Suites de nombres réels ou complexes

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que

$$\forall p \in \mathbb{N}, \quad \forall \epsilon > 0, \quad \exists N \in \mathbb{N} : \quad \forall n \ge N, \quad |u_{n+p} - u_n| < \epsilon$$

La suite est-elle convergente?

2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de complexe convergente vers ℓ . Pour tout entier n, on pose

$$v_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} u_k$$

Montrer que $(v_n)_{n\in\mathbb{N}}$ converge vers ℓ .

___ (*) _____

Etudier la suite définie par récurrence par

$$\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = u_n + \sin u_n \end{cases}$$

4

Soit $(x_n)_{n\in\mathbb{N}}$ définie par $x_0>1 \qquad \text{et} \qquad \forall n\in\mathbb{N}, \quad x_{n+1}=\frac{{x_n}^2}{1-x_n}$

$$x_0 > 1$$

$$\forall n \in \mathbb{N},$$

$$_{n+1} = \frac{x_n^2}{1 - x_n}$$

Déterminer la nature de $(x_n)_{n\in\mathbb{N}}$ puis un équivalent de x_n lorsque n tend vers $+\infty$.

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par

$$0 < a_0 < b_0 \qquad \text{et} \qquad \forall n \in \mathbb{N}, \quad \left\{ \begin{array}{l} a_{n+1} = (a_n + b_n)/2 \\ b_{n+1} = \sqrt{a_{n+1}b_n} \end{array} \right.$$

- (a). Montrer que les deux suites convergent vers la même limite.
- (b). On pose $\alpha = \arccos(a_0/b_0)$. Exprimer la limite de ces deux suites en fonction de α et b_0 .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers $\lambda\in\mathbb{R}$ et $a\in]-1;1[$. On définit $(v_n)_{n\in\mathbb{N}}$ par

$$v_0 = u_0$$
 et $\forall n \in \mathbb{N}, \quad v_{n+1} = av_n + u_n$

Etudier la nature de la suite $(v_n)_{n\in\mathbb{N}}$ et donner sa limite éventuelle.

- (**)
- (a). Montrer que pour tout entier $n \geq 3$, l'équation $e^x = x^n$ admet exactement deux solutions strictement positives $u_n < v_n$.
- (b). Montrer que pour tout entier $n \geq 3$, $u_n < n < v_n$.
- (c). Etudier les limites éventuelles de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

____ (*) ____

Montrer que l'équation $x - e^{-x} = n$ a une unique solution x_n pour tout entier n. Donner un équivalent simple de x_n , puis un développement asymptotique à deux termes lorsque n tend vers $+\infty$.

9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle de limite nulle et telle que $u_n + u_{2n} \sim 3/(2n)$. Montrer que $u_n \sim 1/n$.

Donner un contre-exemple lorsque $u_n + u_{n+1} \sim 2/n$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive telle que pour tout $n, u_{n+2} \leq (u_n + u_{n+1})/2$. Montrer qu'elle converge.

Séries de nombres réels ou complexes

11 _______(*)

Nature de la série de terme général $u_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}}\right)$ avec a > 0?

12 ______(*) _____

Nature de la série de terme général $u_n = \frac{\binom{2n}{n}}{\binom{3n}{n}}$?

Nature de la série de terme général $u_n = (\cos(1/n))^{n^{\alpha}}$?

______(**) ______

Etudier la convergence de $\sum\limits_{n\geq 0}u_n$ dans les cas suivants :

(a) $u_n = \left(\frac{\pi}{2}\right)^{\alpha} - (\arctan n)^{\alpha}$ (discuter en fonction de α) (b) $u_n = \exp(1) - \left(1 + \frac{1}{n}\right)^n$

Nature de la série de terme général $u_n = e^{n^8} \int_{r}^{+\infty} e^{-t^8} dt$.

Soit f une fonction de classe \mathcal{C}^3 sur [-1;1]. On pose pour tout entier $n\in\mathbb{N}^*$

$$u_n = n [f(1/n) - f(-1/n)] - 2f'(0)$$

Montrer que la série $\sum u_n$ converge.

Déterminer en fonction des réels α et β la nature de la série de terme général $u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^{\beta}$.

______(**) _____

Calculer les sommes suivantes :

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)}$$
 (b) $\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 9}$ (c) $\sum_{n=2}^{+\infty} \frac{(-1)^n (n+3)}{n^2 - 1}$

Pour le (c), on pourra admettre que $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = \ln 2$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Montrer que les séries $\sum u_n$ et $\sum \frac{u_n}{1+u_n}$ sont de mêmes natures.

Donner un contre-exemple si l'on ne suppose plus la suite à termes positifs.

______(***) _____

Soit $(d_n)_{n\geq 1}$ une suite de réels positifs telle que

 $\sum_{n\geq 1} d_n^2 < +\infty \qquad \text{et} \qquad \sum_{n\geq 1} \sqrt{D_n/n} < +\infty \qquad \text{où} \qquad D_n = \sum_{k\geq n} d_k^2$

Déterminer la nature de la série de terme général $(d_n)_{n\in\mathbb{N}}$.

 $\mathbf{21}$

Pour tout $n \in \mathbb{N}^*$, on pose

$$a_n = \prod_{p=1}^n \left(1 + \frac{(-1)^{p-1}}{\sqrt{p}} \right)$$

Montrer que $(a_n)_{n\in\mathbb{N}}$ converge vers 0. Que peut-on dire de la suite $(\sqrt{n}\,a_n)_{n\in\mathbb{N}}$?

_____(*

On se donne $r \in]0;1[$ et une suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par

$$0 < u_0 < u_1$$
 et $\forall n \ge 1$, $u_{n+1} = u_n + r^n u_{n-1}$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.

Soit $\sum_{n\geq 1}u_n$ une série convergente. Notons $(R_n)_{n\in\mathbb{N}}$ la suite des restes de la série :

$$\forall n \in \mathbb{N}, \qquad R_n = \sum_{k=n+1}^{+\infty} u_k$$

(a). Montrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} R_k = \sum_{k=1}^{n} k u_k + (n+1)R_n$$

- (b). On suppose que $(u_n)_{n\in\mathbb{N}}$ est une suite positive. Montrer que la série de terme général $(R_n)_{n\in\mathbb{N}}$ converge si et seulement si la série de terme général $(n\,u_n)_{n\in\mathbb{N}}$ converge.
- (c). Dans le cas de convergence, montrer que $\sum_{n=0}^{+\infty} R_n = \sum_{n=1}^{+\infty} n \, u_n$.

Soient a, b deux réels strictement positifs et $(u_n)_{n \in \mathbb{N}}$ définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$

Montrer que la série de terme général $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si b-a>1 et calculer alors sa somme.

La partie entière d'un réel x est notée |x|. On s'intéresse à la nature de la série

$$\sum_{n \ge 1} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}$$

On va pour cela appliquer une transformée d'Abel. On note donc

$$\forall n \in \mathbb{N}, \qquad S_n = \sum_{k=0}^n (-1)^{\lfloor \sqrt{k} \rfloor}$$

(a) Justifier que pour tout entier $n \ge 1$,

$$\sum_{k=1}^{n} \frac{(-1)^{\lfloor \sqrt{k} \rfloor}}{k} = \frac{S_n}{n} - 1 + \sum_{k=1}^{n-1} \frac{S_k}{k(k+1)}$$

- (b) Soit $k \in \mathbb{N}^*$. On introduit l'unique entier p tel que $p^2 \le k < (p+1)^2$.
 - (i) Etablir que $S_k = \left[\sum_{i=1}^p (-1)^{i-1} (2i-1) \right] + (-1)^p (k+1-p^2)$
 - (ii) Calculer pour un entier p quelconque la somme $\sum_{i=1}^{p} (-1)^{i-1} (2i-1)$ puis en déduire que

$$S_k = O(p)$$
 puis $S_k = O(\sqrt{k})$

(c) Conclure quand à la nature de la série $\sum_{n\geq 1}\frac{(-1)^{\lfloor \sqrt{n}\rfloor}}{n}.$

26

_ (**) _

Pour tout $n \in \mathbb{N}^*$, on pose

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
 et $v_n = \sum_{k=1}^n \sqrt{k}$

Justifier l'existence de deux réels C, D (que l'on ne cherchera pas à déterminer) tels que

$$u_n = 2\sqrt{n} + C + o(1)$$
 et $v_n = \frac{2}{3}n^{3/2} + \frac{1}{2}\sqrt{n} + D + o(1)$

Exercices non corrigés

27

Soit $x \in \mathbb{R}^{\mathbb{N}}$ vérifiant

$$\forall n \in \mathbb{N}, \quad x_{n+2} = \min(3 - x_{n+1}, 2x_n - 2)$$

- (a). La suite x est-elle convergente?
- (b). Montrer que x prend des valeurs négatives.
- (c). Montrer que x n'est pas bornée.

28

Pour $n \in \mathbb{N}^*$, on note

$$a_n = \operatorname{Card}\left\{d \in \mathbb{N}^*, \ d \text{ divise } n \text{ } \text{ et } \text{ } \sqrt{\frac{n}{2}} \leq d \leq \sqrt{2n}\right\}$$

- (a). La suite $(a_n)_{n\geq 1}$ est-elle convergente?
- (b). La suite $(a_n)_{n\geq 1}$ est-elle bornée?

29

Soit $\sigma: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ une application bijective.

- (a). Montrer que $\sum_{n>1} \frac{1}{\sigma(n)^2}$ converge.
- (b). Montrer que $\sum_{n>1} \frac{1}{\sigma(n)}$ diverge.
- (c). Montrer que $\sum_{n\geq 1} \frac{1}{n\sigma(n)}$ converge.

30

Soit $f: \mathbb{N}^* \longrightarrow \mathbb{R}$. On note σ_c (resp. σ_a) la borne inférieure de l'ensemble des réels s tels que la série $\sum_{n\geq 1} f(n)n^{-s}$ converge (resp. converge absolument).

- (a). Déterminer σ_c et σ_a lorsque $f: n \longmapsto 2^{-n}$ puis pour $f: n \longmapsto (-1)^n n^{-s_0}$ où s_0 est un réel fixé.
- (b). Montrer que pour tout $s \ge \sigma_a$, la série $\sum_{n>0} f(n)n^{-s}$ converge absolument.
- (c). Établir les inégalités $\sigma_c \leq \sigma_a \leq \sigma_c + 1$ et montrer qu'elles sont optimales.

- $\boxed{\mathbf{1}} \text{ Considérer la suite harmonique } H_n = \sum_{k=1}^n \frac{1}{k}.$
- Utiliser la même technique que pour le lemme de Cesàro. Considérer $v_n \ell$, homogénéiser cette différence, puis travailler avec des ϵ en coupant la somme en deux.
- Etudier dans un premier temps les suites des termes d'indices pairs et impairs. Pour l'équivalent, on pourra s'intéresser à $(t_n)_{n\in\mathbb{N}}$ où $t_n=x_{2n+2}{}^2-x_{2n}{}^2$.
- $\boxed{\mathbf{5}}$ (a) Montrer que pour tout $n, a_n < b_n$.
 - (b) On pourra commencer par exprimer b_n en fonction de b_0 , α et n.
- 6 On pourra exprimer v_{n+1} en fonction de u_0, \ldots, u_n et a, poser $u_n = x_n + \lambda$ avec $(x_n)_{n \in \mathbb{N}}$ de limite nulle, et justifier que $\sum_{k=0}^n a^k x_{n-k} \xrightarrow[n \to +\infty]{} 0.$
- $\boxed{7}$ (a) On pourra utiliser les variations de $f: x \longmapsto (\ln x)/x$.
 - (b) Utiliser la monotonie de g^{-1} et de h^{-1} où g (resp. h) est la restriction de f à]0;e] (resp. à $[e;+\infty[)$).
 - (c) Pour trouver la limite de $(u_n)_{n\in\mathbb{N}}$, utiliser la continuité de g en 0.
- 8 Pour l'équivalent, on pourra commencer par encadrer x_n par deux entiers consécutifs, puis poser pour $x_n f(n)$, on pourra poser $y_n = x_n f(n)$ puis obtenir une équation satisfaite par y_n à partir de celle vérifiée par x_n .
- 9 Poser $v_n = u_n 1/n$. On est alors ramené à montrer que si $v_{2n} + v_n = o(1/n)$, alors $v_n = o(1/n)$. On remarquera pour cela que pour tous entiers n et p,

$$v_n = (v_n + v_{2n}) - (v_{2n} + v_{4n}) + \dots + (-1)^{p-1} (v_{2p-1_n} + v_{2p_n}) + (-1)^p v_{2p_n}$$

puis on raisonnera avec des ϵ .

- **10** On pourra étudier dans un premier temps $v_n = \max(u_n, u_{n+1})$.
- 11 Faire un developpement asymptotique de u_n comportant au moins 3 termes.
- 12 Utiliser la règle de d'Alembert.
- 13 Chercher un développement asymptotique de $\ln u_n$ puis une domination/minoration de type Riemann.
- Dans les deux cas, utiliser des développements limités pour trouver un équivalent simple de u_n lorsque n tend vers $+\infty$. Pour le (a), on pourra utiliser l'égalité

$$\forall x > 0,$$
 $\arctan x + \arctan(1/x) = \frac{\pi}{2}$

- Pour 5/2 essentiellement compte tenu de la présence d'une intégrale impropre. Effectuer un changement de variable puis une majoration assez grossière.
- 16 Utiliser les formules de Taylor pour montrer que le terme général u_n est dominé par $1/n^2$.
- 17 Comparer $\sum_{k=1}^{n} f(k)$ à $\int_{1}^{n} f(t) dt$ avec $f(t) = t^{b}$.
- 18 Dans les deux cas, décomposer en éléments simples la fraction rationnelle puis faire un téléscopage généralisé.
- 19 Utiliser les comparaisons par équivalents en utilisant le fait que si une série converge, son terme général tend vers 0.
- **20** Calculer $S_n = \sum_{m=1}^n \sum_{k=m}^n \frac{d_k}{k}$. Appliquer alors l'inégalité de Cauchy-Schwarz.
- Considérer $\ln a_n$ et utiliser un développement limité généralisé.

 Pour $\lim_{n\to+\infty} \sqrt{n}a_n$, on pourra utiliser le développement asymptotique de la série harmonique $\sum_{n\geq0}\frac{1}{n}$ (ie la constante d'Euler) et procéder comme pour a_n .
- **22** Remarquer que $u_{n+1} \leq (1+r^n)u_n$ pour tout n.
- **23** (a) Faire une transformée d'Abel (ie un changement d'indice) en remarquant que $u_k = R_{k-1} R_k$ pour $k \ge 1$.
 - (b) Pour l'implication \iff , majorer $(n+1)R_n$ à l'aide d'un reste de $\sum nu_n$.
- Utiliser la règle de Raab-Duhamel (en refaisant les calculs bien entendu). Pour calculer la somme, sommer l'égalité $(n+b)u_{n+1} = (n+a)u_n$ et faire un changement d'indice.

25 (a) Appliquer une transformée d'Abel.

Indications

- (b.i) Regrouper les termes dans la somme définissant S_k suivant la valeur de l'exposant du (-1).
- (b.ii) Calculer de deux manières différentes la dérivée en 1 du polynôme $\sum_{i=1}^{p} (-1)^{i-1} x^{2i-1}$.

 $\boxed{\textbf{26}} \ \text{Comparer} \ f(k) \ \text{à} \ \int_{k-1}^k f(t) \, \mathrm{d}t \ \text{avec d'une part} \ f: t \longmapsto 1/\sqrt{t} \ \text{puis avec} \ f: t \longmapsto \sqrt{t}.$