Les quatre parties sont indépendantes entre elles.

Dans l'ensemble du sujet, pour répondre à une question, on pourra admettre les résultats des questions précédentes.

Notations

Dans l'ensemble du sujet m et n désignent des entiers strictement positifs. L'ensemble $\mathbb C$ désigne le corps des nombres complexes. Le module d'un nombre complexe z est noté |z| et son conjugué est noté \overline{z} . On note $\overline{\mathbb D}=\{z\in\mathbb C:|z|\leqslant 1\}$ le disque unité fermé, et $\mathbb S=\{z\in\mathbb C:|z|=1\}$.

On note $\mathcal{M}_{m,n}(\mathbb{C})$ l'ensemble des matrices à m lignes et à n colonnes à coefficients dans \mathbb{C} et $\mathcal{M}_n(\mathbb{C}) = \mathcal{M}_{n,n}(\mathbb{C})$ l'ensemble des matrices à n lignes et à n colonnes à coefficients dans \mathbb{C} . On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$. La matrice transposée d'une matrice $A \in \mathcal{M}_{m,n}(\mathbb{C})$ est notée A^{T} . Si $A = (a_{i,j})_{0 \leq i \leq m-1} \in \mathcal{M}_{m,n}(\mathbb{C})$, on note $\overline{A}^{\mathsf{T}} \in \mathcal{M}_{n,m}(\mathbb{C})$ la matrice $(\overline{a_{j,i}})_{0 \leq i \leq m-1}$.

On dit qu'une matrice $U \in \mathcal{M}_n(\mathbb{C})$ est unitaire si

$$U\overline{U}^{\mathsf{T}} = \overline{U}^{\mathsf{T}}U = \mathbf{I}_n.$$

Les coefficients d'un vecteur $x \in \mathbb{C}^n$ sont notés x_0, \ldots, x_{n-1} . Un vecteur $x \in \mathbb{C}^n$ sera vu comme un élément de $\mathcal{M}_{n,1}(\mathbb{C})$. Pour tous $x \in \mathbb{C}^n$ et $y \in \mathbb{C}^n$, la matrice $x^{\mathsf{T}}y \in \mathcal{M}_1(\mathbb{C})$ est identifiée au nombre complexe $\sum_{i=0}^{n-1} x_i y_i$. Nous munissons \mathbb{C}^n de la norme $\| \cdot \|_2$ définie par

$$\forall x \in \mathbb{C}^n, \qquad \|x\|_2 = \left(\sum_{i=0}^{n-1} |x_i|^2\right)^{1/2}.$$

Si $A \in \mathcal{M}_{m,n}(\mathbb{C})$, on note

$$||A|| = \sup_{\substack{x \in \mathbb{C}^n \\ ||x||_2 = 1}} ||Ax||_2.$$

Par convention, pour $A \in \mathcal{M}_n(\mathbb{C})$, on pose $A^0 = I_n$.

* * *

Préliminaires

Les résultats démontrés ici seront utiles dans la première partie.

- 1. Lorsque $x \in \mathbb{C}^n$, vérifier que $||x||_2^2 = \overline{x}^{\mathsf{T}}x$.
- **2.** Soit $U \in \mathcal{M}_n(\mathbb{C})$ une matrice unitaire. Montrer que $||Ux||_2 = ||x||_2$ pour tout $x \in \mathbb{C}^n$.
- 3. Si $D \in \mathcal{M}_n(\mathbb{C})$ est une matrice diagonale dont les coefficients diagonaux sont d_0, \ldots, d_{n-1} , montrer que $||D|| = \max_{0 \le i \le n-1} |d_i|$.
- 4. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe une matrice unitaire $U \in \mathcal{M}_n(\mathbb{C})$ telle que $B = UAU^{-1}$. Montrer que ||A|| = ||B||.

Première partie

Le but de cette partie est de démontrer le résultat suivant.

Théorème 1. Soit $f \in \mathbb{C}[X]$ un polynôme. Alors

$$\sup_{z \in \overline{\mathbb{D}}} |f(z)| = \sup_{z \in \mathbb{S}} |f(z)|.$$

Pour cela, on admet le résultat suivant, qui pourra être utilisé sans démonstration.

A) Si $M \in \mathcal{M}_m(\mathbb{C})$ est une matrice unitaire, il existe une matrice diagonale $D \in \mathcal{M}_m(\mathbb{C})$, dont tous les coefficients diagonaux ont module 1, et une matrice unitaire $U \in \mathcal{M}_m(\mathbb{C})$ telles que $M = UDU^{-1}$.

Pour démontrer le **Théorème 1**, on fixe un polynôme $f \in \mathbb{C}[X]$ de degré $n \geqslant 1$. On considère un nombre complexe $z \in \overline{\mathbb{D}}$ et on définit les matrices $M \in \mathcal{M}_{n+1}(\mathbb{C})$ et $P \in \mathcal{M}_{n+1,1}(\mathbb{C})$ par

$$M = \begin{pmatrix} z & 0 & 0 & \cdots & 0 & \sqrt{1 - |z|^2} \\ \sqrt{1 - |z|^2} & 0 & 0 & \cdots & 0 & -\overline{z} \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & 0 & 0 & \cdots & 1 & 0 \end{pmatrix} = \begin{pmatrix} z & 0 & 0 & \cdots & 0 & \sqrt{1 - |z|^2} \\ \sqrt{1 - |z|^2} & 0 & 0 & \cdots & 0 & -\overline{z} \\ 0 & 0 & \cdots & 0 & -\overline{z} \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & I_{n-1} & \vdots & \vdots \\ 0 & 0 & 0 \end{pmatrix}$$

et

$$P = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

- ${f 5}$. Montrer que M est une matrice unitaire.
- **6.** Montrer que $z^k = P^{\mathsf{T}} M^k P$ pour tout entier $0 \leq k \leq n$.
- 7. Montrer que $|f(z)| \leq ||f(M)||$.
- 8. Démontrer le Théorème 1.

Deuxième partie

Le but de cette partie est de démontrer l'énoncé suivant (on pourra utiliser le **Théorème 1**).

Théorème 2. Soit $n \ge 1$ un entier et $A(z) = \sum_{k=0}^{n-1} a_k z^k$ un polynôme non nul tel que $a_k \in \{-1,0,1\}$ pour tout $0 \le k \le n-1$. Alors pour tout entier $L \ge 1$ on a

$$\sup_{\theta \in [-\frac{\pi}{L}, \frac{\pi}{L}]} |A(e^{i\theta})| \geqslant \frac{1}{n^{L-1}} \cdot$$

Pour démontrer ce résultat, on fixe un entier $n \ge 1$ et $A(z) = \sum_{k=0}^{n-1} a_k z^k$ un polynôme tel que $a_k \in \{-1,0,1\}$ pour tout $0 \le k \le n-1$. On fixe également un entier $L \ge 1$.

- 9. Si $z \in \mathbb{C}$ vérifie |z| = 1, montrer que $|A(z)| \leq n$.
- 10. On suppose dans cette question que $a_0=1,$ et on pose, pour tout $z\in\mathbb{C},$

$$F(z) = \prod_{j=0}^{L-1} A\left(ze^{\frac{2i\pi j}{L}}\right).$$

- a. Montrer qu'il existe $z_0\in\mathbb{C}$ tel que $|z_0|=1$ et $|F(z_0)|\geqslant 1.$
- **b.** Montrer que $|F(z_0)| \leq n^{L-1} \cdot \sup_{\theta \in [-\frac{\pi}{L}, \frac{\pi}{L}]} |A(e^{i\theta})|$.
- ${f 11}.$ Démontrer le ${f Th\'eor\`eme}$ ${f 2}.$