$, l'application $t \mapsto \frac{\partial^p}{\partial x^p}(x, t)$ est continue sur \mathbb{R}_+ et dominée par $1/t^2$ au voisinage de $+\infty$, donc intégrable sur \mathbb{R}_+ .
- Enfin, pour tout segment [a;b] inclus dans \mathbb{R}_+^* , et tout $(x,t) \in [a;b] \times \mathbb{R}_+$,

$$\left| \frac{\partial^k h}{\partial x^k}(x,t) \right| \le k! \frac{e^{-t}}{(t+a)^k}$$

cette dernière quantité étant intégrable sur \mathbb{R}_+ .

Le théorème avec domination locale s'applique et prouve donc que

La fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Pour obtenir un équivalent en $+\infty$, on commence par effectuer le changement de variable u=t+x. Ainsi,

$$f(x) = \int_0^{+\infty} \frac{e^{-u+x}}{u} du = e^x \int_x^{+\infty} \frac{e^{-u}}{u} du \tag{*}$$

Au passage, notons que cette nouvelle expression (\star) justifie immédiatement le caractère \mathcal{C}^{∞} de f sans passer par le théorème de dérivabilité! Effectuons maintenant une intégration par parties. Quitte à passer par un segment, on obtient

$$f(x) = e^x \left(\left[-\frac{e^{-u}}{u} \right]_x^{+\infty} + \int_x^{+\infty} \frac{e^{-u}}{u^2} \right) = \frac{1}{x} - e^x \int_x^{+\infty} \frac{e^{-u}}{u^2} du$$

Une majoration grossière prouve maintenant que pour tout x > 0,

$$0 \le \int_{x}^{+\infty} \frac{e^{-u}}{u^{2}} du \le \int_{x}^{+\infty} \frac{e^{-u}}{x^{2}} du = \frac{e^{-x}}{x^{2}} \qquad \text{et donc} \qquad f(x) = \frac{1}{x} + O\left(\frac{1}{x^{2}}\right) \sim \frac{1}{x}$$

Pour obtenir l'équivalent de f(x) lorsque x tend vers 0, il n'y a qu'à chercher un équivalent de l'intégrale dans (\star) (car l'exponentielle tend vers 1). Sachant que $u \mapsto e^{-u}/u$ est équivalente à $u \mapsto 1/u$ en 0, on décompose cette intégrale de la manière suivante :

$$\int_{x}^{+\infty} \frac{e^{-u}}{u} du = \int_{1}^{+\infty} \frac{e^{-u}}{u} du + \int_{x}^{1} \frac{du}{u} + \int_{x}^{1} \frac{e^{-u} - 1}{u} du$$

Le premier terme est une constante indépendante de x. Le deuxième est égal à $-\ln x$. Enfin, la fonction $u \mapsto (e^{-u}-1)/u$ est prolongeable par continuité en 0, donc elle est intégrable sur]0;1]. Cela prouve la convergence de la troisième intégrale ci-dessus lorsque x tend vers 0. Finalement, on en déduit que $f(x) \sim -\ln x$ en 0.

La quantité f(x) est équivalente à 1/x en $+\infty$, et $-\ln x$ en 0.

19 ______(**

Soit f continue sur \mathbb{R}^+ telle que l'intégrale impropre $I = \int_0^{+\infty} f(t) dt$ converge.

- (a). Montrer que pour tout x > 0, l'intégrale impropre $T(f)(x) = \int_0^{+\infty} f(t)e^{-xt} dt$ converge. On pourra introduire la primitive F de f qui s'annule en 0 et effectuer une intégration par parties.
- (b). Justifier la limite $T(f)(x) \xrightarrow[x \to 0^+]{} I$.

(a) Soit F la primitive de F qui s'annule en 0: $F: x \longmapsto \int_0^x f(t) dt$

Pour tout x > 0, l'application $t \mapsto f(t)e^{-xt}$ est définie et continue sur \mathbb{R}_+ . De plus, pour tout $A \in \mathbb{R}_+$, par intégration par parties

$$\int_0^A f(t)e^{-xt} dt = [F(t)e^{-xt}]_0^A + x \int_0^A F(t)e^{-xt} dt = F(A)e^{-xA} + x \int_0^A F(t)e^{-xt} dt$$

La convergence de l'intégrale impropre $\int_0^{+\infty} f(t) dt$ assure que F a une limite en $+\infty$ et est donc bornée sur \mathbb{R}_+ . Cela assure d'une part la convergence de $F(A)e^{-xA}$ vers 0 lorsque A tend vers $+\infty$, mais également la convergence (absolue) de $\int_0^{+\infty} F(t)e^{-xt} dt$. Par conséquent,

Pour tout
$$x > 0$$
, l'intégrale $\int_0^{+\infty} f(t)e^{-xt} dt$ converge.

(b) En faisant tendre A vers $+\infty$ dans l'égalité précédente, on obtient pour tout x>0,

$$T(f)(x) = x \int_0^{+\infty} F(t)e^{-xt} dt$$

puis à l'aide du changement de variable affine u = xt,

$$T(f)(x) = \int_0^{+\infty} F(u/x)e^{-u} du$$

Déterminons maintenant la limite de T(f) à l'aide de la caractérisation séquentielle de la limite. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs de limite nulle. Notons $h_n:u\longmapsto F(u/x_n)e^{-u}$. Rappellons que F est bornée sur \mathbb{R}_+ .

- Pour tout entier n, la fonction h_n est intégrable sur \mathbb{R}_+ .
- Pour tout entier n, F(0) = 0 et pour tout u > 0, $F(u/x_n) \xrightarrow[n \to +\infty]{} \int_0^{+\infty} f(t) dt e^{-u}$. La suite $(h_n)_{n \in \mathbb{N}}$ converge donc simplement sur \mathbb{R}_+ vers une fonction continue par morceaux.
- Pour tout entier n et tout $u \geq 0$, on a $|h_n(u)| \leq ||F||_{\infty} e^{-u}$, cette dernière quantité étant intégrable sur \mathbb{R}_+ .

Le théorème de convergence dominée s'applique et prouve que

$$\int_0^{+\infty} h_n(t) \xrightarrow[n \to +\infty]{} I \int_0^{+\infty} e^{-u} du = I \quad \text{soit} \quad T(f)(x_n) \xrightarrow[n \to +\infty]{} I$$

La suite $(x_n)_{n\in\mathbb{N}}$ ayant été choisie arbitraire, par caractérisation séquentielle de la limite

La fonction T(f) est de limite I en 0.