Suites de fonctions

____ (**) ___

Soient $(f_n)_{n\in\mathbb{N}}$ et f des fonctions de \mathbb{R} dans \mathbb{R} telles que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

- (a). Soit $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ une application quelconque. Montrer que $(f_n \circ \phi)_{n \in \mathbb{N}}$ converge uniformément vers $f \circ \phi$.
- (b). La suite $(\phi \circ f_n)_{n \in \mathbb{N}}$ converge-t-elle nécessairement uniformément vers $\phi \circ f$?
- (c). Même question en supposant ϕ continue? lipschitzienne?

Soit $f:[0;1] \longrightarrow \mathbb{R}$ continue et telle que f(1)=0. On pose $g_n:x\longmapsto x^nf(x)$ pour tout entier n. Montrer que la suite $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers 0.

3

____ (*) ____

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues convergeant uniformément vers f sur un segment [a;b] et $(x_n)_{n\in\mathbb{N}}$ une suite de points de [a;b] convergeant vers $x \in [a;b]$. Montrer que $f_n(x_n) \xrightarrow[n \to +\infty]{} f(x)$.

Donner un contre-exemple si la convergence n'est pas uniforme.

_____ (***) ____

PC CCP 2003

On définit la suite de fonctions $(\chi_n)_{n\in\mathbb{N}}$ par morceaux en posant, pour tout $n\in\mathbb{N}^*$ et $k\in\mathbb{N}$

$$\forall x \in \left[\frac{k}{n}; \frac{k+1}{n}\right], \qquad \chi_n(x) = \left(1 + \frac{1}{n}\right)^k \left(1 + x - \frac{k}{n}\right)$$

(a). Montrer que χ_n est continue sur \mathbb{R}_+ pour tout entier n et que

$$\forall x \in \mathbb{R}, \qquad \left(1 + \frac{1}{n}\right)^{nx-1} \le \chi_n(x) \le \left(1 + \frac{1}{n}\right)^{nx+1}$$

- (b). En déduire que $(\chi_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ vers la fonction exponentielle.
- (c). Montrer que $(\chi_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de \mathbb{R}_+ .
- (d). Calculer $\lim_{n \to +\infty} e^n \chi_n(n)$. En déduire que $(\chi_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur \mathbb{R}_+ .

5 ______ (**) ______ PC CCP 2003

Pour tout $x \in \mathbb{R}$, on pose $u_0(x) = x$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1}(x) = \sin u_n(x)$$

Etudier les différents modes de convergence de la suite $(u_n)_{n\in\mathbb{N}}$.

On définit $(P_n)_{n\in\mathbb{N}}$ par

$$P_0 = 1$$
 et $\forall n \in \mathbb{N}, P_{n+1} = P_n + \frac{1}{2} (X - P_n^2)$

(a). Justifier que pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}$,

$$P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x}) \left[1 - \frac{1}{2} (P_n(x) + \sqrt{x}) \right]$$

Etablir une formule similaire pour $P_{n+1}(x) + \sqrt{x}$.

(b). En déduire que pour tout $x \in [0, 1]$ et tout entier n

$$\sqrt{x} \le P_{n+1}(x) \le P_n(x) \le 1$$

puis la convergence simple de $(P_n)_{n\in\mathbb{N}}$ vers $x\longmapsto \sqrt{x}$ sur [0;1].

- (c). En étudiant le sens de variation de $x \mapsto P_n(x) \sqrt{x}$ et celui de $x \mapsto P_n(x) + \sqrt{x}$ sur [0; 1], déterminer $||P_n \sqrt{\cdot}||_{\infty,[0;1]}$
- (d). En déduire que $(P_n)_{n\in\mathbb{N}}$ converge uniformément sur [0;1].

_____ (**) _____

TPE MP 2001

Soit $m \in \mathbb{N}^*$ et $(P_n)_{n \in \mathbb{N}}$ une suite de polynômes de $\mathbb{R}_m[X]$, convergeant simplement sur [a;b] vers une fonction f. En utilisant l'interpolation de Lagrange en (m+1) points distincts de [a;b], montrer que f est une fonction polynomiale de degré au plus m et que la convergence est uniforme.

Séries de fonctions

8

_____(*) ____

Etudier suivant l'intervalle de définition les différents types de convergence des sommes

$$\sum_{n=0}^{+\infty} e^{-n^2 x} \qquad \text{et} \qquad \sum_{n=0}^{+\infty} x e^{-n^2 x}$$

Déterminer ensuite leurs limites en 0^+ .

9_

_____ (**) _____

Soit $\alpha > 0$. On note $I =]-\alpha; \alpha[$ et on considère $f \in \mathcal{C}^1(I,\mathbb{R})$ telle que f(0) = 0 et $\lambda \in]0;1[$. Déterminer les fonctions φ continues sur I et telles que

$$\forall x \in I, \qquad \varphi(x) - \varphi(\lambda x) = f(x)$$
 (*)

10

_____ (**) ______

Soit f définie par

$$f(x) = \sum_{n=1}^{+\infty} \frac{\sin(x^2)}{\operatorname{ch}(nx)}$$

Préciser le domaine de définition de f, etudier la continuité de f et donner enfin la limite en $+\infty$ de cette fonction.

11

_____ (*) _____

Pour tout réel x, on pose

$$f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\sqrt{n^2 + x^2}}$$

Etudier le domaine de définition, la continuité et enfin la limite en $+\infty$ de f.

12

___ (**) ___

PC X 2009

Soit

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$$

- (a) Déterminer le domaine de définition de f.
- (b) Montrer que f est lipschitzienne.
- (c) Donner un équivalent simple de f(x) lorsque x tend vers $+\infty$.

13

__ (**) _____

_____ PC Mines 2009

PC Mines 2016

Soit

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n+x}$$

- (a) Déterminer le domaine de définition de f et la continuité de f sur ce domaine.
- (b) Déterminer un équivalent de f(x) quand x tend vers 0^+ .

Soit

$$f: t \longmapsto \sum_{n=1}^{+\infty} e^{-t\sqrt{n}}$$

- (a). Donner le domaine de définition D de f. Monter que f est de classe \mathcal{C}^1 sur D.
- (b). Déterminer la limite de f en $+\infty$.
- (c). Déterminer un équivalent lorsque t tend vers 0^+ de f(t).

10

_____ (**) _____

PC Centrale 2009

Soit

$$f: x \longmapsto \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+\sqrt{n}}$$

- (a) Déterminer le domaine de définition de f et justifier que f est de classe \mathcal{C}^{∞} sur ce domaine.
- (b) Déterminer la limite de f en $+\infty$ et un équivalent de f(x) quand x tend vers 0^+ .

Etudier $f: x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{inx}}{(1+n^2)(1+\ln n)}$.

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ continue, décroissante et intégrable. Montrer que

$$h \sum_{n=1}^{+\infty} f(nh) \xrightarrow[h \to 0^+]{} \int_0^{+\infty} f(t) dt$$

En déduire un équivalent de $\sum_{n=1}^{+\infty} \frac{n x^n}{1-x^n}$ lorsque x tend vers 1^- .

Soit

$$f: x \longmapsto \sum_{n=1}^{+\infty} \frac{x^n}{1+x^n}$$

- (a) Déterminer le domaine de définition de f. La fonction f est elle continue sur ce domaine? de classe \mathcal{C}^1 ?
- (b) Donner un équivalent de f(x) quand x tend vers 1^- .

_ Indications

- 1 (b) Utiliser $\phi: x \longmapsto x^2$ pour le contre-exemple.
 - (c) La continuité ne suffit pas (même contre-exemple qu'au (b)). Lorsque ϕ est lipschitzienne, re-démontrer directement la définition de la convergence uniforme.
- Raisonner avec des ϵ en commençant par majorer g_n indépendamment de n au voisinage de 1.
- Utiliser les deux définitions (convergence de suite, convergence uniforme de suite de fonctions) dans le bon ordre! Pour le contre-exemple, on pourra utiliser $f_n: x \longmapsto x^n$ sur [0;1].
- [4] (a) Pour x arbitraire dans \mathbb{R}_+ , introduire l'unique entier k tel que $x \in [k/n; (k+1)/n[$ et utiliser la croissance de $t \longmapsto \alpha^t$ lorsque $\alpha > 1$.
 - (b) Déterminer les limites lorsque n tend vers $+\infty$ à x fixé du majorant et du minorant de l'encadrement précédent.
 - (c) En prenant cette fois x arbitraire dans un segment [a;b], majorer $e^x \chi_n(x)$ par une quantité indépendante de x (mais éventuellement de a et b).
- [5] On pourra remarquer qu'à partir du rang 2, la fonction u_n est à valeur dans [-1;1] et utiliser les propriétés de sin sur cet intervalle.
- **6** (b) Pour l'encadrement, procéder par récurrence sur n. Pour la convergence simple, fixer $x \in \mathbb{R}_+$ et considérer les propriétés de la suite $(P_n(x))_{n \in \mathbb{N}}$.
 - (c) Montrer par récurrence sur n que les deux fonctions sont monotones de sens contraire. En déduire que $|P_n \sqrt{\cdot}|$ atteint son maximum en 0.
- 7 Fixer $x_0 < \cdots < x_m$ arbitraires puis introduire la famille $(L_i)_{i \in \llbracket 0;m \rrbracket}$ où

$$\forall i \in [0; m], \qquad L_i = \prod_{j \neq i} \frac{X - x_j}{x_i - x_j}$$

Justifier que $P_n = \sum_{i=0}^m P_n(x_i) L_i$ pour dans un premier temps exprimer f en fonction des L_i , puis majorer $||P_n - f||_{\infty}$.

8 Pour la limite en 0 de $\sum_{n=0}^{N} e^{-n^2x}$, remarquer que pour tout entier N, on a

$$\sum_{n=0}^{+\infty} e^{-n^2 x} \ge \sum_{n=0}^{N} e^{-n^2 x}$$

- 9 Procéder par analyse-synthèse et, dans l'analyse, déterminer une éventuelle solution sous forme d'une série de fonctions.
- 10 Pour la continuité , on pourra vérifier que

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \qquad \left| \frac{\sin(x^2)}{\operatorname{ch}(nx)} \right| \le 2x^2 e^{-n|x|}$$

Pour la limite, comparer f(x) à $\sin(x^2) \int_0^{+\infty} \frac{\mathrm{d}t}{\mathrm{ch}(xt)}$ par une comparaison série-intégrale, puis déterminer la limite de l'intégrale quand x tend vers $+\infty$.

 $\boxed{\mathbf{11}} \text{ Poser } u_n(x) = \frac{(-1)^{n-1}}{\sqrt{n^2 + x^2}} - \frac{(-1)^{n-1}}{n} \text{ et étudier la série } \sum u_n. \text{ On peut aussi s'intéresser au caractère } \mathcal{C}^1 \text{ de } f.$

Pour la limite en $+\infty$, encadrer f(x) à l'aide du théorème des séries alternées.

- [12] (b) On peut montrer que f est C^1 de dérivée bornée sur \mathbb{R} , ou montrer que $f_n: x \longmapsto x/(x^2+n^2)$ est lipschitzienne avec une constante de Lipschitz bien choisie.
 - (c) Utiliser une technique d'interversion limite/somme pour trouver la limite de f(x)/x en $+\infty$.
- 13 (b) On pourra utiliser l'égalité $\sum_{n=1}^{+\infty} \frac{u^n}{n} = -\ln(1-u)$ pour tout $u \in]0;1[$ et majorer la quantité $f(x) + \ln(1-e^{-x})$.
- 14 Fixer t > 0 puis effectuer une comparaison série-intégrale à l'aide de la fonction $x \longmapsto e^{-t\sqrt{x}}$
- 15 (a) Justifier la convergence normale sur tout segment de \mathbb{R}_{+}^{*} de la série de fonctions et de ses dérivées.
 - (b) Déterminer d'abord un équivalent de $x \mapsto \sum_{n=1}^{+\infty} e^{-nx}/\sqrt{n}$ (à l'aide d'une comparaison série-intégrale). On pourra utiliser l'égalité

$$\int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} \, \mathrm{d}u = \sqrt{\pi}$$

- Justifier la convergence normale sur \mathbb{R} de la série de fonctions. Pour le caractère \mathcal{C}^1 de f, utiliser une transformée d'Abel pour obtenir une nouvelle expression de f, à laquelle on peut appliquer le théorème de dérivation terme à terme sur tout segment de $\mathbb{R} \setminus \pi\mathbb{Z}$.
- Pour l'équivalent, appliquer ce qui précède avec $f: t \mapsto te^{-t}/(1-e^{-t})$. On pensera à vérifier que les conditions requises sont vérifiées. En attendant le prochain chapitre, on pourra admettre que

$$\int_0^{+\infty} \frac{t e^{-t}}{1 - e^{-t}} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

- 18 (a) Justifier la convergence normale de la série de fonctions et de la série des dérivées sur tout segment de]-1;1[.
 - (b) Fixer $x \in]0;1[$ puis utiliser une comparaison série-intégrale avec une fonction bien choisie.