I. Quelques propriétés de $F = \theta(f)$

Certaines questions de cette partie peuvent sembler très simples. Cependant, il faut bien faire attention à en rédiger les réponses correctement. Par exemple, avant de calculer la dérivée d'une fonction, on doit systématiquement préciser que f est bien dérivable.

Il est également très mal vu, par exemple, de confondre la fonction f avec l'image d'un élément f(t) par cette même fonction.

I.1.1 Si la fonction f est définie sur \mathbb{R} par f(t) = 1, alors

$$\forall x \in \mathbb{R}$$
 $F(x) = \int_{x}^{x+1} 1 \, dt = [t]_{x}^{x+1} = x + 1 - x = 1$

d'où

$$\forall x \in \mathbb{R} \qquad F(x) = 1$$

I.1.2 Si la fonction f est définie sur \mathbb{R} par $f(t) = t^k$, alors

$$\forall x \in \mathbb{R}$$
 $F(x) = \int_{x}^{x+1} t^{k} dt = \left[\frac{t^{k+1}}{k+1}\right]_{x}^{x+1}$

d'où

$$\forall x \in \mathbb{R} \qquad F(x) = \frac{(x+1)^{k+1} - x^k}{k+1}$$

I.2.1 Notons φ une primitive de f. Comme f est continue, φ est \mathscr{C}^1 . De plus, on peut écrire

$$\forall x \in \mathbb{R}$$
 $F(x) = \varphi(x+1) - \varphi(x)$

Par composition et addition de fonctions \mathcal{C}^1 , F est \mathcal{C}^1 . En outre, on a

$$\forall x \in \mathbb{R}$$
 $F'(x) = \varphi'(x+1) - \varphi'(x)$

d'où

$$\forall x \in \mathbb{R}$$
 $F'(x) = f(x+1) - f(x)$

I.2.2 Supposons que f soit croissante sur un intervalle $[x_0; +\infty[$. Alors

$$\forall x \geqslant x_0 \qquad f(x+1) \geqslant f(x)$$

d'où

$$\forall x \geqslant x_0$$
 $F'(x) = f(x+1) - f(x) \geqslant 0$

donc F est croissante sur $[x_0; +\infty]$. On en déduit

$$f$$
 croissante sur $[x_0; +\infty[$ \Longrightarrow F croissante sur $[x_0; +\infty[$

On montre de même que

$$f$$
 décroissante sur $[x_0; +\infty[$ \Longrightarrow F décroissante sur $[x_0; +\infty[$

I.2.3 La fonction F étant \mathscr{C}^1 , on a

F constante
$$\iff \forall x \in \mathbb{R} \qquad F'(x) = 0$$

 $\iff \forall x \in \mathbb{R} \qquad f(x+1) = f(x)$

d'où

F constante
$$\iff$$
 $f \in \mathscr{C}_1^0$

I.2.4 Si f est définie sur \mathbb{R} par $f(t) = |\sin(\pi t)|$, alors

$$\forall t \in \mathbb{R} \qquad f(t+1) = |\sin(\pi(t+1))|$$

$$= |\sin(\pi t + \pi)|$$

$$= |-\sin(\pi t)|$$

$$= |\sin(\pi t)|$$

$$f(t+1) = f(t)$$

On en déduit que f appartient à \mathscr{C}_1^0 , donc que F est constante d'après la question I.2.3. Par ailleurs,

$$F(0) = \int_0^1 |\sin(\pi t)| dt$$
$$= \int_0^1 \sin(\pi t) dt$$

 $\operatorname{car} t \mapsto \sin(\pi t)$ est positive sur [0;1]; d'où

$$F(0) = \left[\frac{-\cos(\pi t)}{\pi}\right]_0^1 = \frac{2}{\pi}$$

F étant constante, on en déduit

$$\forall t \in \mathbb{R} \qquad F(t) = \frac{2}{\pi}$$

Les valeurs absolues posent souvent des problèmes à de nombreux étudiants. Bien souvent, la seule chose à connaître sur la valeur absolue est sa définition:

- si v > 0 alors |v| = v
- et si v < 0 alors |v| = -v

Ensuite, pour manipuler |v|, on est bien souvent amené à étudier deux cas, selon que v>0, ou que $v\leqslant 0$. Par exemple, pour calculer l'intégrale de |f| sur un intervalle I, on commence par déterminer les sous-intervalles I_k de I sur lesquels

$$\forall t \in I_k \qquad f(t) > 0$$

et on note $A = \cup I_k$. On peut ensuite écrire

$$\int_{\mathbf{I}} |f| = \int_{\mathbf{A}} |f| + \int_{\mathbf{I} \setminus \mathbf{A}} |f|$$
$$= \int_{\mathbf{A}} f - \int_{\mathbf{I} \setminus \mathbf{A}} f$$

I.2.5 Supposons d'abord que f admet une limite nulle en $+\infty$. Montrons que F admet également une limite nulle en $+\infty$. Pour cela, on utilise la définition de la limite de f en $+\infty$

$$\forall \varepsilon > 0 \quad \exists A_{\varepsilon} \in \mathbb{R} \qquad x \geqslant A_{\varepsilon} \implies |f(x)| \leqslant \varepsilon$$

Fixons $\varepsilon > 0$. Alors

$$\begin{aligned} |\mathbf{F}(x)| &= \left| \int_x^{x+1} f(t) \, \mathrm{d}t \right| \\ &\leqslant \int_x^{x+1} |f(t)| \, \mathrm{d}t \\ &\leqslant \int_x^{x+1} \varepsilon \, \mathrm{d}t \qquad \qquad \mathrm{si} \ x \geqslant \mathbf{A}_\varepsilon \\ |\mathbf{F}(x)| &\leqslant \varepsilon \end{aligned}$$

On en déduit que

$$\forall \varepsilon > 0 \quad \exists \mathbf{A}_{\varepsilon} \in \mathbb{R} \qquad x \geqslant \mathbf{A}_{\varepsilon} \implies |\mathbf{F}(x)| \leqslant \varepsilon$$

ou encore

$$\lim_{x \to +\infty} \mathbf{F}(x) = 0$$

Supposons maintenant que f admette une limite non nulle L_1 en $+\infty$. Alors $t \mapsto f(t) - L_1$ tend vers 0 en $+\infty$. D'après ce que l'on vient de faire, $\theta(f - L_1)$ admet une limite nulle en $+\infty$. En outre, $\theta(L_1) = L_1$ d'après la question I.1.1. On en déduit

$$\lim_{x \to +\infty} F(x) = L_1$$

I.3.1 Dans l'expression $\psi(u) = \int_{u-\frac{1}{2}}^{u+\frac{1}{2}} f(t) dt$, effectuons le changement de variable v = -t, pour trouver

$$\psi(u) = \int_{-u + \frac{1}{2}}^{-u - \frac{1}{2}} f(-v) \ (-\mathrm{d}v) = \int_{-u - \frac{1}{2}}^{-u + \frac{1}{2}} f(-v) \ \mathrm{d}v \tag{*}$$

Si f est paire, alors

$$\forall u \in \mathbb{R}$$
 $f(u) = f(-u)$

L'équation (\star) devient donc

$$\psi(u) = \int_{-u - \frac{1}{2}}^{-u + \frac{1}{2}} f(v) \, dv = \psi(-u)$$

Par ailleurs, si f est impaire

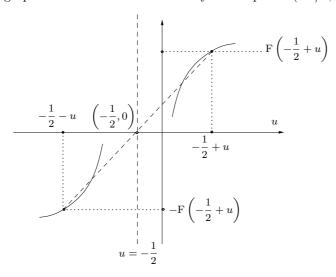
$$\forall u \in \mathbb{R}$$
 $f(u) = -f(-u)$

L'équation (*) devient ainsi

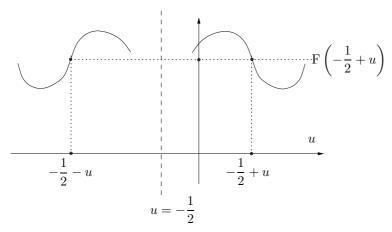
$$\psi(u) = -\int_{-u - \frac{1}{2}}^{-u + \frac{1}{2}} f(v) \, dv = -\psi(-u)$$

Si f est impaire, alors ψ est impaire et, si f est paire, alors ψ est paire.

I.3.2 Si f est impaire, alors ψ , c'est-à-dire $u\mapsto \mathrm{F}(u-1/2)$ est impaire. On en déduit que le graphe de F admet un centre de symétrie qui est (-1/2,0).



Si f est paire, alors ψ , c'est-à-dire $u\mapsto {\rm F}(u-1/2)$ est impaire. On en déduit que le graphe de F admet la droite u=-1/2 pour axe de symétrie.



II. L'ENDOMORPHISME θ

II.1 D'après la question I.2.1, Im θ est inclus dans \mathscr{C}^1 , qui est un sous-espace strict de \mathscr{C}^0 (par exemple, $x \mapsto |x|$ est continue mais pas de classe \mathscr{C}^1 sur \mathbb{R}).

L'endomorphisme θ n'est pas surjectif.

II.2.1 On a

$$f \in \operatorname{Ker} \theta \iff \forall x \in \mathbb{R} \qquad \theta(f)(x) = 0$$

$$\iff \theta(f) \text{ est constante et } \theta(f)(0) = 0$$

d'après la question I.2.3. Finalement

$$f \in \operatorname{Ker} \theta \quad \iff \quad f \in \mathscr{C}_0^1 \quad \text{et} \quad \int_0^1 f(t) \, \mathrm{d}t = 0$$

II.2.2.1 Pour tout entier non nul k, la fonction c_k est continue et, pour tout réel t

$$c_k(t+1) = \cos(2\pi k(t+1)) = \cos(2\pi kt + 2\pi) = \cos(2\pi kt) = c_k(t)$$

donc c_k appartient à \mathcal{C}_0^1 . Par ailleurs

$$\langle c_j | c_k \rangle = \int_0^1 \cos(2\pi jt) \cos(2\pi kt) dt$$
$$= \frac{1}{2} \left(\int_0^1 \cos(2\pi (j+k)t) dt + \int_0^1 \cos(2\pi (j-k)t) dt \right)$$

d'après la formule d'addition des arcs.

Or on sait que pour tout ℓ entier non nul

$$\int_0^1 \cos(2\pi\ell t) dt = \left[-\frac{\sin(2\pi\ell t)}{2\pi\ell} \right]_0^1 = 0$$

d'après la formule d'addition des arcs. Ainsi, si $j \neq k$ $\langle c_j | c_k \rangle = 0$. Si j = k alors

$$\langle c_j | c_j \rangle = \int_0^1 \frac{1}{2} \, \mathrm{d}t = \frac{1}{2}$$

Finalement

$$\langle c_j | c_k \rangle = \begin{cases} 0 & \text{si } j \neq k \\ \frac{1}{2} & \text{si } j = k \end{cases}$$

II.2.2.2 Pour tout entier non nul j, c_j appartient à \mathscr{C}_1^0 . Ainsi d'après la question I.2.3, la fonction $\theta(c_j)$ est constante. De plus

$$\theta(c_j)(0) = \int_0^1 c_j(t) dt = \int_0^1 \sin(2\pi jt) dt = 0$$

Donc les c_j appartiennent à Ker θ et cette famille est libre car orthogonale et formée de vecteurs non nuls d'après la question II.2.2.1. Ainsi, l'ensemble Ker θ contient une famille libre de cardinal infini. On en déduit que

Ker θ est de dimension infinie.

II.2.3.1 Effectuons une intégration par parties sur W_n avec

$$u'(x) = f(x)$$
 soit $u(x) = \varphi_n(x)$ $v(x) = \frac{1}{x}$ ce qui donne $v'(x) = -\frac{1}{x^2}$

où les fonctions u et v sont bien de classe \mathscr{C}^1 . On en déduit

$$W_n = \left[\frac{\varphi_n(x)}{x}\right]_n^{n+1} + \int_n^{n+1} \frac{\varphi_n(t)}{t^2} dt = \frac{\varphi_n(n+1)}{n+1} + \int_n^{n+1} \frac{\varphi_n(t)}{t^2} dt$$

Comme f appartient à \mathscr{C}_1^0 , $\theta(f)$ est constante. Par suite

$$\varphi_n(n+1) = \theta(f)(n)$$
$$= \theta(f)(1)$$
$$\varphi_n(n+1) = \varphi_0(1)$$

d'où

$$W_n = \frac{\varphi_0(1)}{n+1} + \int_n^{n+1} \frac{\varphi_n(t)}{t^2} dt$$

II.2.3.2 Soit f appartenant à Ker θ . Alors $\varphi_0(1) = 0$, d'après la question II.2.1.

Par suite

$$|W_n| = \left| \int_{t_n}^{t_n+1} \frac{\varphi_n(t)}{t^2} dt \right| \le \int_{t_n}^{t_n+1} \frac{|\varphi_n(t)|}{t^2} dt$$

Par ailleurs sur [n; n+1]

$$|\varphi_n(x)| = \left| \int_n^x f(t) \, \mathrm{d}t \right| \leqslant \int_n^x |f(t)| \, \mathrm{d}t \leqslant ||f||_{\infty} \int_n^x \mathrm{d}t \leqslant ||f||_{\infty} \int_n^{n+1} \mathrm{d}t = ||f||_{\infty}$$

Or la fonction $t \mapsto 1/t^2$ est positive et intégrable sur $[1; +\infty[$. On en déduit que

$$|W_n| \leqslant ||f||_{\infty} \int_n^{n+1} \frac{\mathrm{d}t}{t^2}$$

d'où

$$\sum_{k=1}^{n} |W_k| \le \sum_{k=1}^{n} ||f||_{\infty} \int_{n}^{n+1} \frac{\mathrm{d}t}{t^2} = ||f||_{\infty} \int_{1}^{n+1} \frac{\mathrm{d}t}{t^2}$$

Or la fonction $t\mapsto 1/t^2$ est intégrable sur $[1;+\infty[$. On en déduit que

$$\sum_{k=1}^{n} |W_k| \leqslant ||f||_{\infty} \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^2}$$

La série $\sum |W_n|$ est donc convergente, puisqu'il s'agit d'une série positive dont les sommes partielles sont majorées. Finalement

Si
$$f \in \text{Ker } \theta$$
, la série $\sum W_n$ est absolument convergente.

II.2.3.3 On a vu à la question II.2.3.1 que

$$\forall n \in \mathbb{N}^*$$
 $W_n = \frac{\varphi_0(1)}{n+1} + \int_n^{n+1} \frac{\varphi_n(t)}{t^2} dt$

et à la question II.2.3.2, on a montré que la série $\sum \int_{n}^{n+1} \frac{\varphi_n(t)}{t^2} dt$ converge.

Pendant la résolution de la question II.2.3.2, on était soumis à l'hypothèse $f \in \operatorname{Ker} \theta$. Cependant, celle-ci n'a jamais été utilisée pour montrer la convergence (absolue) de la série $\sum \int_n^{n+1} \frac{\varphi_n(t)}{t^2} \, \mathrm{d}t$. Il s'agit d'un résultat valide, que f soit ou non dans $\operatorname{Ker} \theta$.

Comme f est dans \mathscr{C}_0^1 , $\theta(f)$ est constante. En outre, $\theta(f)$ n'étant pas dans Ker θ , on en déduit que $\theta(f)(1) \neq 0$, et donc que $\varphi_0(1) \neq 0$. Par ailleurs, $\sum 1/(n+1)$ est divergente. La série $\sum W_n$ est donc la somme d'une série convergente et d'une série divergente; on en déduit qu'elle est divergente.

Si
$$f \notin \text{Ker } \theta$$
, la série $\sum W_n$ est divergente.