I. Matrices semi-simples

1 Commençons par calculer les valeurs propres de la matrice

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$

à l'aide du polynôme caractéristique. Pour les matrices de taille 2×2 , nous avons l'expression suivante

$$\chi_{A} = X^{2} - \operatorname{Tr}(A)X + \det(A)$$

Ici, Tr(A) = 4 et det(A) = 4. Il s'ensuit

$$\chi_A = X^2 - 4X + 4 = (X - 2)^2$$

Les valeurs propres de A sont les racines du polynôme caractéristique, on obtient donc $sp(A) = \{2\}.$

Quitte à se placer dans $\mathcal{M}_2(\mathbb{C})$, la matrice A admet deux valeurs propres λ et $\overline{\lambda}$ complexes conjuguées car le polynôme caractéristique est scindé sur $\mathbb{C}[X]$ et à coefficients réels. Pour les matrices de taille 2×2 , les valeurs propres sont les solutions d'un système de deux équations à deux inconnues:

$$\begin{cases} \det(A) = \lambda \, \overline{\lambda} = 4 \\ \operatorname{Tr}(A) = \lambda + \overline{\lambda} = 4 \end{cases}$$

Ainsi, $|\lambda|=2$ et $\operatorname{Re}(\lambda)=\frac{\lambda+\overline{\lambda}}{2}=2$ d'où $\lambda=2=\overline{\lambda}$. De cette manière, on retrouve le spectre de A.

La matrice A est diagonalisable dans $\mathscr{M}_2(\mathbb{C})$ si et seulement si il existe un polynôme annulateur de A scindé à racines simples sur $\mathbb{C}[X]$. Comme sp $(A) = \{2\}$, c'est le cas si et seulement si $A - 2I_n = 0$. Comme $A \neq 2I_n$, on en déduit que

Une autre méthode pour conclure est de supposer par l'absurde que A est diagonalisable. Comme la seule valeur propre de A est 2, il existe $P \in \mathcal{M}_2(\mathbb{C})$ inversible telle que

$$A = P \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} P^{-1} = P(2I_2)P^{-1} = 2I_2$$

car I₂ et P commutent.

2 Commençons par calculer le polynôme caractéristique de B:

$$\chi_{\rm B} = {\rm X}^2 - {\rm Tr}({\rm B}){\rm X} + {\rm det}({\rm B}) = {\rm X}^2 - 4{\rm X} + 13$$

Le discriminant du polynôme $\chi_{\rm B}$ est $\Delta=16-4\times13=-36<0$. Les valeurs propres de B sont les racines du polynôme caractéristique, soit

$$\lambda = \frac{4+6i}{2} = 2+3i$$
 et $\mu = \frac{4-6i}{2} = 2-3i$

Par conséquent, χ_B est scindé à racines simples dans \mathbb{C} , on en déduit que B est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$, autrement dit

La matrice B est semi-simple.

donc

Déterminons à présent un vecteur propre pour B associé à la valeur propre λ . Soit $V = \begin{pmatrix} x \\ y \end{pmatrix}$ un tel vecteur propre, on a le système suivant :

$$\begin{cases} 3x + 2y = \lambda x \\ -5x + y = \lambda y \end{cases} \iff \begin{cases} (1 - 3i)x = -2y \\ -5x = (3i + 1)y \end{cases}$$

$$\iff \begin{cases} \frac{-1 + 3i}{2}x = y \\ \frac{-5}{3i + 1}x = y \end{cases}$$

$$\begin{cases} 3x + 2y = \lambda x \\ -5x + y = \lambda y \end{cases} \iff \frac{-1 + 3i}{2}x = y$$

Un vecteur propre associé à la valeur propre est alors donné par $V = \begin{pmatrix} 1 \\ (-1+3i)/2 \end{pmatrix}$.

Posons $W_1 = \operatorname{Re}(V) = \begin{pmatrix} 1 \\ -1/2 \end{pmatrix}$ et $W_2 = \operatorname{Im}(V) = \begin{pmatrix} 0 \\ 3/2 \end{pmatrix}$. La famille (W_1, W_2) est une base de \mathbb{R}^2 car libre et de cardinal 2. Calculons

$$BW_{1} = \begin{pmatrix} 3 & 2 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1/2 \end{pmatrix} = \begin{pmatrix} 2 \\ -11/2 \end{pmatrix} = 2W_{1} - 3W_{2}$$
et
$$BW_{2} = \begin{pmatrix} 3 & 2 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3/2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3/2 \end{pmatrix} = 3W_{1} + 2W_{2}$$

Ainsi, la matrice représentant l'endomorphisme canoniquement associé à B dans la base (W_1,W_2) est

$$\begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}$$

En notant Q la matrice inversible de passage de la base canonique à la base (W_1, W_2) , on a bien

$$B = Q \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} Q^{-1}$$

Cette question généralise le résultat de la question précédente aux matrices de taille 2×2 semi-simples à valeurs propres complexes non réelles conjuguées.

Montrons dans un premier temps que M est semi-simple. Par hypothèse, M admet deux valeurs propres complexes distinctes. Il s'ensuit que son polynôme caractéristique est scindé à racines simples et que M est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$, ce qui revient à dire que

Soit V un vecteur propre de B associé à la valeur propre μ . Reproduisons le raisonnement de la question précédente et considérons $W_1 = \operatorname{Re}(V)$ et $W_2 = \operatorname{Im}(V)$, de sorte que $V = W_1 + iW_2$. On a alors $BV = \mu V$. D'où

$$B(W_1 + iW_2) = (a + ib)(W_1 + iW_2)$$

$$BW_1 + iBW_2 = (aW_1 - bW_2) + i(bW_1 + aW_2)$$

Or, $(W_1, W_2) \in (\mathbb{R}^2)^2$ et $B \in \mathcal{M}_2(\mathbb{R})$, d'où $BW_1 \in \mathbb{R}^2$ et $BW_2 \in \mathbb{R}^2$. On peut ensuite identifier les parties réelle et imaginaire dans l'égalité précédente pour obtenir

$$\begin{cases}
BW_1 = aW_1 - bW_2 \\
BW_2 = bW_1 + aW_2
\end{cases}$$
(1)

Montrons que (W_1, W_2) est une base du \mathbb{R} -espace vectoriel \mathbb{R}^2 . La famille (V, \overline{V}) est une base de vecteurs propres du \mathbb{C} -espace vectoriel \mathbb{C}^2 . En effet, \overline{V} est un vecteur propre de B pour la valeur propre $\overline{\mu} \neq \mu$ car

$$B\overline{V} = \overline{BV} = \overline{\mu}\overline{V} = \overline{\mu} \cdot \overline{V}$$

Montrons que (W_1, W_2) est une famille \mathbb{R} -libre. Soient a_1 et a_2 deux réels. On a

$$\begin{aligned} a_1 \mathbf{W}_1 + a_2 \mathbf{W}_2 &= 0 &\iff (a_1 \mathbf{W}_1 + \mathrm{i} a_1 \mathbf{W}_2 - \mathrm{i} a_2 \mathbf{W}_1 + a_2 \mathbf{W}_2) \\ &\quad + (a_1 \mathbf{W}_1 - \mathrm{i} a_1 \mathbf{W}_2 + \mathrm{i} a_2 \mathbf{W}_1 + a_2 \mathbf{W}_2) = 0 \\ &\iff (a_1 - \mathrm{i} a_2)(\mathbf{W}_1 + \mathrm{i} \mathbf{W}_2) + (a_1 + \mathrm{i} a_2)(\mathbf{W}_1 - \mathrm{i} \mathbf{W}_2) = 0 \\ &\iff (a_1 - \mathrm{i} a_2)\mathbf{V} + (a_1 + \mathrm{i} a_2)\overline{\mathbf{V}} = 0 \\ &\iff a_1 = \mathrm{i} a_2 \\ a_1 \mathbf{W}_1 + a_2 \mathbf{W}_2 = 0 \iff a_1 = a_2 = 0 \end{aligned}$$

puisque (V, \overline{V}) sont \mathbb{C} -linéairement indépendants et que a_1, a_2 sont réels. On a prouvé que (W_1, W_2) est une famille libre du \mathbb{R} -espace vectoriel \mathbb{R}^2 de dimension 2, c'est donc une base de cet espace. Considérons alors l'endomorphisme u_B canoniquement associé à B. D'après (1), la matrice représentant u_B dans la base (W_1, W_2) est

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

En notant Q la matrice de passage de la base canonique à la base (W_1, W_2) , d'après la formule de changement de base pour les matrices, il vient

$$B = Q \begin{pmatrix} a & b \\ -b & a \end{pmatrix} Q^{-1}$$

La matrice M est semblable dans $\mathcal{M}_2(\mathbb{R})$ à la matrice $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

Donnons une autre preuve de ce résultat. Posons

$$\mathbf{N} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Commençons par calculer le polynôme caractéristique de ${\bf N}$:

$$\chi_{\rm N} = \begin{vmatrix} {\rm X} - a & -b \\ b & {\rm X} - a \end{vmatrix} = ({\rm X} - a)^2 + b^2 = ({\rm X} - a + {\rm i}b)({\rm X} - a - {\rm i}b)$$

Comme $b \neq 0$, on en déduit que N est diagonalisable dans $\mathscr{M}_2(\mathbb{C})$ et que ses valeurs propres sont $\mu = a + ib$ et $\overline{\mu} = a - ib$. Il existe alors une matrice de passage $P \in \mathscr{M}_2(\mathbb{C})$ inversible telle que

$$N = P \begin{pmatrix} \mu & 0 \\ 0 & \bar{\mu} \end{pmatrix} P^{-1}$$

Les valeurs propres de B sont également μ et $\bar{\mu}$, il existe de même une matrice de passage $Q \in \mathcal{M}_2(\mathbb{C})$ telle que

$$B = Q \begin{pmatrix} \mu & 0 \\ 0 & \bar{\mu} \end{pmatrix} Q^{-1}$$

On obtient alors $Q^{-1}BQ = P^{-1}NP$, puis $B = QP^{-1}NPQ^{-1}$. En posant la matrice $R = PQ^{-1} \in \mathcal{M}_2(\mathbb{C})$, on remarque que R est inversible (car P et Q le sont) et $B = R^{-1}NR$ est alors semblable à R sur $\mathcal{M}_2(\mathbb{C})$.

Un exercice classique est alors de montrer que la similitude dans $\mathcal{M}_2(\mathbb{C})$ implique celle dans $\mathcal{M}_2(\mathbb{R})$. Donnons une démonstration de ce résultat. Supposons qu'il existe $P \in \mathcal{M}_n(\mathbb{C})$ inversible telle que $A = P^{-1}BP$. On décompose P = Q + iR avec $Q, R \in \mathcal{M}_n(\mathbb{R})$, la relation de similitude donne alors

$$QA + iRA = BQ + iBR$$

En identifiant partie réelle et imaginaire, on a QA = BQ et RA = BR. En particulier, pour tout $t \in \mathbb{R}$

$$(Q + tR)A = B(Q + tR)$$

Il suffit alors de prouver qu'il existe un réel t tel que Q+tR est inversible pour conclure. Posons pour tout $t \in \mathbb{R}$, $\phi(t) = \det(Q+tR)$. L'application ϕ est polynomiale, avec $\phi(i) \neq 0$, il en découle que ϕ est non nulle. Or, ϕ admet un nombre fini de racines, et il existe alors $t \in \mathbb{R}$ tel que $\phi(t) \neq 0$. Pour cette valeur de t, la matrice Q+tR est inversible et fournit la matrice de passage souhaitée.

4 Raisonnons par double implication. Supposons que M est semi-simple. Par définition, M est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$, ainsi

$$P = \prod_{\lambda \in \operatorname{sp}(u)} (X - \lambda)$$

est un polynôme annulateur unitaire de M à racines simples, qui divise le polynôme caractéristique de M. Son degré est donc égal à 1 ou 2. Distinguons ces deux cas.

- Si deg(P) = 1, alors M est diagonale et sa seule valeur propre est nécessairement réelle car M ∈ M₂(ℝ). Cela permet de conclure que M est diagonale donc diagonalisable dans M₂(ℝ).
- Si $\deg(P) = 2$, alors $P = \chi_M$. Notons Δ le discriminant de χ_M . Si $\Delta = 0$, alors le polynôme χ_M aurait une racine double, ce qui est absurde car χ_M est scindé à racines simples par hypothèse. Il reste donc deux cas à traiter:
 - o Si $\Delta > 0$, alors $\chi_{\mathrm{M}} = \mathrm{P}$ est scindé à racines simples sur \mathbb{R} . Donc M est diagonalisable dans $\mathscr{M}_2(\mathbb{R})$.
 - $\circ~$ Si $\Delta<0,$ alors M possède deux valeurs propres complexes distinctes donc conjuguées, de parties imaginaires non nulles. Ainsi, la deuxième condition est bien réalisée.

Ceci prouve l'implication directe. Montrons l'implication réciproque. Si M est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$, elle est en particulier diagonalisable dans $\mathcal{M}_2(\mathbb{C})$. Si M vérifie la seconde condition, alors M est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$, car le polynôme caractéristique est scindé à racines simples. En conclusion,

La matrice M est semi-simple si et seulement si elle est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ ou χ_{M} admet deux racines complexes non réelles conjuguées.

5 Soit $N \in \mathcal{M}_n(\mathbb{R})$ semblable à une matrice presque diagonale dans $\mathcal{M}_n(\mathbb{C})$. Il existe une matrice M presque diagonale et $P \in \mathcal{M}_n(\mathbb{C})$ inversible et telles que

$$N = PMP^{-1}$$

Il existe alors une matrice diagonale $D \in \mathcal{M}_p(\mathbb{R})$ et des réels $(a_1, b_1, \dots, a_q, b_q) \in \mathbb{R}^{2q}$ tels que

$$\mathbf{M} = \begin{pmatrix} \mathbf{D} & 0 & \cdots & \cdots & 0 \\ 0 & \mathbf{M}(a_1, b_1) & 0 & \ddots & \vdots \\ \vdots & 0 & \mathbf{M}(a_2, b_2) & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \mathbf{M}(a_q, b_q) \end{pmatrix}$$

Soit $(a,b) \in \mathbb{R}^2$. D'après le résultat de la question 3, la matrice M(a,b) est semblable dans $\mathcal{M}_2(\mathbb{C})$ à la matrice diagonale dont les coefficients diagonaux sont a+ib et a-ib. Ainsi, il existe $Q \in \mathcal{M}_2(\mathbb{C})$ inversible telle que

$$\mathbf{M}(a,b) = \mathbf{Q} \begin{pmatrix} a + \mathrm{i}b & 0 \\ 0 & a - \mathrm{i}b \end{pmatrix} \mathbf{Q}^{-1}$$

Notons $\lambda_1, \ldots, \lambda_p$ les coefficients diagonaux de D, et $\mu_i = a_i + \mathrm{i} b_i$ pour $i \in [1; q]$. Il existe une famille de matrices de passage $(Q_i)_{i \in [1; q]} \in (\mathcal{M}_2(\mathbb{C}))^q$ inversibles telle que pour tout $i \in [1; q]$

$$M(a_i, b_i) = Q_i \begin{pmatrix} \mu_i & 0 \\ 0 & \overline{\mu_i} \end{pmatrix} Q_i^{-1}$$

Notons la matrice suivante

$$Q = \begin{pmatrix} I_p & 0 \\ 0 & K \end{pmatrix}$$

où

$$\mathbf{K} = \begin{pmatrix} \mathbf{Q}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{Q}_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbf{Q}_q \end{pmatrix}$$

La matrice Q est alors inversible car c'est une matrice diagonale par blocs avec des blocs inversibles par hypothèse. Son inverse est

$$\mathbf{Q}^{-1} = \begin{pmatrix} \mathbf{I}_p & 0 & \cdots & 0 \\ 0 & \mathbf{Q}_1^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbf{Q}_q^{-1} \end{pmatrix}$$

De plus, on obtient par un calcul par blocs que

$$QMQ^{-1} = Diag(\lambda_1, \dots, \lambda_p, \mu_1, \overline{\mu_1}, \dots, \mu_q, \overline{\mu_q})$$

De cette manière, on a prouvé que M est semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice diagonale. Il en est de même pour la matrice $N = PMP^{-1}$, qui est donc diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. Par conséquent,

Si N est une matrice semblable à une matrice presque diagonale, alors elle est semi-simple.

Donnons une autre preuve de ce résultat. Considérons $M \in \mathcal{M}_n(\mathbb{R})$ une matrice presque diagonale, et l'endomorphisme u_M canoniquement associé à M. Montrons qu'il existe une base dans laquelle la matrice associée à u_M est diagonale. Pour cela, étudions u_M sur chacun de ses espaces propres. Soit $k \in [1; n]$. Il y a deux cas à considérer.

- Si $k \leq p$, il existe $\lambda_k \in \mathbb{R}$ tel que $u(e_k) = \lambda_k e_k$. Donc e_k est un vecteur propre de u_{M} .
- Si $k \ge p+1$, il existe $r \in \llbracket 1; q \rrbracket$ tel que k=p+2r ou k=p+2r-1. Il existe alors $(a_r,b_r) \in \mathbb{R}^2$ tel que $u(e_{p+2r-1})=a_re_{p+2r-1}-b_re_{p+2r}$ et $u(e_{p+2r})=b_re_{p+2r-1}+a_re_{p+2r}$. Il en découle que

$$u(\text{Vect}(e_{p+2r-1}, e_{p+2r})) \subset \text{Vect}(e_{p+2r-1}, e_{p+2r})$$

Ainsi, on peut considérer l'endomorphisme $\widetilde{u}_{\mathrm{M}}$ induit par u_{M} sur Vect (e_{p+2r-1}, e_{p+2r}) . Comme $(\mathbf{X} - \mu_j)(\mathbf{X} - \overline{\mu_j})$ annule $\widetilde{u}_{\mathrm{M}}$, alors $\widetilde{u}_{\mathrm{M}}$ admet une base de vecteurs propres dans Vect (e_{p+2r-1}, e_{p+2r}) , qu'on notera (v_r, w_r) .

En remarquant que Vect $(v_i, w_i) = \text{Vect}\,(e_{p+2i-1}, e_{p+2i})$ pour tout $i \in [\![1\,;q]\!]$, on en déduit que Vect $(e_1, \ldots, e_p, v_1, w_1, \ldots, v_q, w_q) = \mathbb{C}^n$. De plus, la famille de vecteurs $(e_1, \ldots, e_p, v_1, w_1, \ldots, v_q, w_q)$ est formée uniquement de vecteurs propres, donc la matrice représentant l'endomorphisme u_M dans cette base est diagonale. Ainsi, la famille $(e_1, \ldots, e_p, v_1, w_1, \ldots, v_q, w_q)$ est une base diagonalisante de u_M , ce qui permet de conclure.

Une autre solution plus laborieuse est de calculer le polynôme caractéristique de M en utilisant des calculs par blocs puis d'exhiber un polynôme annulateur scindé à racines simples, ou de remarquer que la multiplicité des valeurs propres est égale à la dimension des espaces propres.

6 Notons $\lambda_1, \ldots, \lambda_p$ les racines réelles de χ_N , et $\mu_1, \overline{\mu_1}, \ldots, \mu_q, \overline{\mu_q}$ ses racines complexes non réelles conjuguées répétées selon leurs ordres de multiplicité. On aura

$$\chi_{N} = \prod_{i=1}^{p} (X - \lambda_{i}) \prod_{j=1}^{q} (X - \mu_{j}) (X - \overline{\mu_{j}})$$

Supposons que N soit semi-simple. Notons respectivement u et \widetilde{u} l'endomorphisme canoniquement associé à N vu comme une application \mathbb{C} -linéaire et comme une application \mathbb{R} -linéaire de \mathbb{R}^n . Les espaces propres de u sont alors en somme directe et

$$\bigoplus_{\lambda \in \operatorname{sp}(u)} \operatorname{Ker}(u - \lambda \operatorname{id}_{\mathbb{C}^n}) = \mathbb{C}^n$$

 $\bullet\,$ Si λ désigne une valeur propre réelle de N, on a

$$\operatorname{rg}(u - \lambda \operatorname{id}_{\mathbb{C}^n}) = \operatorname{rg}(N - \lambda I_n) = \operatorname{rg}(\widetilde{u} - \lambda \operatorname{id}_{\mathbb{R}^n})$$

donc $\operatorname{Ker}(u-\lambda\operatorname{id}_{\mathbb{C}^n})$ et $\operatorname{Ker}(\widetilde{u}-\lambda\operatorname{id}_{\mathbb{R}^n})$ ont la même dimension d'après le théorème du rang. Donc il existe $(U_1,\ldots,U_d)\in(\mathbb{R}^n)^d$ une base de $\operatorname{Ker}(\widetilde{u}-\lambda\operatorname{Id}_{\mathbb{R}^n})$. Or, une famille libre de vecteurs de \mathbb{R}^n est aussi une famille libre de vecteurs de \mathbb{C}^n . Donc (U_1,\ldots,U_d) est une base de $\operatorname{Ker}(u-\lambda\operatorname{id}_{\mathbb{C}^n})$.

• Si $\lambda \in \mathbb{C}$ est une valeur propre non réelle de N, $\operatorname{Ker}(u - \lambda \operatorname{Id}_{\mathbb{C}^n})$ admet une base de vecteurs propres (U_1, \ldots, U_d) et pour tout $i \in [\![1\,;d]\!]$, \overline{U}_i est un vecteur propre de u associé à la valeur propre $\overline{\lambda}$.

Considérons maintenant (V_1, \ldots, V_p) une base des espaces propres associés aux valeurs propres réelles $\lambda_1, \ldots, \lambda_p$, et $(Z_1, \overline{Z_1}, \ldots, Z_q, \overline{Z_q})$ une base des espaces propres associés aux valeurs propres non réelles $\mu_1, \overline{\mu}_1, \ldots, \mu_q, \overline{\mu}_q$. La famille

$$(V_1, \ldots, V_p, Z_1, \overline{Z}_1, \ldots, Z_q, \overline{Z}_q)$$

est une base de vecteurs propres du \mathbb{C} -espace vectoriel \mathbb{C}^n . Posons pour tout $i \in [1;q]$

$$X_i = \text{Re}(Z_i)$$
 et $Y_i = \text{Im}(Z_i)$

Montrons que la famille

$$\mathcal{B} = (V_1, \dots, V_p, X_1, Y_1, \dots, X_q, Y_q)$$

est une base du \mathbb{R} -espace vectoriel \mathbb{R}^n . Soit $(a_1,\ldots,a_p,b_1,c_1,\ldots,b_q,c_q)\in\mathbb{R}^n$ tel que

$$\sum_{j=1}^{p} a_{j} V_{j} + \sum_{k=1}^{q} b_{k} X_{k} + \sum_{k=1}^{q} c_{k} Y_{k} = 0$$

On obtient alors

$$\textstyle \sum\limits_{j=1}^{p}2a_{j}\mathbf{V}_{j}+\sum\limits_{k=1}^{q}\left(b_{k}\mathbf{X}_{k}+\mathrm{i}b_{k}\mathbf{Y}_{k}-\mathrm{i}c_{k}\mathbf{X}_{k}+c_{k}\mathbf{Y}_{k}\right)+\sum\limits_{k=1}^{q}\left(b_{k}\mathbf{X}_{k}-\mathrm{i}b_{k}\mathbf{Y}_{k}+\mathrm{i}c_{k}\mathbf{X}_{k}+c_{k}\mathbf{Y}_{k}\right)=0$$

puis
$$\sum_{j=1}^{p} 2a_j V_j + \sum_{k=1}^{q} (b_k - ic_k)(X_k + iY_k) + \sum_{k=1}^{q} (b_k + ic_k)(X_k - iY_k) = 0$$

Comme $(V_1,\ldots,V_p,Z_1,\overline{Z}_1,\ldots,Z_q,\overline{Z}_q)$ est une base du \mathbb{C} -espace vectoriel \mathbb{C}^n , et que les familles $(b_k)_{k\in \llbracket 1\,;\, q\, \rrbracket}$ et $(c_k)_{k\in \llbracket 1\,;\, q\, \rrbracket}$ sont composées de réels, on en déduit que

$$\forall j \in [1; p] \quad a_i = 0 \quad \text{et} \quad \forall k \in [1; q] \quad b_k = c_k = 0$$

De cette façon, \mathcal{B} est une famille libre du \mathbb{R} -espace vectoriel \mathbb{R}^n . Elle est de plus de cardinal n, égal à la dimension de cet espace. C'est donc une base du \mathbb{R} -espace vectoriel \mathbb{R}^n . Pour tout $i \in [\![1\,;q]\!]$, nous avons notamment les relations suivantes

$$u(\mathbf{X}_i) = a_i \mathbf{X}_i - b_i \mathbf{Y}_i$$
 et $u(\mathbf{Y}_i) = b_i \mathbf{X}_i + a_i \mathbf{Y}_i$

La matrice M qui représente u dans la base \mathcal{B} est alors

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \lambda_p & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathrm{M}(a_1,b_1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \mathrm{M}(a_q,b_q) \end{pmatrix}$$

qui est une matrice presque diagonale. En conclusion,

Toute matrice $N \in \mathcal{M}_n(\mathbb{R})$ semi-simple est semblable dans $\mathcal{M}_n(\mathbb{R})$ à une matrice presque diagonale.

Nous pouvons donner une preuve plus rapide de ce résultat en utilisant la remarque de la question 3. En effet, une matrice semi-simple est semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice presque diagonale car toutes les deux sont semblables à une même matrice diagonale. D'après la remarque de la question 3, si deux matrices sont semblables dans $\mathcal{M}_n(\mathbb{C})$ alors elles sont également semblables dans $\mathcal{M}_n(\mathbb{R})$. Donc, si M est semi-simple, elle est semblable à une matrice presque diagonale dans $\mathcal{M}_n(\mathbb{R})$.

De manière générale, la \mathbb{R} -indépendance d'une famille de vecteurs n'entraı̂ne pas sa \mathbb{C} -indépendance. Ici, on peut en fait identifier les parties réelle et imaginaire des vecteurs de \mathbb{C}^n pour se ramener au cas d'une famille de vecteurs de \mathbb{R}^n .

II. Une caractérisation des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$

Posons $J = \{k \in [1; n] \mid v_k \in F\}$. Si Card J = n, alors le sous-espace vectoriel F contient une base de E, donc J = E ce qui est exclu. Il en découle que Card J < n.

Il existe
$$k \in [1; n]$$
 tel que $v_k \notin F$.

Soit $x \in F \cap \text{Vect}(v_k)$. Il existe $\lambda \in \mathbb{C}$ tel que $x = \lambda v_k$. Supposons que $\lambda \neq 0$, alors $v_k = x/\lambda \in F$, ce qui est absurde, donc $\lambda = 0$ puis x = 0. Ce qui prouve que

 $F \cap \text{Vect } (v_k) \subset \{0_E\}$ $\{0_E\} \subset \text{Vect } (v_k) \cap F$ $F \cap \text{Vect } (v_k) = \{0_E\}$

on a $F \cap \text{Vect } (v_k) = \{0_E\}$

De plus, comme

Ce qui est équivalent à ce que F et Vect (v_k) soient en somme directe.

Le sous-espace vectoriel F et la droite vectorielle engendrée par v_k sont en somme directe.

8 Notons v_k un vecteur propre qui n'appartient pas à F, qui existe par la question 7. Commençons par montrer que $\text{Vect}(v_k) \in \mathcal{A}$. La droite vectorielle engendrée par un vecteur propre étant stable, on a $u(\text{Vect}(v_k)) \subset \text{Vect}(v_k)$. D'après la question 7,

$$F \cap Vect(v_k) = \{0_E\}$$

d'où Vect $(v_k) \in \mathcal{A}$. Ainsi, \mathcal{L} est non vide car Vect $(v_k) \in \mathcal{A}$ est de dimension 1 et donc $1 \in \mathcal{L}$. De plus, \mathcal{L} est majoré par la dimension de l'espace E qui est n. Ainsi, \mathcal{L} est un ensemble d'entiers non vide et majoré, il admet donc un plus grand élément que l'on notera r. De cette manière,

Il existe un plus grand élément noté
$$r$$
 dans $\mathcal{L}.$

9 Soit $H \in \mathcal{A}$ un espace de dimension maximale, c'est-à-dire égale à r. Par définition de l'ensemble \mathcal{A} , $u(H) \subset H$. Il en découle que H est stable par u. De plus, $F \cap H = \{0_E\}$. Pour conclure, il nous suffit de montrer que $F \oplus H = E$.

Supposons par l'absurde que ce n'est pas le cas. Comme $F+H \neq E$ et $F+H \neq \{0_E\}$, on en déduit d'après la question 7 qu'il existe $k \in [1; n]$ tel que

$$v_k \notin F + H$$
 et $\operatorname{Vect}(v_k) \cap (F + H) = \{0_E\}$

En particulier, H et Vect (v_k) sont en somme directe. Considérons $H' = H \oplus \text{Vect}(v_k)$, alors H' est en somme directe avec F et $u(H') \subset H'$ comme somme d'espaces stables par u. Cependant, $\dim(H') = \dim(H) + 1$, ce qui est absurde par maximalité de la dimension de H. On en déduit que $F \oplus H = E$, c'est-à-dire que H est un supplémentaire de F stable par u.

Le sous-espace vectoriel F admet un supplémentaire dans E, stable par u.

10 Supposons par l'absurde que u n'est pas diagonalisable. Alors

$$\bigoplus_{\lambda \in \operatorname{sp}(u)} \operatorname{Ker}(u - \lambda \operatorname{Id}_{\mathcal{E}}) \neq \mathcal{E}$$

sinon u serait diagonalisable. Donc, il existe un espace vectoriel F de dimension n-1 qui contient la somme des sous-espaces propres de u. En effet, la somme des sous-espaces propres est de dimension $d \leq n-1$, alors on peut compléter cet espace en un espace de dimension n-1, c'est-à-dire en un hyperplan. D'après le résultat de la question 9, F possède un supplémentaire dans E stable par u. Ce supplémentaire est une droite, il est donc engendré par un vecteur $w \neq 0$. Comme $u(w) \in \mathrm{Vect}\,(w)$, il existe un scalaire λ tel que $u(w) = \lambda w$. Par conséquent, $\mathrm{Vect}\,(w)$ est inclus dans un espace propre, donc

$$\operatorname{Vect}\left(w\right) \subset \bigoplus_{\lambda \in \operatorname{sp}\left(u\right)} \operatorname{Ker}\left(u - \lambda \operatorname{Id}_{\operatorname{E}}\right) \subset \operatorname{F} \qquad \operatorname{et} \qquad \operatorname{F} \cap \operatorname{Vect}\left(w\right) = \left\{0_{\operatorname{E}}\right\}$$

Il en résulte que w=0, ce qui est absurde. Finalement,

Si tout sous-espace vectoriel de E possède un supplémentaire dans E stable par u, alors u est diagonalisable.

D'après la question 9, on en déduit que si u est diagonalisable, alors tout sousespace vectoriel F différent de $\{0_{\rm E}\}$ et de E admet un supplémentaire stable par u. C'est encore le cas si $F = \{0_{\rm E}\}$ ou si F = E, respectivement des supplémentaires de E et $\{0_{\rm E}\}$. Il en découle la caractérisation suivante:

Une matrice M est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ si et seulement si tout sous-espace vectoriel de E possède un supplémentaire dans E stable par l'endomorphisme canoniquement associé à la matrice M.