984. Soient A un ensemble de réels de cardinal $n \ge 2$ et $B = \{a + a', (a, a') \in A^2\}$.

- a) Montrer que $2n-1 \leqslant \operatorname{Card} B \leqslant \frac{n(n+1)}{2}$.
- b) Donner des exemples de parties pour lesquelles les bornes sont atteintes.
- c) Généraliser à $B_k = \{a_1 + a_2 + \dots + a_k ; a_1, \dots, a_k \in A\}.$
- **985.** Trouver tous les polynômes $P \in \mathbb{C}[X]$ tels que (X+4)P(X) = XP(X+1).
- **986.** Déterminer les polynômes réels P vérifiant $P(X)P(X+1) = P(X^2)$.

987. a) Soit $P \in \mathbb{Z}[X]$ unitaire. Montrer que ses racines rationnelles sont dans \mathbb{Z} .

b) Pour $n \in \mathbb{N}^*$, montrer qu'il existe un polynôme unitaire $P_n \in \mathbb{Z}[X]$ de degré n tel que, pour tout $\theta \in \mathbb{R}$, on ait $P_n(2\cos\theta) = 2\cos(n\theta)$.

c) Montrer que $\cos(\pi \mathbb{Q}) \cap \mathbb{Q} = \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$.

988. Soit $P \in \mathbb{R}[X]$ unitaire de degré n. Calculer $\sum_{k=0}^n \frac{P(k)}{\prod_{i \neq k} (k-i)}$.

989. Soit $n \in \mathbb{N}$, $n \ge 2$. On note $(*) (1 + iX)^{2n+1} - (1 - iX)^{2n+1} = 2iXQ_n(X)$.

a) Montrer qu'il existe un unique $Q_n \in \mathbb{R}[X]$ vérifiant (*). Donner le degré et le coefficient dominant de Q_n .

b) Déterminer les racines de Q_n .

c) Calculer $\prod_{k=0}^{n-1} \left(4 + \tan^2\left(\frac{k\pi}{2n+1}\right)\right)$.

990. Soient $n \in \mathbb{N}^*$ et $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \ge 0$. On pose $Q = P + P' + \cdots + P^{(n)}$.

- a) Montrer que Q est minoré sur \mathbb{R} .
- **b)** Montrer que Q est positif sur \mathbb{R} .

991. L'union de deux sous-espaces vectoriels est-elle un sous-espace vectoriel?

992. Soit $n \in \mathbb{N}^*$. Trouver toutes les matrices $A \in \mathcal{M}_2(\mathbb{C})$ telles que $A^n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

993. Soit $n \in \mathbb{N}^*$. Soit $E = \{S_1, \dots, S_k\}$ l'ensemble des parties non vides de $\{1, \dots, n\}$. Soit $A \in \mathcal{M}_k(\mathbb{R})$ définie par $a_{i,j} = \left\{ \begin{array}{cc} 1 & \text{si } S_i \cap S_j \neq \emptyset \\ 0 & \text{si } S_i \cap S_j = \emptyset \end{array} \right.$ Déterminer le rang de A.

994. a) Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{R})$. Montrer que $|\operatorname{rg} A - \operatorname{rg} B| \leq \operatorname{rg} (A + B) \leq \operatorname{rg} A + \operatorname{rg} B$.

b) Soit $(v_1,...,v_k) \in (\mathbb{R}^n)^k$ tel que $\sum_{i=1}^k v_i(v_i)^T = I_n$. Montrer que $k \geqslant n$.

995. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ telles que : $A^2 = A$, $B^2 = B$ et AB = BA. Montrer que $\det(A - B) \in \{-1, 0, 1\}$.

996. a) Pour $A \in \mathcal{M}_n(\mathbb{R})$, on définit $f_A : M \mapsto \operatorname{tr}(AM)$. Montrer que l'application $f : \mathcal{M}_n(\mathbb{R}) \to \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R}), \ A \mapsto f_A$ est un isomorphisme.

- **b**) Soit $g \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R})$ telle que $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, g(AB) = g(BA)$. Montrer que g est proportionnelle à la trace.
- c) Soit h un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ tel que $\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2, \ h(AB) = h(BA)$. Montrer que h préserve la trace.

997. Trouver $\dim(\operatorname{Vect}(A))$ dans les deux cas suivants :

- i) $A = \{M \in \mathcal{M}_2(\mathbb{C}), M^n = \text{Diag}(1,2)\}$ avec $n \ge 2$,
- *ii*) $A = \{ M \in \mathcal{M}_2(\mathbb{C}), M^2 = I_2 \}.$

998. Si $A \in \mathcal{M}_n(\mathbb{R})$, on note S(A) l'ensemble des matrices semblables à A. Déterminer les matrices A telles que S(A) est fini.

999. Soit \mathfrak{S}_n l'ensemble des permutations de [1, n].

- a) Soit $\sigma \in \mathfrak{S}_n$. Montrer que $\varphi_{\sigma} : s \mapsto s \circ \sigma$ est une permutation de \mathfrak{S}_n .
- **b)** Soient E un \mathbb{K} -espace vectoriel de dimension $n \geqslant 2$, (e_1, \dots, e_n) une base de E. Pour $\sigma \in \mathfrak{S}_n$, on note f_σ l'endomorphisme de E défini par $\forall i \in [\![1,n]\!]$ $f_\sigma(e_i) = e_{\sigma(i)}$. On pose $p_n = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} f_\sigma$. Montrer que p_n est un projecteur et expliciter son image et son noyau.

1000. Soient $n \ge 2$, $E = \mathbb{R}_n[X]$ et $\phi : P \in E \mapsto P - P'$.

- a) Montrer que ϕ est bijectif de deux manières différentes.
- **b**) Soit Q l'antécédent de P par ϕ . On suppose que $Q \geqslant 0$. Montrer que $P \geqslant 0$. Exprimer P en fonction de Q.

1001. Soit
$$A \in \mathcal{M}_{3,2}\left(\mathbb{R}\right)$$
 et $B \in \mathcal{M}_{2,3}\left(\mathbb{R}\right)$ telles que $AB = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$.

Vérifier que $(AB)^2 = AB$. Déterminer $\operatorname{rg}(A)$, $\operatorname{rg}(B)$. Montrer que $BA = I_2$.

1002. Soient E un \mathbb{R} -espace vectoriel, φ une forme linéaire sur E et $f \in \mathcal{L}(E)$.

- a) Montrer que $\operatorname{Ker}(\varphi)$ est stable par f si et seulement s'il existe $\lambda \in \mathbb{R}$ tel que $\varphi \circ f = \lambda \varphi$.
- b) Soit \mathcal{B} une base de E. On pose $L = \operatorname{Mat}_{\mathcal{B}}(\varphi)$ et $A = \operatorname{Mat}_{\mathcal{B}}(f)$. Montrer que $\operatorname{Ker}(\varphi)$ est stable par f si et seulement s'il existe $\lambda \in \mathbb{R}$ tel que $A^T L^T = \lambda L^T$.
- c) Trouver toutes les droites stables par l'endomorphisme dont la matrice dans la base cano-

nique de
$$\mathbb{R}^3$$
 est $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

1003. Soient $n \ge 2$, $A, B \in \mathcal{M}_n(\mathbb{K})$. On suppose ABAB = 0. A-t-on BABA = 0?

1004. Soit $f \in \mathcal{L}(E)$ telle que $f^2 = -4$ id où E est un \mathbb{R} -espace vectoriel de dimension n.

- a) Déterminer le noyau et l'image de f. L'endomorphisme f est-il inversible? Si c'est le cas, déterminer f^{-1} .
- b) Montrer que n est nécessairement pair.
- c) Pour $x \neq 0$, montrer que (x, f(x)) est une famille libre.
- d) On suppose maintenant que n=4. Montrer qu'il existe une base de E dans laquelle la

matrice de
$$f$$
 est $\left(\begin{array}{cccc} 0 & -4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 \end{array} \right)$.

1005. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Résoudre $X + X^T = \operatorname{tr}(X) A$ d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.

1006. a) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$, (X,AX) est liée. Que dire de A?

b) Montrer que toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ de trace nulle est semblable à une matrice de diagonale nulle.

1007. Soit E un espace vectoriel de dimension finie. Soit u un endomorphisme nilpotent tel que tout sous-espace de E stable par u admet un supplémentaire stable par u. Montrer que u est l'endomorphisme nul.

1008. Soient E, F, G trois \mathbb{K} -espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F), v = \mathcal{L}(F, G)$ et $w = v \circ u$. Montrer que w est un isomorphisme si et seulement si les trois conditions suivantes sont réalisées : i) u est injective, ii) v est surjective, iii) $F = \operatorname{Im} u \oplus \operatorname{Ker} v$.

1009. Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$ tels que $\operatorname{rg}(u) = \operatorname{rg}(v)$ et $u^2 \circ v = u$.

- a) Montrer que $v \circ u \circ v = v$.
- **b)** Montrer que $u \circ v$ est un projecteur
- c) Montrer que $u \circ v \circ u = u$ puis que $v^2 \circ u = v$.

1010. Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- a) Que dire de la trace d'un projecteur de E? Montrer que, pour p projecteur de E, $\mathrm{Im}(p)$ et $\mathrm{Ker}(p)$ sont supplémentaires dans E.
- **b**) Soient p,q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.

1011. Soient E, F, G trois \mathbb{K} -espaces vectoriels de dimensions finies. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que $\operatorname{rg}(g \circ f) \geqslant \operatorname{rg}(f) + \operatorname{rg}(g) - \dim(F)$.

1012. Soient E, F, G trois \mathbb{K} -espaces vectoriels de dimension finie. Soient $u \in \mathcal{L}(E, F)$, $v \in \mathcal{L}(F, G)$. Soit $w = v \circ u$. Montrer que w est un isomorphisme si et seulement si u est injectif, v est surjectif et $\operatorname{Im} u \oplus \operatorname{Ker} v = F$.

1013. Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$.

a) Montrer que $rg(v) \leq rg(u \circ v) + \dim(Ker u)$.

b) On suppose que u est nilpotent d'indice p. Montrer que $\left(\dim(\operatorname{Ker} u^k)\right)_{k\in\mathbb{N}}$ est strictement croissante puis stationnaire.

- **1014.** a) Existe-t-il deux matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $AB BA = I_n$?
- **b**) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice non nulle de trace nulle. Montrer qu'il existe $u \in \mathbb{R}^n$ telle que la famille (u, Au) soit libre.
- c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ de trace nulle. Montrer que A est semblable à une matrice dont tous les coefficients diagonaux sont nuls.
- **1015.** Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que $\operatorname{rg}(AB BA) = 1$. Montrer que $A(\operatorname{Ker}(B)) \subset \operatorname{Ker}(B)$) ou $A(\operatorname{Im}(B)) \subset \operatorname{Im}(B)$)

1016. Soient E un \mathbb{K} -espace vectoriel de dimension p et f_1, \ldots, f_p des formes linéaires sur E. Prouver l'équivalence des trois assertions suivantes :

- i) (f_1, \ldots, f_p) est libre,
- ii) $u: x \in E \mapsto (f_1(x), \dots, f_p(x)) \in \mathbb{K}^p$ est surjective,
- iii) il existe $x_1, \ldots, x_p \in E$ tels que $\det(f_i(x_j))_{1 \leq i, j \leq p} \neq 0$.
- 1017. Donner une condition nécessaire et suffisante sur $(a_1,\ldots,a_n)\in\mathbb{C}^n$ pour que la ma-

trice
$$\begin{pmatrix} 0 & \cdots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_{n-1} \\ a_1 & \cdots & a_{n-1} & a_n \end{pmatrix}$$
 soit diagonalisable.

1018. Soient
$$(a_1,\ldots,a_n,b_1,\ldots,b_n)\in\mathbb{R}^{2n}$$
 et $M=\begin{pmatrix}0&\cdots&0&b_1\\ \vdots&&\vdots&\vdots\\0&\ldots&0&b_n\\a_1&\ldots&a_n&0\end{pmatrix}$. Donner une

condition nécessaire et suffisante pour que ${\cal M}$ soit diagonalisable.

1019. Soit
$$\alpha \in \mathbb{C}$$
. La matrice $M = \left(\begin{array}{ccc} 1 & \alpha & 0 \\ \alpha & 0 & 1 \\ 0 & 1 & -1 \end{array} \right)$ est-elle diagonalisable?

1020. Redémontrer qu'une matrice diagonalisable a un polynôme annulateur scindé à racines simples.

1021. Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
.

- a) Monter que A est diagonalisable sur $\mathbb C$ et qu'elle admet une unique valeur propre réelle strictement positive a.
- **b)** Montrer que $\sum_{\lambda \in \operatorname{Sp}(A)} \lambda^n$ est un entier pour tout $n \in \mathbb{N}$.
- c) Déterminer la nature de la série $\sum \sin(\pi a^n)$.

- **1022.** Soit E un \mathbb{C} -espace vectoriel de dimension finie.
- a) Soit $f \in \mathcal{L}(E)$ nilpotent. Montrer qu'il existe une base de E dans laquelle la matrice de f est triangulaire supérieure avec des 0 sur la diagonale.
- **b)** Soient v et w dans $\mathcal{L}(E)$ tels que v est diagonalisable, w est nilpotent et $v \circ w = w \circ v$. Montrer que v + w et v ont le même polynôme caractéristique.
- **1023.** Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \ge 2$. Soit $u \in \mathcal{L}(E)$ de spectre vide.
- a) Montrer qu'il existe $P \in \mathbb{R}[X]$ de degré 2 tel que $\operatorname{Ker} P(u) \neq \{0\}$.
- b) Montrer qu'il existe un sous-espace vectoriel de E de dimension 2 et stable par u.
- c) En déduire que tout endomorphisme de E admet un sous-espace vectoriel stable de dimension 1 ou 2.
- **1024.** Soit $f \in \mathcal{L}(E)$, où E un \mathbb{C} -espace vectoriel de dimension $n \geq 2$. Montrer que f est diagonalisable si et seulement si f^2 est diagonalisable et $\operatorname{Ker} f = \operatorname{Ker} f^2$.
- **1025.** Soient f, g deux endomorphismes d'un \mathbb{R} -espace vectoriel E de dimension finie tels que $f \circ g = f + g$.
- a) Montrer que $\operatorname{Im} f = \operatorname{Im} g$ et que $\operatorname{Ker} f = \operatorname{Ker} g$.
- b) On suppose de plus que f est diagonalisable. Montrer que $f \circ g$ est diagonalisable.
- c) Montrer qu'aucune valeur propre de $f \circ g$ n'appartient à]0, 4[.
- **1026.** Soit $A \in \mathcal{M}_3(\mathbb{C})$. Montrer que A est semblable à -A si et seulement si $\operatorname{tr}(A) = 0$ et $\det(A) = 0$.
- **1027.** Déterminer toutes les matrices $A \in \mathcal{M}_4(\mathbb{R})$ telles que $A^2 = \operatorname{diag}(1, 2, -1, -1)$.
- **1028.** Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.
- a) Exprimer le rang de B en fonction du rang de A.
- b) Étudier la diagonalisabilité de B en fonction de celle de A.
- **1029.** Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$.
- a) Trouver une relation entre les valeurs propres de A et celles de B ainsi qu'entre les sousespaces propres de A et ceux de B.
- **b**) Déterminer les dimensions des sous-espaces propres de B en fonction des dimensions des sous-espaces propres de A.
- c) Trouver une condition nécessaire et suffisante sur A pour que B soit diagonalisable.
- **1030.** Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que AB = BA. Peut-on trigonaliser A et B dans une même base?
- **1031.** Soient $(\alpha_i)_{1\leqslant i\leqslant n}\in\mathbb{R}^n$ et $(\beta_i)_{1\leqslant i\leqslant n}\in\mathbb{R}^n$. On pose $A=(\alpha_i\beta_j)_{1\leqslant i,j\leqslant n}$.
- a) Quel est le rang de A?
- **b)** Montrer que $A^2 = \operatorname{tr}(A) A$.

- c) Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{rg}(M) = 1$. Montrer qu'il existe $(X,Y) \in (\mathbb{R}^n)^2$ telles que $M = X^T Y$.
- d) Trouver toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = 0_3$.
- e) À quelle condition la matrice A est-elle diagonalisable?

1032. Soient
$$A=\left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$
 et $M\in\mathcal{M}_3\left(\mathbb{R}\right)$ telle que $M^3=I_3$ et $M\neq I_3$.

- *a*) La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$? dans $\mathcal{M}_3(\mathbb{R})$? Donner ses valeurs propres.
- **b)** La matrice M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$? Montrer que $\operatorname{Sp}_{\mathbb{C}}(M) \subset \{1, j, j^2\}$ et que les multiplicités de j et j^2 sont les mêmes. Donner le spectre de M.
- c) Montrer que A et M sont semblables dans $\mathcal{M}_3(\mathbb{C})$, puis dans $\mathcal{M}_3(\mathbb{R})$.
- **1033.** Soient $M \in \mathcal{M}_n(\mathbb{C})$, $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ et $(\lambda, \mu) \in (\mathbb{C}^*)^2$ tels que $\lambda \neq \mu$. On suppose : $I_n = A + B$, $M = \lambda A + \mu B$, $M^2 = \lambda^2 A + \mu^2 B$.
- a) Montrer que M est inversible et déterminer M^{-1} .
- b) Montrer que A et B sont des projecteurs.
- c) La matrice M est-elle diagonalisable? Si oui, trouver Sp(M).
- **1034.** Soient A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que AB BA = A.

On note $\Psi: M \in \mathcal{M}_n(\mathbb{R}) \mapsto MB - BM$.

- a) Montrer que Ψ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ et que, pour tout $k \in \mathbb{N}$, $\Psi(A^k) = kA^k$. Calculer $\operatorname{tr}(A)$.
- b) Montrer que si A n'est pas nilpotente alors Ψ a une infinité de valeurs propres. Conclure
- **1035.** Soient $n \geqslant 2$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{Tr}(A) \neq 0$.
- a) On considère $\Phi: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $\Phi: M \mapsto \operatorname{Tr}(A)M \operatorname{Tr}(M)A$.
- *i*) Trouver $\text{Ker}\Phi$ et $\text{Im}\Phi$.
- ii) Déterminer les éléments propres de Φ .
- iii) Déterminer la trace, le déterminant et le polynôme caractéristique de Φ .
- **b)** On considère $\Psi: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $\Psi: M \mapsto \operatorname{Tr}(A)M + \operatorname{Tr}(M)A$.
- i) Trouver les éléments propres de Ψ .
- *ii*) Montrer que Ψ est bijective et déterminer sa réciproque.

1036. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Soit $f_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ défini par $f_A(M) = AM$. Montrer que A et f_A ont les mêmes valeurs propres.

1037. Soit $A \in \mathcal{M}_3(\mathbb{R})$. On cherche le nombre de solutions de l'équation $B^3 = A$ dans $\mathcal{M}_3(\mathbb{R})$.

- a) Montrer que, si B est solution, alors AB = BA.
- **b)** Montrer que si A est diagonalisable et a un sous-espace propre de dimension ≥ 2 alors il y a une infinité de solutions.
- c) Traiter le cas où A admet trois valeur propres réelles distinctes.

$$\textit{\textbf{d}) Traiter le cas où } A = \begin{pmatrix} r\cos(\theta) & -r\sin(\theta) & 0 \\ r\sin(\theta) & r\cos(\theta) & 0 \\ 0 & 0 & \lambda \end{pmatrix} \text{ avec } r>0, \, \lambda \in \mathbb{R} \text{ et } \theta \in \mathbb{R} \setminus \pi\mathbb{Z}.$$

e) Cas général?

1038. On note $D: P \mapsto P'$ l'endomorphisme dérivation de $\mathbb{R}[X]$.

- a) Montrer que, pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par D et déterminer la matrice de l'endomorphisme induit par D dans la base canonique de $\mathbb{R}_n[X]$.
- b) Soit F un sous-espace vectoriel de $\mathbb{R}[X]$ de dimension finie non nulle stable par D.
- i) Montrer qu'il existe un entier n et un polynôme R de degré n tel que $R \in F$ et $F \subset \mathbb{R}_n[X]$.
- *ii*) Montrer que la famille $(D^j(R))_{0 \le j \le n}$ est libre.
- *iii*) En déduire que $F = \mathbb{R}_n[X]$.
- *iv*) Expliciter tous les sous-espaces vectoriels de $\mathbb{R}[X]$ stables par D.
- **1039.** On note $E=\mathcal{C}^0(\mathbb{R}^+,\mathbb{R})$. Soit Φ l'application qui à $f\in E$ associe la fonction $\Phi(f)$ définie par : $\Phi(f)(0)=f(0)$ et $\forall x\in]0,+\infty[$, $\Phi(f)(x)=\frac{1}{x}\int_0^x f(t)\,\mathrm{d}t.$
- a) Montrer que Φ est un endomorphisme de E.
- b) Déterminer les valeurs propres de Φ et les espaces propres associés.
- c) Soit $n \in \mathbb{N}$. Montrer que Φ stabilise $\mathbb{R}_n[X]$. L'endomorphisme induit par Φ sur $\mathbb{R}_n[X]$ est-il diagonalisable?
- **1040.** Soit $A \in \mathcal{M}_2(\mathbb{R})$. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $A^{2^n} = I_2$. Montrer que $A^2 = I_2$ ou qu'il existe $k \in \mathbb{N}^*$ tel que $A^{2^k} = -I_2$.
- **1041.** Soit $n \in \mathbb{N}^*$. Soit E un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ ne contenant que des matrices diagonalisables.
- a) Montrer que $\dim(E) \leqslant \frac{n(n+1)}{2}$.
- **b)** Lorsque $\mathbb{K} = \mathbb{R}$, quelle est la dimension maximale de E?
- **1042.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que A^2 soit triangulaire supérieure avec des coefficients diagonaux égaux à $1, 2, \ldots, n$. Montrer que A est triangulaire supérieure.
- **1043.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que la suite $(A^k)_{k \in \mathbb{N}}$ admet une limite $B \in \mathcal{M}_n(\mathbb{R})$.
- a) Montrer que $B^2 = B$, BA = AB. Déterminer Ker(B) et Im(B).
- **b)** Montrer que $\operatorname{Sp}(A) \subset \{z \in \mathbb{C} \ , \ |z| < 1\} \cup \{1\}$. Montrer que si 1 n'est pas valeur propre de A alors B=0.
- c) Montrer que la multiplicité de 1 dans le polynôme caractéristique de A est égale à la dimension de $\mathrm{Ker}(A-I_n)$.
- **1044.** Soient a, b deux réels et n un entier.

Montrer que $\Phi: P \in \mathbb{R}_n[X] \mapsto (X-a)(X-b)P'-nP$ est un endomorphisme et déterminer ses éléments propres. L'endomorphisme Φ est-il diagonalisable?

1045. a) Soient $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable et $B = I_n + A + A^3$. Montrer que A est un polynôme en B.

b) Le résultat de a) subsiste-t-il lorsque A est complexe?

1046. a) Soit $A \in \mathcal{M}_3(\mathbb{R})$ non trigonalisable. Montrer que A est \mathbb{C} -diagonalisable.

- b) Soit $A \in \mathcal{M}_4(\mathbb{R})$. Montrer que l'une des conditions suivantes est réalisées :
- *i)* A est \mathbb{R} -trigonalisable; *ii)* A est \mathbb{C} -diagonalisable;
- *iii*) A est \mathbb{R} -semblable à une matrice de la forme $\begin{pmatrix} B & C \\ 0 & B \end{pmatrix}$ avec $B,C\in\mathcal{M}_2(\mathbb{R})$.

1047. Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^{n-1} \neq 0$ et $A^n = 0$. Soit L l'ensemble $L = \{M \in \mathcal{M}_n(\mathbb{R}), AM = MA\}$.

- a) Montrer qu'il existe $x_0 \in \mathbb{R}^n$ tel que la famille $(x_0, Ax_0, A^2x_0, \dots, A^{n-1}x_0)$ soit une base de \mathbb{R}^n .
- **b)** En déduire que la famille $(I_n, A, A^2, \dots, A^{n-1})$ est une base de L.

1048. Soit E un \mathbb{C} -espace vectoriel de dimension finie. Soit u un automorphisme de E tel que, pour tout $x \in E$, l'ensemble $\{u^k(x) : k \in \mathbb{N}\}$ est fini.

- a) Montrer qu'il existe $N \in \mathbb{N}^*$ tel que $u^N = \mathrm{id}$.
- b) L'endomorphisme u est-il diagonalisable?

1049. Soit $(u_1,...,u_p)$ une famille de vecteurs de \mathbb{R}^n telle que $\forall i \neq j, \langle u_i, u_j \rangle < 0$. Montrer que toute sous-famille de $(u_1,...,u_p)$ de cardinal (p-1) est libre.

1050. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente non nulle.

- a) Montrer qu'il existe $V \in \mathbb{R}^n$ tel que $AV \neq 0$ et $A^2V = 0$.
- **b)** On note \langle , \rangle le produit scalaire usuel sur \mathbb{R}^n .

Déterminer l'ensemble $\{\langle AX, X \rangle : X \in \mathbb{R}^n \}$.

c) Trouver les matrices $B \in \mathcal{M}_n(\mathbb{R})$ telles que $\{\langle BX, X \rangle \; ; \; X \in \mathbb{R}^n\} = \{0\}.$

1051. Soit $E=\mathbb{R}_n[X]$. Soient $a_0< a_1< \cdots < a_n$ des réels. Pour $P,Q\in E$, on pose $\langle P,Q\rangle=\sum_{k=0}^n P(a_k)Q(a_k)$.

- a) Montrer que $\langle \ , \ \rangle$ est un produit scalaire sur E.
- b) Trouver une base orthonormée de E pour ce produit scalaire.
- c) Soit H l'ensemble des $Q \in E$ tels que $\sum_{k=0}^{n} Q(a_k) = 0$. Montrer que H est un sous-espace vectoriel de E et préciser sa dimension.
- d) Pour $P \in E$, déterminer d(P, H).

1052. Soient $a,b\in\mathbb{R}$ et $A=\begin{pmatrix}a^2&ab&ab&b^2\\ab&a^2&b^2&ab\\ab&b^2&a^2&ab\\b^2&ab&ab&a^2\end{pmatrix}$. Préciser le spectre et les sous-espaces propres.

- **1053.** a) Montrer que $\phi: P \mapsto (X^2 1)P'' + 2XP'$ définit un endomorphisme de $\mathbb{R}_n[X]$ qui est symétrique pour le produit scalaire $\langle P,Q\rangle=\int_{-1}^{+}P(t)Q(t)\,\mathrm{d}t.$
- **b**) Déterminer les valeurs propres de ϕ .
- c) Montrer qu'il existe une unique base orthonormée de vecteurs propres (P_0, \ldots, P_n) telle que, pour tout $k \in \mathbb{N}$, $\deg P_k = k$ et $\langle P_k, X^k \rangle > 0$.
- d) On pose $Q_k(X) = (-1)^k P_k(-X)$. Montrer que (Q_0, \ldots, Q_n) vérifie les propriétés de c).

Oue peut-on en déduire?

- e) Montrer que P_n est scindé à racines simples sur]-1,1[.
- **1054.** Soient $a,b \in \mathbb{R}$ et $\Phi_{a,b}$ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $\Phi_{a,b}: M \mapsto aM + aM$ bM^T .
- a) Trouver les valeurs propres et les sous-espaces propres de $\Phi_{a,b}$.
- b) Déterminer $Tr(\Phi_{a,b})$ puis son polynôme caractéristique.
- c) À quelle condition $\Phi_{a,b}$ est-il un automorphisme? Déterminer alors $\Phi_{a,b}^{-1}$.
- d) L'endomorphisme $\Phi_{a,b}$ est-il autoadjoint?
- **1055.** Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^2 + A^T = I_n$ et $\operatorname{tr}(A) = 0$. a) Montrer que toute valeur propre de A vérifie $\lambda^4 2\lambda^2 + \lambda = 0$ et que A est diagonalisable.
- **b)** Montrer que n est multiple de 4.
- **1056.** Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien, a et b deux vecteurs libres de E et $f: x \in E \mapsto$ $\langle a, x \rangle a + \langle b, x \rangle b.$
- a) Déterminer le noyau et l'image de f.
- b) Déterminer les éléments propres de f. L'endomorphisme f est-il diagonalisable? Auraiton pu le prévoir sans étudier les éléments propres?
- **1057.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^TAX = 0$. Montrer que $\det(A) \geqslant 0.$
- **1058.** Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$ de spectre $0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$.
- **b)** Montrer que $\langle AX, X \rangle \langle A^{-1}X, X \rangle \leqslant \frac{(\lambda_1 + \lambda_n)^2}{4\lambda_1 \lambda_n} \|X\|^4$.
- d) Montrer qu'il existe une base orthonormale (P_0, \ldots, P_n) de E telle que, pour tout $k \in$ [0, n], $\deg(P_k) = k$ et $\langle P_k, X^k \rangle > 0$.
- **1059.** Pour $t \in \mathbb{R}$, on pose $M\left(t\right) = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & t \end{array}\right)$. On note $\alpha\left(t\right) \leqslant \beta\left(t\right) \leqslant \gamma\left(t\right)$ les

valeurs propres de M(t).

- a) Montrer que $\alpha(t) < 0 < \beta(t) < 2 < \gamma(t)$.
- **b)** Montrer que, lorsque $t \to +\infty$, $\alpha(t) \to 0$, $\beta(t) \to 2$ et que $\gamma(t) = t + O\left(\frac{1}{t}\right)$.

1060. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M est antisymétrique si et seulement si pour toute $P \in \mathcal{O}_n(\mathbb{R})$, la matrice $P^{-1}MP$ est à diagonale nulle.

1061. Soit $M=(m_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{O}_n(\mathbb{R}).$ Montrer :

$$\sum_{i,j} m_{i,j}^2 = n, \quad \left| \sum_{i,j} m_{i,j} \right| \leqslant n, \quad n \leqslant \sum_{i,j} |m_{i,j}| \leqslant n \ln(n).$$

- **1062.** Soient E un espace euclidien et p, q deux projecteurs orthogonaux. On considère h =
- a) Montrer que Im(q) et Ker(p) sont stables par h.
- **b)** Montrer que p et q sont autoadjoints.
- c) On pose $F = \operatorname{Im}(q) + \operatorname{Ker}(p)$. Montrer que $E = F \oplus F^{\perp}$. En déduire que h est diago-
- d) Montrer que le spectre de h est contenu dans le segment [0, 1].
- **1063.** Soient $n \geqslant 2$, $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n^+(\mathbb{R})$. a) Montrer qu'il existe une matrice C telle que $C^2 = A^{-1}$.
- **b)** Montrer, en posant D = CBC, que $(\det(I_n + D))^{\frac{1}{n}} \geqslant 1 + (\det D)^{\frac{1}{n}}$. **c)** En déduire que $(\det(A + B))^{\frac{1}{n}} \geqslant (\det A)^{\frac{1}{n}} + (\det B)^{\frac{1}{n}}$.
- **1064.** Soit $A \in GL_n(\mathbb{R})$. Montrer qu'il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$ telles que A = OS. Étudier l'unicité d'une telle décomposition.
- **1065.** Soient $A, B \in \mathcal{S}_n(\mathbb{R})$ telles que ABA = B et BAB = A.
- a) Montrer que $A^2 = B^2$.
- b) On suppose que A est inversible. Montrer que A et B sont des symétries orthogonales qui
- c) On ne suppose plus que A est inversible. Montrer que $\operatorname{Im} A = \operatorname{Im} B$ et $\operatorname{Ker} A = \operatorname{Ker} B$.

Analyse

1066. Les parties
$$E = \{(x,y) \in \mathbb{R}^2, \ x^2(x-1)(x-3) + y^2(y^2-4) = 0\}$$
 et $F = \{(x,y) \in \mathbb{R}^2, \ 2x^2 - y(y-1) = 0\}$ sont elles fermées? bornées?

1067. Soit E un espace euclidien. Soit $u \in \mathcal{S}^{++}(E)$. Montrer qu'il existe m > 0 et un ouvert Ω dense dans E tels que $\forall x \in \Omega$, $\frac{\left\|u^{k+1}(x)\right\|}{\left\|u^{k}(x)\right\|} \xrightarrow[k \to +\infty]{} m$.

1068. a) Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que $\{Q(A) : Q \in \mathbb{C}[X]\}$ est un fermé de $\mathcal{M}_2(\mathbb{C})$.

- b) Soient $B \in \mathcal{M}_n(\mathbb{C})$ et $Q \in \mathbb{C}[X]$ non constant. On suppose que B a n valeurs propres distinctes. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{C})$ telle que B = Q(A).
- c) Soit $Q \in \mathbb{C}[X]$ non constant. Montrer que $\{Q(A) ; A \in \mathcal{M}_2(\mathbb{C})\}$ est une partie dense de $\mathcal{M}_2(\mathbb{C})$. Cet ensemble est-il fermé? borné?

1069. Soient $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ deux suites réelles convergeant vers a et b respectivement.

Montrer que
$$\frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} \xrightarrow[n \to +\infty]{} ab$$
.

1070. Soit $(u_n)_{n\geqslant 1}$ une suite réelle définie par $u_1\in\mathbb{R}$ et $\forall n\geqslant 1, u_{n+1}=nu_n-1$. Montrer que $u_1=e-1$ si et seulement si il existe $a\in\mathbb{R}$ vérifiant $u_n=O(n^a)$.

1071. Pour
$$n$$
 et p dans \mathbb{N}^* , on pose $u_{n,p} = \frac{1}{p^n} \left(\sqrt[n]{1 + \frac{1}{p}} + \sqrt[n]{1 + \frac{2}{p}} + \dots + \sqrt[n]{1 + \frac{p}{p}} \right)^n$.

- a) Calculer $\lim_{n\to+\infty} \lim_{p\to+\infty} u_{n,p}$.
- **b)** Calculer $\lim_{p \to +\infty} \lim_{n \to +\infty} u_{n,p}$.

1072. On pose
$$S_n(t) = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} t^{2k+1}$$
 et $x_n = \min\{t > 0, \ S_n(t) = 0\}.$

- a) Montrer que x_n est bien défini pour tout $n \in \mathbb{N}^*$.
- b) Étudier les variations et la convergence de $(x_n)_{n\in\mathbb{N}^*}$.

1073. Soit $(x_n)_{n\geqslant 0}$ une suite réelle telle que $x_0>1$ et, pour tout $n\in\mathbb{N},$ $x_{n+1}=x_n+x_n^{-1}$. Montrer que $x_n\sim \sqrt{2n}$.

1074. Pour tout $n \in \mathbb{N}^*$, on note x_n la solution de $e^x = n - x$. Limite, équivalent et développement asymptotique à deux termes de x_n .

1075. Soit
$$\alpha \in \mathbb{R}$$
. Nature de la série de terme général $u_n = n^{\alpha} \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$?

1076. Nature de la série de terme général
$$u_n = \frac{(-1)^n}{\sum_{k=1}^n \frac{1}{\sqrt{k}} + (-1)^n}$$
.

1077. Pour
$$n \in \mathbb{N}^*$$
, on pose $x_n = \sum_{k=1}^n \frac{1}{k}$, $H_n = \sum_{k=1}^n \frac{1}{k}$, $u_n = \sum_{k=1}^n \frac{(-1)^k \ln k}{k}$, $v_n = \sum_{k=1}^n \frac{\ln k}{k}$ et $w_n = \sum_{k=1}^n \frac{\ln(2k)}{k}$.

- a) Montrer que (x_n) converge vers un réel ℓ à déterminer. Montrer que $x_n = \ell + \mathcal{O}\left(\frac{1}{n}\right)$.
- **b)** Exprimer u_{2n} en fonction de v_{2n} et w_n .
- c) Montrer que $H_n = \ln(n) + \gamma + o(1)$.
- d) Établir la convergence de (u_n) et préciser sa limite.

1078. Soit $(a_n)_{n\in\mathbb{N}^*}$ la suite définie par $a_1=1$ et, pour tout $n\geqslant 2$, $a_n=2a_{\lfloor n/2\rfloor}$. Montrer que $\sum \frac{1}{a_n^2}$ converge.

1079. Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}^{+*})$ telle que $f' \leq 0$ et f(0) = 1. On pose $a_0 = 1$ et, pour $n \in \mathbb{N}$, $a_{n+1} = a_n f(a_n)$. Montrer que $(a_n)_{n \in \mathbb{N}}$ décroît et tend vers 0. Étudier la nature de la série $\sum a_n$.

1080. Soit $\alpha \in \mathbb{R}$. On pose, pour $n \in \mathbb{N}$, $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin t}{t^{\alpha}} \mathrm{d}t$ et $v_n = u_{2n} + u_{2n+1}$. Déterminer la nature de $\sum u_n$ et $\sum v_n$.

1081. Pour
$$n \in \mathbb{N}^*$$
, on pose $R_n^{(0)} = \frac{(-1)^n}{n}$, $R_n^{(1)} = \sum_{k=-n}^{+\infty} \frac{(-1)^k}{k}$ et pour $\ell \in \mathbb{N}^*$,

$$R_n^{(\ell)} = \sum_{k=n}^{+\infty} R_k^{(\ell-1)}. \text{ Justifier l'existence et étudier le signe de } R_n^{(\ell)}. \text{ Ind. Calculer } \int_0^1 t^k \,\mathrm{d}t.$$

1082. Soit f une fonction continue et injective de \mathbb{R} dans \mathbb{R} . En considérant $g_x: t \mapsto f(x+t) - f(x)$ montrer que f est strictement monotone.

1083. Déterminer les applications $f:\mathbb{R}\to\mathbb{R}$ telles que l'image de tout segment est un segment de même longueur.

1084. Soit $f: \mathbb{R}^p \to \mathbb{R}^n$ telle que $\forall (x,y) \in (\mathbb{R}^p)^2$, f(x+y) = f(x) + f(y). Montrer que f est continue si et seulement si f est linéaire.

1085. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que : $\forall x \in \mathbb{R}, f(2x) = 2f(x)$.

1086. Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ telle que $(*): \forall (x, y) \in \mathbb{R}^2$, $f(x+y) f(x-y) = (f(x) f(y))^2$.

a) Donner toutes les valeurs que peut prendre f(0).

b) Montrer que, pour tout $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$, on a $f\left(\frac{x_0}{2^n}\right) = 0$. En déduire que si f s'annule en un point, f est identiquement nulle.

c) Trouver toutes les fonctions continues vérifiant (*).

1087. Soient f, g deux fonctions continues de [0,1] dans [0,1] telles que $f \circ g = g \circ f$. Montrer qu'il existe $x \in [0,1]$ tel que f(x) = g(x).

1088. Soit $f:[0,1]\to\mathbb{R}$ dérivable et non nulle pour laquelle il existe M>0 tel que $\forall x\in[0,1], f'(x)\leqslant Mf(x)$. Montrer que f ne s'annule pas.

1089. Montrer que $x \mapsto \cos(x)$ admet un unique point fixe. Montrer qu'il n'existe pas de fonction f dérivable telle que $\cos = f \circ f$.

1090. Soit f une fonction telle que, pour 0 < x < 1, $f(x) = \frac{1}{\sqrt{x}} \ln \left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}} \right)$. Trouver $g \in \mathcal{C}^{\infty}(]-\infty,1[)$ telle que $g|_{]0,1[}=f$.

1091. Soit $f \in \mathcal{C}^1([a,b],\mathbb{R})$ telle que f'(a) = f'(b) = 0. Montrer qu'il existe $x \in]a,b[$ tell que $f'(x) = \frac{f(x) - f(a)}{x - a}$.

1092. Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que $f^2 + (1 + f')^2 \leqslant 1$. Montrer que f = 0.

1093. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^{n+1} telle que f(0) = 0. Pour x > 0, on pose $g(x) = \frac{f(x)}{x}$. Déterminer, pour $k \in \{0, 1, \dots, n\}$, $\lim_{x \to 0} g^{(k)}(x)$.

1094. Soit $x \in \mathbb{R}$. Montrer qu'il existe un unique $a \in \mathbb{R}$ tel que $\int_x^a \exp(t^2) dt = 1$. On définit alors $x \mapsto a(x)$. Montrer que a est \mathcal{C}^{∞} . Montrer que le graphe de a est symétrique par rapport à la droite d'équation y = -x.

1095. Trouver un équivalent simple en 0 de $f: x \mapsto \int_{x^2}^{x^3} \frac{e^t}{\arcsin t} \, \mathrm{d}t$.

1096. Calculer $\int_0^{\pi/4} \ln(1 + \tan(x)) dx$.

1097. Soit $f \in \mathcal{C}^1([0,1],\mathbb{R})$. Pour $n \in \mathbb{N}^*$, on pose $U_n = \int_0^1 f(x) dx - \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$. Déterminer la limite de (nU_n) .

1098. Soit $f:[0,1]\to\mathbb{R}$ continue. On suppose que $\int_0^1 f(x)x^n\mathrm{d}x=0$ pour $0\leqslant k\leqslant n$. Montrer que f s'annule au moins n+1 fois sur]0,1[.

1099. Soit x un nombre complexe de module différent de 1. Calculer $I = \int_0^{2\pi} \frac{\mathrm{d}t}{x - e^{it}}$:

- en utilisant la décomposition en éléments simples de la fraction rationnelle $\frac{nX^{n-1}}{X^n-1}$,

- par une autre méthode.

1100. Soient $(a,b) \in \mathbb{R}^2$ avec a < b, et $f,g \in \mathcal{C}^0([a,b],\mathbb{R}^{+*})$. On pose $m = \inf_{[a,b]} \frac{f}{g}$ et $M = \sup_{[a,b]} \frac{f}{g}$. Montrer que $\int_a^b f^2 \int_a^b g^2 \leqslant \frac{(M+m)^2}{4Mm} \left(\int_a^b fg\right)^2$.

1101. Soient $c \in \mathbb{R}$, u et v deux fonctions continues sur \mathbb{R}^+ à valeurs respectivement dans \mathbb{R} et dans \mathbb{R}^+ telles que $\forall x \in \mathbb{R}^+$, $u(x) \leqslant c + \int_0^x v(t) \, u(t) \, \mathrm{d}t$.

Montrer que $\forall x \in \mathbb{R}^+, u(x) \leqslant c \exp\left(\int_0^x v(t) dt\right)$.

1102. Montrer qu'il existe $(A,B) \in \mathbb{R}^2$ tel que, pour tout $f \in \mathcal{C}^1(\mathbb{R},\mathbb{R})$ 2π -périodique, on ait $\sup_{\mathbb{R}} |f| \leqslant A \int_0^{2\pi} |f| + B \int_0^{2\pi} |f'|$. L'inégalité subsiste-elle si on enlève une hypothèse.

1103. On considère une fonction $f:[a,b]\mapsto \mathbb{R}$ de classe \mathcal{C}^1 . On suppose qu'on dispose de $x_0\in]a,b[,y_0>f(x_0)$ et qu'un cercle C de centre (x_0,y_0) passant par $(x_0,f(x_0))$ est au-dessus du graphe de f. Montrer que $f'(x_0)=0$.

1104. Soit
$$M: t \in \mathbb{R} \mapsto \begin{pmatrix} 2e^{-t} & (t-1)^2 \\ 1 & 0 \end{pmatrix}$$
.

a) Montrer que l'application $N: A = (a_{i,j}) \in \mathcal{M}_2(\mathbb{R}) \mapsto \sup_{1 \leq i,j \leq 2} |a_{i,j}|$ est une norme.

Déterminer $\varphi(t) = N(M(t))$ et tracer le graphe de φ . La fonction φ est-elle de classe \mathcal{C}^1 ?

- **b)** Déterminer la primitive Φ de φ telle que $\Phi(0) = 0$. Φ est-elle \mathcal{C}^1 ?
- c) Soit F la primitive de M telle que F(0) = 0. Prouver $\forall t \ge 0, N(F(t)) \le \Phi(t)$.

1105. Nature de l'intégrale
$$\int_0^{+\infty} \frac{\sin(x)}{\sqrt{x} + \sin(x)} dx$$
?

1106. Pour
$$\alpha > 0$$
 déterminer la nature de $\int_0^{+\infty} \left(1 + \ln(\sin x^{\alpha}) - 2 \sin(\ln(x^{\alpha} + 1))\right) dx$.

1107. Nature de
$$\int_{1}^{+\infty} \frac{\ln|1-x|\cos(\ln(x))}{x^{\alpha}(1+x)} dx$$
 et $\int_{0}^{1} \frac{\ln|1-x|\cos(\ln(x))}{x^{\alpha}(1+x)} dx$?

1108. Étudier la convergence de l'intégrale
$$\int_0^{+\infty} |\sin x|^x dx$$
.

1109. Existence et calcul des intégrales
$$I = \int_0^{+\infty} \frac{x}{\sinh x} \, \mathrm{d}x$$
 et $J = \int_0^{+\infty} \frac{x}{\cosh x} \, \mathrm{d}x$.

1110. On considère
$$E = \{ f \in \mathcal{C}^2([0,1],\mathbb{R}), \ f(0) = f(1) = 0 \}$$
. Soit $f \in E$.

a) Montrer que
$$I(f) = \int_0^1 \frac{\cos(\pi t)}{\sin(\pi t)} f'(t) f(t) dt$$
 est bien définie, et que

$$I(f) = \frac{\pi}{2} \int_0^1 \frac{f(t)^2}{\sin(\pi t)^2} dt$$

b) En considérant
$$\int_0^1 \left(\pi \frac{\cos(\pi t)}{\sin(\pi t)} f(t) - f'(t)\right)^2 dt$$
, montrer que

$$\int_0^1 f'(t)^2 dt \ge \pi^2 \int_0^1 f(t)^2 dt.$$

c) Déterminer les fonctions f pour lesquelles il y a égalité dans b).

1111. Soit $p \in \mathbb{N}$. Montrer que la fonction $t \mapsto e^{-(t-p\pi)^2} \sin(t)$ est intégrable sur \mathbb{R} et que son intégrale est nulle.

- **1112.** Existence et calcul de $\int_0^{+\infty} e^{-t} \left(\ln(t) \frac{1}{t} + \frac{1}{1 e^{-t}} \right) dt$.
- **1113.** Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue, positive, décroissante et telle que $\int_0^{+\infty} f(t) \, \mathrm{d}t$ converge.

Montrer que $tf(t) \underset{t \to +\infty}{\longrightarrow} 0$. Ind. Considérer $\int_t^{2t} f(x) dx$.

1114. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ de classe \mathcal{C}^1 . On suppose que $\int_0^{+\infty} f'(t)^2 \, \mathrm{d}t$ et $\int_0^{+\infty} t^2 f(t)^2 \, \mathrm{d}t$

convergent. Montrer que $\int_0^{+\infty} f(t)^2 dt$ converge et que

$$\int_0^{+\infty} f(t)^2 \, \mathrm{d}t \leqslant \left(\int_0^{+\infty} f'(t)^2 \, \mathrm{d}t \right)^{1/2} \left(\int_0^{+\infty} t^2 f(t)^2 \, \mathrm{d}t \right)^{1/2}.$$

1115. Pour $n \in \mathbb{N}^*$, on pose $A_n(x) = \sum_{k=1}^n \frac{x^k}{k}$.

- a) Montrer que, pour tout $y \ge 0$, il existe un unique $x \ge 0$ tel que $A_n(x) = y$. On pose $f_n(y) = x$.
- **b)** Étudier la monotonie de $(f_n)_{n\in\mathbb{N}^*}$ et montrer que la suite converge simplement vers une fonction f.
- c) Montrer que $\forall x \geqslant 0, 0 \leqslant f(x) < 1$.
- d) Montrer que $\forall x \ge 0, f(x) = 1 e^{-x}$.

1116. Soit $f: x \mapsto \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right)$.

- a) Montrer que f est bien définie sur [0;1].
- b) Montrer que f est continue et intégrable sur [0;1].
- c) Calculer $\int_0^1 f(x) dx$.
- d) Montrer que f est dérivable. Est-elle de classe C^k ?

1117. Soit $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x^2}$.

- a) Déterminer le domaine de définition et de continuité de f.
- b) Déterminer la limite de f et un équivalent en $+\infty$.
- c) Déterminer la limite de f et un équivalent en 0.
- **1118.** Soit $F: x \mapsto \sum_{n=1}^{+\infty} e^{-n^2 x^2}$. Déterminer les limites et équivalents de F en 0 et en $+\infty$.

1119. Soit
$$f: x \mapsto \frac{1}{x^2} \sum_{n=1}^{+\infty} \frac{1}{(n-x)^2} + \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$
.

On note (*) la propriété : $\forall x \in \mathbb{R} \setminus \mathbb{Z}, \, g\left(\frac{x}{2}\right) + g\left(\frac{x+1}{2}\right) = 4g\left(x\right).$

- a) Montrer que f est continue sur $\mathbb{R} \setminus \mathbb{Z}$ et 1-périodique.
- **b)** Montrer que f vérifie (*).
- c) Montrer que, si g est continue sur \mathbb{R} , 1-périodique et vérifie (*) alors g est nulle.
- e) Montrer que, pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, $f(x) = \frac{\pi^2}{\sin^2(\pi x)}$.

1120. Préciser le domaine de définition de $f: x \mapsto \sum_{n \geqslant 0} e^{-n} e^{in^2 x}$. Montrer que l'application f est de classe \mathcal{C}^{∞} sur \mathbb{R} . Est-elle développable en série entière ?

- **1121.** Étudier la convergence uniforme de la série de fonctions $\sum e^{-x} \frac{x^k}{k!}$
- **1122.** Soit $\alpha > 0$. Pour $n \in \mathbb{N}^*$ et x > 0, on pose $u_n(x) = x^{\alpha}e^{-n^2x}$ puis $f_{\alpha}(x) = \sum_{n=1}^{+\infty} u_n(x)$.
- a) Montrer que f_{α} est bien définie sur \mathbb{R}^{+*} .
- **b)** Trouver les α pour lesquels la série $\sum u_n$ converge normalement sur \mathbb{R}^{+*} .
- c) Trouver la limite puis un équivalent de $f_{\alpha}(x)$ lorsque $x \to +\infty$.
- d) Trouver la limite puis un équivalent de $f_{\alpha}(x)$ lorsque $x \to 0^+$.
- **1123.** Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\forall n\geqslant 2, a_n=a_{n-1}+(n-1)a_{n-2}$. Trouver f de classe \mathcal{C}^{∞} au voisinage de 0 telle que $\forall n\in\mathbb{N}, f^{(n)}(0)=a_n$.

1124. Soit
$$f: x \in]-1, 1[\mapsto \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}.$$

- a) Montrer que f est de classe C^{∞} .
- \boldsymbol{b}) Montrer que f est développable en série entière.
- **1125.** On s'intéresse à la série entière suivante : $f(x) = \sum_{n=1}^{+\infty} u_n x^n$ avec $u_n = \int_1^{+\infty} e^{-t^n} dt$.
- a) Déterminer la limite de la suite (u_n) .
- b) Déterminer le domaine de convergence de la série entière.
- c) Déterminer la limite de f à la borne de droite du domaine de convergence.

1126. Soit N un entier qui n'est pas un carré parfait. On pose $a=\sqrt{N}$.

- a) Montrer qu'il existe une suite d'entiers $(p_n)_{n\in\mathbb{N}}$ telle que $na-p_n\in\left[-\frac{1}{2},\frac{1}{2}\right]$.
- **b)** Montrer qu'il existe une constante c > 0 tels que $\forall n \in \mathbb{N}^*, \sin(na\pi) > cn^{-1}$.

- c) En déduire le rayon de convergence de $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{\sin(n\pi\sqrt{2})}$.
- **1127.** On pose $b_0 = 1$ et, pour $n \in \mathbb{N}$, $b_{n+1} = -\frac{1}{n+2} \sum_{k=0}^{n} \binom{n+2}{k} b_k$.
- a) Montrer que, pour tout n, $|b_n| \leq n!$.
- **b**) Pour |z|<1, montrer que $\sum_{k=0}^{+\infty} \frac{b_k}{k!} z^k = \frac{z}{e^z-1}$.
- c) Montrer que $x \mapsto \cot x$ $\cot x$ est développable en série entière.
- d) Quel est le lien entre les deux dernières questions? On pourra poser $z=2i\pi x$.
- **1128.** Soit $S: x \mapsto \sum_{n=0}^{+\infty} \frac{x^n}{\binom{2n}{n}}$.
- a) Déterminer le rayon de convergence R de S. Montrer que S est solution de l'équation différentielle x(x-4)y'+(x+2)y=2.
- **b**) En déduire S(x) pour tout $x \in]0, R[$.
- c) Calculer $\sum_{n=0}^{+\infty} \frac{1}{\binom{2n}{n}}$

- **1129.** Montrer qu'il existe une fonction φ développable en série entière en 0 vérifiant au voisinage de 0 : $\varphi'(x) = x + \varphi^2(x)$.
- **1130.** Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{\sin t} dt$ et $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} dt$.
- a) Que dire de I_n ?
- b) Montrer que (I_n) et (J_n) convergent vers la même limite. Trouver cette limite.
- **1131.** Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)\sqrt[n]{1+t^n}}$. Montrer que chaque intégrale I_n est convergente puis déterminer la limite de la suite (I_n) .
- **1132.** Pour $n \ge 2$, on pose $I_n = \int_1^{+\infty} \frac{\mathrm{d}t}{1 + t + \dots + t^n}$. Justifier que I_n existe puis déterminer un équivalent de I_n quand $n \to +\infty$.
- **1133.** Pour $n \in \mathbb{N}$ et $x \in [0, 1]$, on pose $f_n(x) = \frac{2^n x}{1 + n2^n x^2}$.
- a) Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$.
- **b)** Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 f_n(x) dx$. Calculer I_n et $\lim_{n \to +\infty} I_n$.
- c) Étudier la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ sur [0,1].
- d) Donner un développement asymptotique à deux termes de I_n .

1134. Soient a > -1 et b > 0. On définit les suites (I_n) et (J_n) par $J_n = \int_0^{+\infty} x^a e^{-nx} dx$

$$et I_n = \int_0^{+\infty} \frac{x^a e^{-nx}}{\sqrt{1+x^b}} \, \mathrm{d}x.$$

- a) Étudier l'existence de J_n et en déduire celle de I_n .
- **b**) Déterminer la limite de (J_n) .
- c) Exprimer J_n à l'aide de la fonction $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ et retrouver ainsi la limite
- d) Déterminer un équivalent de I_n à l'aide de J_n .

1135. Montrer: $\int_0^1 \frac{\mathrm{d}x}{1+x^p} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+kp}. \text{ Calculer } \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+k}, \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+2k}, \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+3k}.$

1136. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \ln(1+t^n) dt$.

- a) Déterminer la limite de (I_n) . b) Justifier l'existence de $J = \int_0^1 \frac{\ln{(1+u)}}{u} du$.
- c) Montrer que $I_n \sim \frac{J}{n}$.
- d) Montrer que $J = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n^2}$.

1137. a) Montrer que $I = \int_0^{+\infty} \frac{\ln(x)}{x^2 - 1} dx$ est convergente.

- b) On pose $J = \int_0^1 \frac{\ln(x)}{x^2 1} dx$. Montrer que I = 2J.
- c) Exprimer J à l'aide de la somme d'une série.
- d) On donne $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Calculer J.

1138. On considère $J = \int_{0}^{1} \ln(t) \ln(1-t) dt$.

Montrer que J est bien définie et que $J=\sum_{n=0}^{+\infty}\frac{1}{n(n+1)^2}$. En déduire la valeur de J.

1139. Soit $F: x \mapsto \int_0^{+\infty} \frac{\sin t}{t} e^{-xt} dt$.

- a) Déterminer le domaine de définition et la limite en $+\infty$ de F.
- **b)** Donner une expression simple de F(x).

1140. Étudier
$$x \mapsto \int_0^{+\infty} \frac{1 - \cos(xt)}{t^2} dt$$
.

1141. Soit
$$F: x \mapsto \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$$
.

- a) Montrer que F est définie sur \mathbb{R} et impaire.
- b) Montrer que F est dérivable et calculer F'.
- c) En déduire la valeur de F(x) pour tout $x \in \mathbb{R}$.
- **d)** En déduire la valeur de $\int_0^{+\infty} \frac{\arctan(t^2)}{t^2} dt$.

1142. Soit
$$F: x \mapsto \int_0^{+\infty} \frac{e^{-at} - a^{-bt}}{t} \cos(xt) dt$$
, où $0 < a < b$.

- a) Montrer que f est définie sur \mathbb{R} et de classe \mathcal{C}^1 .
- **b)** Montrer qu'il existe une constante C telle que $\forall x \in \mathbb{R}, F(x) = \frac{1}{2} \ln \left(\frac{x^2 + b^2}{x^2 + a^2} \right) + C$.
- c) Déterminer $\lim_{x \to +\infty} F(x)$ et conclure quant à la constante C.

1143. Soit
$$f: \mathbb{R} \to \mathbb{R}$$
 continue et bornée. Soit $g: x \in \mathbb{R} \mapsto -\frac{1}{2} \int_{-\infty}^{+\infty} f(t) \, e^{-|x-t|} \, \mathrm{d}t$.

- a) Montrer que g est définie sur \mathbb{R} et bornée.
- b) Montrer que g est de classe C^2 et vérifie l'équation différentielle (*): y'' y = f(x).
- c) Soit $h: \mathbb{R} \to \mathbb{R}$ de classe C^2 et bornée sur \mathbb{R} vérifiant l'équation (*). A-t-on g = h?

1144. Soit
$$F: x \mapsto \int_0^{+\infty} \frac{\sin{(xt)}}{t} \mathrm{e}^{-t} \mathrm{d}t$$
. Trouver le domaine de définition de F et exprimer F sans le signe intégral.

1145. Soit
$$F: x \mapsto \int_1^{+\infty} \frac{t - \lfloor t \rfloor}{t^{x+1}} dt$$
.

- a) Déterminer le domaine de définition de F.
- b) Montrer la continuité de F.
- c) Pour $x \ge 1$, donner l'expression de F(x).

1146. Pour tout
$$x > 0$$
, on pose $f(x) = \int_0^1 \ln(t) \ln(1 - t^x) dt$.

- a) La fonction f est-elle bien définie?
- b) Écrire f comme la somme d'une série.
- c) Déterminer la limite de f(x) quand x tend vers 0.

1147. Pour
$$x>0$$
, on pose $F:x\mapsto \int_0^{+\infty} \frac{\mathrm{e}^{-xt}}{\sqrt{t+t^2}}\mathrm{d}t.$

- a) Calculer F'(x).
- **b)** Calculer $\lim_{x\to +\infty} F(x)$, puis déterminer un équivalent de F en $+\infty$.

c) Montrer que $\lim_{x\to 0}F\left(x\right)=+\infty$, puis déterminer un équivalent de F en 0.

1148. Soit
$$f \in \mathcal{C}^0([0,1], \mathbb{R}^{+*})$$
. Pour $x > 0$, on pose $N_f(x) = \left(\int_0^1 f(t)^x dt\right)^{1/x}$.

- a) Montrer que N_f est de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} .
- **b)** Déterminer la limite de $N_f(x)$ lorsque $x \to +\infty$.
- c) Déterminer la limite $\frac{1}{x} \left(\int_0^1 f(t)^x dt 1 \right)$ lorsque $x \to 0^+$.
- d) Déterminer la limite de $N_f(x)$ lorsque $x \to 0$.
- **1149.** Soit f une fonction continue de $[a,b] \times [c,d]$ dans \mathbb{R} .

Montrer que
$$\int_a^b \left(\int_c^d f(x,y) dy \right) dx = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$
.

Ind. Considérer $g: t \mapsto \int_a^b \left(\int_c^t f(x,y) dy \right) dx$.

- **1150.** Soit (E): $x^2y'' + 4xy' + 2y = \ln(1+x)$.
- a) Trouver les solutions de (E) développables en série entière et déterminer leur rayon de convergence.
- b) Écrire ces fonctions à l'aide des fonctions usuelles.
- **1151.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{Tr}(A) > 0$. Soit $x : \mathbb{R} \to \mathbb{R}^n$ une fonction de classe \mathcal{C}^1 telle que : (i) pour tout $t \in \mathbb{R}$, on a x'(t) = Ax(t), (ii) pour tout $i \in [1, n]$, on a $\lim_{t \to +\infty} x_i(t) = 0$.

Montrer qu'il existe une forme linéaire $\ell: \mathbb{R}^n \to \mathbb{R}$ non nulle telle que $\forall t \in \mathbb{R}, \ell(x(t)) = 0$.

1152. On définit $E = \mathcal{C}^0(\left[0,1\right],\mathbb{R})$ et $F = \mathcal{C}^\infty(\left[0,1\right],\mathbb{R})$.

Soit $n \in \mathbb{N}^*$. Pour $u \in E$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$, on considère le système d'équations différentielles $(L): \forall i \in [1, n], \ \forall t \in [0, 1], \ x_i'(t) = \lambda_i x_i(t) + u(t)$.

- a) Résoudre le système (L).
- **b)** Pour $i \in [\![1,n]\!]$, on note $\varphi_i(u)$ la valeur en t=1 de la solution de la i-ème équation de (L) qui s'annule en t=0. On note $\Phi(u)=(\varphi_1(u),\ldots,\varphi_n(u))$. Montrer que, pour tout $i \in [\![1,n]\!]$, $\varphi_i \in \mathcal{L}(E,\mathbb{R})$ et que $\Phi \in \mathcal{L}(E,\mathbb{R}^n)$.
- c) Pour $i \in [1, n]$, on définit un élément de F en posant $f_i : s \mapsto e^{\lambda_i (1-s)}$. Montrer que la famille $(\varphi_1, \dots, \varphi_n)$ est libre si et seulement si la famille (f_1, \dots, f_n) est libre.
- **1153.** Soit $f:\mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 telle que $\frac{\partial^2 f}{\partial x \partial y} = 0$. Déterminer f.
- **1154.** Déterminer les extrema de $f(x,y) = x \ln y y \ln x$ pour $(x,y) \in (\mathbb{R}^{+*})^2$.
- **1155.** Trouver les extrema de $f:(x,y) \mapsto x^4 + y^4 2(x-y)^2$.

Probabilités

- **1156.** Une boite contient n boules numérotées de 1 à n. On tire des boules, une à une, avec remise, tant que le numéro de la boule tirée est supérieur au précédent. On note Z le nombre de boules tirées. Déterminer la loi de Z.
- 1157. Une urne contient deux boules. L'une est blanche et l'autre est soit blanche soit noire avec probabilité 1/2. On tire successivement deux boules de l'urne sans remise. Quelle est la probabilité de tirer une boule blanche au second tirage sachant qu'on a tiré une boule blanche au premier tirage?
- **1158.** Soient $a \in \mathbb{N}^*$, $n \in \mathbb{N}^*$ et N = an. On dispose de N boules indiscernables et n urnes numérotées de 1 à n. On dépose les N boules dans les urnes. On note T_i la variable aléatoire qui vaut 1 si l'urne i est vide, et 0 sinon. On note Y_n le nombre d'urnes vides et $S_n = \frac{1}{n}Y_n$.
- a) Donner la loi de T_i . Calculer l'espérance et la variance de T_i .
- b) Calculer l'espérance et la variance de S_n . Étudier les limites de $(\mathbf{E}(S_n))$ et $(\mathbf{V}(S_n))$.
- 1159. Une panier contient r pommes rouges et v pommes vertes. On mange les pommes une à une, on s'arrête lorsqu'on a mangé toutes les pommes vertes. Déterminer la probabilité d'avoir mangé toutes les pommes.
- **1160.** On répartit N objets dans N-1 boites. Probabilité pour qu'aucune boite ne soit vide?
- **1161.** La durée de vie (en jours) d'une ampoule suit la loi géométrique de paramètre $\frac{1}{2}$.
- a) Quelle est la durée de vie moyenne de cette ampoule?
- **b**) L'ampoule a déjà vécu n jours. Quelle est la durée de vie moyenne de cette ampoule à partir du n-ème jour?
- **1162.** On considère deux dés et, pour $i \in [\![1,6]\!]$, on note p_i (respectivement q_i) la probabilité que le premier dé (respectivement le second dé) donne le résultat i. On note P et Q les fonctions génératrices des deux dés. On note R la fonction génératrice de la somme des deux dés.
- a) Donner R.
- b) On suppose dorénavant que R est égale à la fonction génératrice de la somme de deux dés non pipés.
- c) Quelles sont les racines de R?
- d) Montrer que les deux dés ne sont pas pipés.
- 1163. Dans un magasin, on a n caisses et np clients. Chaque client choisit une caisse de façon indépendante et avec la même probabilité pour chacune des caisses. On note X_i le nombre de clients à la caisse numéro i.
- a) En écrivant X_i comme une somme de variables aléatoires indépendantes, déterminer la loi, l'espérance et la variance de X_i .
- **b)** Pour $(i, j) \in [1; n]^2$, calculer $Cov(X_i, X_j)$.
- **1164.** Soient A et B deux événements. Montrer que $|\mathbf{P}(A)\mathbf{P}(B) \mathbf{P}(A \cap B)| \leq \frac{1}{4}$

1165. Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N}^* telles que, pour tout $n \in \mathbb{N}^*$, la loi de X sachant (Y = n) est la loi uniforme sur [1, n].

- a) Montrer que Y + 1 X et X ont même loi.
- **b**) On suppose X suit la loi géométrique $\mathcal{G}(p)$. Montrer que X et Y+1-X sont indépendantes.

1166. a) On munit l'ensemble des fonctions $f: [1, n] \to [1, n-1]$ de la loi uniforme. Déterminer la probabilité pour que f soit surjective.

b) Même question avec $f: [1, n] \rightarrow [1, n-2]$.

1167. Soient U une variable aléatoire discrète, n et ℓ deux entiers naturels tels que $n \geqslant \ell + 3$ et $\mathbf{P}\left(U > n\right)\mathbf{P}\left(U > \ell\right) > 0$. On pose $Y = \left\lfloor \frac{U}{2} \right\rfloor$ et $Z = \left\lfloor \frac{U+1}{2} \right\rfloor$.

- a) Montrer que Y et Z ne sont pas indépendantes.
- **b)** On suppose que $U \sim \mathcal{B}(n,p)$ avec $n \geqslant 4$ pair. Montrer que Y ne suit pas une loi binomiale.

1168. Soit Z une variable aléatoire à valeurs dans \mathbb{Z} telle que $|Z|+1\sim \mathcal{G}(p)$ et telle que

$$\forall n \in \mathbb{Z}, \mathbf{P}(Z=n) = \mathbf{P}(Z=-n). \text{ Soit } A = \begin{pmatrix} 0 & Z & Z \\ Z & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- a) Déterminer la loi du rang de A.
- b) Déterminer la probabilité pour que A soit diagonalisable.

1169. Soient X et Y deux variables aléatoires indépendantes suivant des lois géométriques de paramètres p et q respectivement. En notant $M=\begin{pmatrix} X & 1 \\ 0 & Y \end{pmatrix}$, donner la probabilité pour M soit diagonalisable.

1170. Soit $M=(X_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice aléatoire réelle où les $(1+X_{i,j})$ sont i.i.d. de loi $\mathcal{G}(p)$ avec $p\in]0,1[$.

- ${\it a}{\it)}\;$ Déterminer la probabilité que M soit symétrique.
- ${\it b}$) Déterminer la probabilité que M soit orthogonale.

1171. Soit a un réel. On pose $g: t \mapsto \frac{a e^t}{2-t}$.

a) Montrer qu'il existe une unique valeur de a pour laquelle il existe une variable aléatoire X à valeurs dans \mathbb{N} dont g soit la fonction génératrice.

On suppose maintenant que a est égal à cette valeur et que X est une variable aléatoire à valeurs dans $\mathbb N$ dont g est la fonction génératrice.

- b) Trouver la probabilité que X soit pair.
- c) Quelle est la probabilité que la matrice $\begin{pmatrix} X & X & 0 \\ -X & -X & 0 \\ X & X & 0 \end{pmatrix}$ soit diagonalisable?

1172. Soit (X,Y) un couple de variables aléatoires à valeurs dans $(\mathbb{N}^*)^2$. On suppose que $X \leqslant Y$, que $\forall i \in \mathbb{N}^*$, $\mathbf{P}(Y=i) > 0$, $\forall 1 \leqslant k \leqslant i$, $\mathbf{P}(X=k|Y=i) = \frac{1}{i}$. Montrer que X et Y - X + 1 ont la même loi.

1173. Soient $n \in \mathbb{N}^*$, X_1, \ldots, X_n des variables aléatoires indépendantes suivant la loi de Bernoulli de paramètre $p \in]0,1[$. On pose $M=(X_iX_i)_{1 \le i \le n,1 \le j \le n}$.

- a) Déterminer la loi du rang de M, de la trace de M.
- b) Quelle est la probabilité que M soit un projecteur?

1174. Soit T une variable aléatoire à valeurs dans \mathbb{N} telle que $\forall n, \mathbf{P}(T > n) > 0$. Pour tout entier naturel n, on pose $\theta_n = \mathbf{P}(T = n \mid T \ge n)$.

- a) Montrer que $\forall n \in \mathbb{N}, \theta_n \in [0, 1]$.
- **b)** Exprimer θ_n en fonction de $\mathbf{P}(T \ge n)$. En déduire que $\sum \theta_n$ diverge.

1175. Soient $n \in \mathbb{N}^*$ et $p \in]0,1]$.

a) Soit U une variable aléatoire telle que $U \sim \mathcal{B}(n,p)$. Déterminer la fonction génératrice de U.

b) Soient Y et Z deux variables aléatoires dicrètes indépendantes telles que U=Y+Z et $U\sim\mathcal{B}\left(n,p\right)$. Montrer que Y et Z suivent des lois binomiales (pas nécessairement de mêmes paramètres).

 $\textbf{1176. a)} \ \ \text{Soit} \ r \in \mathbb{N}^* \ \text{et} \ x \in \]-1 \ ; 1 \ [. \ \text{Montrer que} \ \sum_{n=r-1}^{+\infty} \binom{n}{r-1} x^{n-r+1} = \frac{1}{(1-x)^r} \cdot \frac{1}{(1-x)^r} \cdot$

b) Soit (U_n) une suite de variables aléatoires indépendantes suivant la loi $\mathcal{B}(p)$. Soit X le rang du r-ème succès. Quelle est la loi de X? Déterminer $\mathbf{E}(X)$, $\mathbf{E}(X(X+1))$ et $\mathbf{V}(X)$.

1177. Soit X une variable aléatoire suivant la loi de Poisson de paramètre λ .

- a) Montrer que $P(X \ge \lambda + 1) \le \lambda$.
- **b**) Montrer que $\mathbf{P}\left(X \leqslant \frac{\lambda}{3}\right) \leqslant \frac{9}{4\lambda}$

1178. Soient X et Y deux variables aléatoires discrètes à valeurs strictement positives indépendantes et suivant la même loi. Montrer que $\mathbf{E}(X/Y) \geqslant 1$.

1179. a) Montrer qu'il existe une variable aléatoire à valeurs dans \mathbb{N}^* telle que, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(Y=n) = \frac{1}{n(n+1)}$.

b) Si $X:\Omega\to\mathbb{N}^*$ est un variable aléatoire telle que $X(\Omega)=\mathbb{N}^*$, on définit le *taux de défaillance* de X pour $n\in\mathbb{N}^*$ par $x_n=\mathbb{P}(X=n|X\geqslant n)$.

- défaillance de X pour $n \in \mathbb{N}^*$ par $x_n = \mathbb{P}(X = n | X \geqslant n)$. c) Pour $n \in \mathbb{N}^*$, montrer que $\mathbb{P}(X \geqslant n) = \prod_{k=1}^{n-1} (1 - x_k)$.
- **d)** En déduire $\mathbb{P}(X=n)$ en fonction des x_k pour $n \in \mathbb{N}^*$.
- e) Quelle variable aléatoire admet un taux de défaillance constant à partir du rang 1?
- f) Calculer le taux de défaillance de la variable Y introduite à la première question.

1180. Soit $(p_n)_{n\in\mathbb{N}}$ une suite d'éléments de]0,1[tel que la série $\sum p_n$ converge. Pour tout $n\in\mathbb{N}$, soit X_n une variable aléatoire suivant la loi de Bernoulli de paramètre p_n . On pose

$$S_n = \sum_{k=0}^{n} X_k \text{ et } S = \sum_{k=0}^{+\infty} X_k.$$

- a) Soit $k \in \mathbb{N}$. Exprimer l'événement $(S \geqslant k)$ à l'aide des événements $(S_n \geqslant k)$. En déduire que S est une variable aléatoire.
- b) Montrer que S est presque-sûrement finie.
- c) Montrer que S admet une espérance et la calculer.

1181. Soient $p \in]0,1[$ et $(X_i)_{i\geqslant 1}$ une suite de variables aléatoires indépendantes identiquement distribuées suivant la loi géométrique de paramètre p.

Pour $n \in \mathbb{N}^*$, on pose $M_n = \max\{X_1, \dots, X_n\}$.

- a) Montrer que $\mathbf{E}(M_n) = \sum_{k=0}^{+\infty} 1 (1-q^k)^n$ où q=1-p. b) Soit $f_n: t \mapsto 1 - (1-q^t)^n$. Montrer que f_n est intégrable sur \mathbb{R}^+ et donner un équivalent
- **b)** Soit $f_n: t \mapsto 1 (1 q^t)^n$. Montrer que f_n est intégrable sur \mathbb{R}^+ et donner un équivalent de $\int_0^{+\infty} f_n(t) \, \mathrm{d}t$ lorsque $n \to +\infty$.
- c) En déduire un équivalent de $\mathbf{E}(M_n)$ lorsque $n \to +\infty$.