Distance entre deux distributions de probabilités sur N

1 Nombre de points fixes d'une permutation.

Soit n un entier naturel non nul. On note S_n l'ensemble des permutations de l'intervalle entier $[1, n] = \{1, 2, \dots, n\}$, c'est-à-dire des bijections de [1, n] vers lui-même. Si $\sigma \in S_n$ est une permutation, on appelle **point fixe** de σ tout entier $i \in [1, n]$ tel que $\sigma(i) = i$.

Une permutation $\sigma \in \mathcal{S}_n$ est appelée un **dérangement** si elle n'a aucun point fixe. Pour tout $n \geq 1$, on note d_n le nombre de dérangements de l'intervalle entier [1, n]. Par convention, on pose $d_0 = 1$.

On munit l'ensemble fini S_n de la probabilité uniforme notée P_n . Sur l'espace probabilisé fini (S_n, P_n) , on définit la variable aléatoire X_n telle que, pour tout $\sigma \in S_n$, $X_n(\sigma)$ est le nombre de points fixes de la permutation σ .

 $\mathbf{2} \triangleright \text{ Pour } k \in [0, n]$, montrer que le nombre de permutations de [1, n] ayant exactement k points fixes est $\binom{n}{k} d_{n-k}$.

En déduire que
$$P_n(X_n = k) = \frac{d_{n-k}}{k!(n-k)!}$$
.

6 > Sur l'espace probabilisé fini (S_n, P_n) , on définit, pour tout $i \in [1, n]$, la variable aléatoire U_i telle que, pour tout $\sigma \in S_n$, on ait $U_i(\sigma) = 1$ si $\sigma(i) = i$, et $U_i(\sigma) = 0$ sinon.

Montrer que U_i suit une loi de Bernoulli de paramètre $\frac{1}{n}$.

Montrer que, si $i \neq j$, la variable U_iU_j suit une loi de Bernoulli dont on précisera le paramètre.

- **7** ▷ Exprimer X_n à l'aide des U_i , $1 \le i \le n$. En déduire l'espérance $E(X_n)$ et la variance $V(X_n)$.
- $\mathbf{8} \triangleright \text{Dans}$ cette question, on fixe un entier naturel k. Déterminer

$$y_k = \lim_{n \to +\infty} P_n(X_n = k) .$$

Soit Y une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) , à valeurs dans \mathbf{N} , et vérifiant

$$\forall k \in \mathbf{N} \qquad P(Y=k) = y_k \ .$$

Reconnaître la loi de Y.

2 Convergence en variation totale

Dans la suite du problème, on appelle distribution (de probabilités) sur N toute application $x \colon \mathbf{N} \to \mathbf{R}_+$ telle que

$$\sum_{k=0}^{+\infty} x(k) = 1 .$$

On note $\mathcal{D}_{\mathbf{N}}$ l'ensemble des distributions de probabilités sur \mathbf{N} .

Si x et y sont deux distributions sur \mathbb{N} , on définit la **distance en variation** totale entre x et y par

$$d_{VT}(x,y) = \frac{1}{2} \sum_{k=0}^{+\infty} |x(k) - y(k)|.$$

10 \triangleright Soient x, y, z trois distributions sur N. Prouver les propriétés :

$$0 \le d_{VT}(x,y) \le 1 ;$$

$$d_{VT}(x,y) = 0 \iff x = y ;$$

$$d_{VT}(y,x) = d_{VT}(x,y) ;$$

$$d_{VT}(x,z) \le d_{VT}(x,y) + d_{VT}(y,z) .$$

Si X est une variable aléatoire à valeurs dans \mathbf{N} , définie sur un espace probabilisé (Ω, \mathcal{A}, P) , on note p_X la distribution de probabilités de X. Ainsi, p_X est l'application de \mathbf{N} vers \mathbf{R}_+ définie par

$$\forall k \in \mathbf{N} \qquad p_X(k) = P(X = k) .$$

Il est clair que $p_X \in \mathcal{D}_{\mathbf{N}}$.

En particulier, si λ est un réel strictement positif, on appelle **distribution** de Poisson de paramètre λ l'application $\pi_{\lambda} \colon \mathbf{N} \to \mathbf{R}_{+}$ telle que

$$\forall k \in \mathbf{N} \qquad \pi_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} .$$

- 11 ▷ Soient X et Y deux variables de Bernoulli, ayant respectivement pour paramètres $\lambda \in]0,1[$ et $\mu \in]0,1[$. Calculer $d_{VT}(p_X,p_Y)$.
- 12 \triangleright Soit X une variable de Bernoulli de paramètre $\lambda \in]0,1[$. Montrer que

$$d_{VT}(p_X, \pi_\lambda) = \lambda (1 - e^{-\lambda}).$$

En déduire que

$$d_{VT}(p_X, \pi_\lambda) \leq \lambda^2$$
.

On considère de nouveau les variables aléatoires X_n introduites dans la partie 1. Les questions 8. et 9. semblent montrer une certaine "convergence" des lois des variables X_n vers la loi de Poisson de paramètre 1. Le but de la fin de cette partie est de montrer que

$$d_{VT}(p_{X_n}, \pi_1) \quad \underset{n \to +\infty}{\longrightarrow} \quad 0,$$

et que cette convergence est assez rapide.

13 ▷ Vérifier la relation, pour tout n entier naturel non nul,

$$2 d_{VT}(p_{X_n}, \pi_1) = \sum_{k=0}^n \frac{1}{k!} \left| \sum_{i=n-k+1}^{+\infty} \frac{(-1)^i}{i!} \right| + e^{-1} \sum_{k=n+1}^{+\infty} \frac{1}{k!}.$$

14 ▷ Pour *n* entier naturel, on pose $r_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$. Prouver la majoration

$$r_n \le \frac{1}{(n+1)!} \sum_{k=0}^{+\infty} \frac{1}{(n+2)^k}$$
.

En déduire un équivalent simple de r_n lorsque n tend vers $+\infty$.

15 ▷ En continuant de majorer le second membre de l'égalité de la question 13., établir l'estimation

$$d_{VT}(p_{X_n}, \pi_1) \underset{n \to +\infty}{=} O\left(\frac{2^n}{(n+1)!}\right).$$

On pourra faire intervenir des coefficients binomiaux.