Notations

Dans tout le problème n désigne un entier naturel non nul : $n \in \mathbb{N}^*$.

— Dans $\mathcal{E}_n = \mathcal{M}_{n,1}(\mathbf{R})$ espace vectoriel réel de dimension n, on utilisera le produit scalaire canonique défini par :

$$\forall U, V \in \mathcal{E}_n, \qquad (U|V) = {}^tUV.$$

- On notera $\mathcal{M}_n = \mathcal{M}_n(\mathbf{R})$, l'espace vectoriel des matrices carrées de taille n à coefficients réels.
- Pour $A \in \mathcal{M}_n$, on notera ker A, le noyau de A vu comme endomorphisme de \mathcal{E}_n .
- Dans \mathcal{M}_n , on notera 0_n la matrice nulle et I_n la matrice unité. Le déterminant est noté det.
- $\mathcal{G}_n = \mathcal{G}L_n(\mathbf{R}) = \{M \in \mathcal{M}_n, \ \det(M) \neq 0\}$ désigne le groupe linéaire des matrices inversibles de \mathcal{M}_n .
- $\mathcal{O}_n = \{M \in \mathcal{M}_n, {}^tMM = I_n\}$ désigne le groupe orthogonal d'indice n, formé des matrices orthogonales de \mathcal{M}_n .
- On sera enfin amené à utiliser des décompositions par blocs. On rappelle en particulier que si $A, B, C, D, A', B', C', D' \in \mathcal{M}_n$, on a alors dans \mathcal{M}_{2n} :

$$\left[\begin{array}{cc}A&B\\C&D\end{array}\right]\left[\begin{array}{cc}A'&B'\\C'&D'\end{array}\right]=\left[\begin{array}{cc}AA'+BC'&AB'+BD'\\CA'+DC'&CB'+DD'\end{array}\right].$$

$$\det\left(\left[\begin{array}{cc}A & C\\0_n & D\end{array}\right]\right) = \det\left(\left[\begin{array}{cc}A & 0_n\\C & D\end{array}\right]\right) = \det(A)\det(D).$$

Mines Maths 2 PSI 2015 — Énoncé 3/5

I Le groupe symplectique

Soit $n \in \mathbb{N}^*$ et soit J_n ou simplement J la matrice de \mathcal{M}_{2n} définie par

$$J = \left[\begin{array}{cc} 0_n & -I_n \\ I_n & 0_n \end{array} \right].$$

On note

$$\mathcal{S}p_{2n} = \{ M \in \mathcal{M}_{2n}, \ ^t MJM = J \}.$$

- 1. Calculer J^2 et tJ en fonction de I_{2n} et J. Montrer que J est inversible et identifier son inverse.
- 2. Vérifier que $J \in \mathcal{S}p_{2n}$ et que pour tout réel α ,

$$K(\alpha) = \begin{bmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{bmatrix} \in \mathcal{S}p_{2n}.$$

- 3. Pour tout $U \in \mathcal{G}_n$, vérifier que $L_U = \begin{bmatrix} U & 0_n \\ 0_n & {}^tU^{-1} \end{bmatrix}$ est dans $\mathcal{S}p_{2n}$.
- 4. Si $M \in \mathcal{S}p_{2n}$, préciser les valeurs possibles de $\det(M)$.
- 5. Montrer que le produit de deux éléments de Sp_{2n} est un élément de Sp_{2n} .
- 6. Montrer qu'un élément de Sp_{2n} est inversible et que son inverse appartient à Sp_{2n} .
- 7. Montrer que si $M \in \mathcal{S}p_{2n}$ alors ${}^tM \in \mathcal{S}p_{2n}$.

Soit M une matrice de \mathcal{M}_{2n} écrite sous la forme

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
, avec $A, B, C, D \in \mathcal{M}_n$.

8. Déterminer des relations sur A,B,C et D caractérisant l'appartenance de M à $\mathcal{S}p_{2n}$.

$\mathbf{II} \quad \mathbf{Centre} \,\, \mathbf{de} \,\, \mathcal{S}p_{2n}$

On s'intéresse ici au centre \mathcal{Z} de $\mathcal{S}_{p_{2n}}$ c'est-à-dire :

$$\mathcal{Z} = \{ M \in \mathcal{S}p_{2n}, \ \forall N \in \mathcal{S}p_{2n}, \ MN = NM \}.$$

Mines Maths 2 PSI 2015 — Énoncé

4/5

9. Justifier l'inclusion suivante : $\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}$.

Réciproquement, soit $M \in \mathcal{Z}$ écrite sous la forme

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
, avec $A, B, C, D \in \mathcal{M}_n$.

- 10. En utilisant $L=\left[\begin{array}{cc}I_n&I_n\\0_n&I_n\end{array}\right]$ et sa transposée, obtenir $B=C=0_n$ et D=A, A étant inversible.
- 11. Soit $U \in \mathcal{G}_n$. En utilisant $L_U = \begin{bmatrix} U & 0_n \\ 0_n & {}^tU^{-1} \end{bmatrix}$, montrer que A commute avec toute matrice $U \in \mathcal{G}_n$.
- 12. Conclure que $A \in \{-I_n, I_n\}$ et $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$.

Indication: on montrera d'abord que les matrices $I_n + E_{ij}$ commutent avec A, où $(E_{ij}, 1 \leq i, j \leq n)$ est la base canonique de \mathcal{M}_n .

III Déterminant d'une matrice symplectique

Soit M dans Sp_{2n} que l'on décompose sous forme de matrices blocs

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] \tag{1}$$

avec $A, B, C, D \in \mathcal{M}_n$. Dans toute cette partie, les matrices A, B, C, D sont les matrices de cette décomposition.

On suppose dans les questions 13 et 14 que D est inversible.

13. Montrer qu'il existe quatre matrices Q, U, V, W de \mathcal{M}_n telles que

$$\left[\begin{array}{cc} I_n & Q \\ 0_n & I_n \end{array}\right] \left[\begin{array}{cc} U & 0_n \\ V & W \end{array}\right] = \left[\begin{array}{cc} A & B \\ C & D \end{array}\right].$$

Mines Maths 2 PSI 2015 — Énoncé 5/5

14. En utilisant la question 8, vérifier que BD^{-1} est symétrique, puis que

$$\det(M) = \det({}^t AD - {}^t CB) = 1.$$

Soit $P, Q \in \mathcal{M}_n$ telles que tPQ soit symétrique et Q non inversible. On suppose qu'il existe deux réels différents s_1, s_2 et deux vecteurs V_1, V_2 non nuls dans \mathcal{E}_n tels que :

$$(Q - s_1 P)V_1 = (Q - s_2 P)V_2 = 0.$$

15. Montrer que le produit scalaire $(QV_1|QV_2)$ est nul.

On suppose dorénavant D non inversible.

16. Montrer que $\ker B \cap \ker D = \{0\}.$

Soit m un entier, $m \leq n$. Soit s_1, \dots, s_m des réels non nuls et deux à deux distincts et V_1, \dots, V_m des vecteurs non nuls tels que

$$(D - s_i B)V_i = 0$$
 pour $i = 1, \dots, m$.

- 17. Montrer que pour tout $i \in \{1, \dots, m\}$, $DV_i \neq 0$ et que la famille $(DV_i, i = 1, \dots, m)$ forme un système libre de \mathcal{E}_n .
- 18. En déduire qu'il existe un réel α tel que $D \alpha B$ soit inversible.
- 19. Montrer alors que toute matrice de Sp_{2n} est de déterminant égal à 1.

Fin du problème