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I. Une propriété sur les sommes de Riemann

1 Attention à ne pas se laisser berner par l’apparente facilité de cette première

question : elle contient de petites subtilités en raison desquelles la seule invo-

cation du théorème des sommes de Riemann ne su�t pas.

Par hypothèse, la fonction g est prolongeable par continuité au segment [ a ; b ].

Elle est donc intégrable sur l’intervalle ] a ; b [. Puisque, pour tout entier n > 2 et

tout k œ [[ 1 ; n ≠ 1 ]],

a + k
b ≠ a

n
œ ] a ; b [

on a, pour tout n > 2,

1

n

n≠1ÿ

k=1
g

3
a + k

b ≠ a

n

4
=

1

n

n≠1ÿ

k=1
f

3
a + k

b ≠ a

n

4

=
1

n

n≠1ÿ

k=0
f

3
a + k

b ≠ a

n

4
≠ f(a)

n

Or, d’une part, f(a)/n ≠≠≠≠≠æ
næ+Œ

0, et d’autre part, le théorème des sommes de Riemann

pour les fonctions continues sur un segment assure que

1

n

n≠1ÿ

k=0
f

3
a + k

b ≠ a

n

4
≠≠≠≠≠æ
næ+Œ

1

b ≠ a

⁄ b

a
f(t) dt

Par conséquent,
1

n

n≠1ÿ

k=1
g

3
a + k

b ≠ a

n

4
≠≠≠≠≠æ
næ+Œ

1

b ≠ a

⁄ b

a
f(t) dt

Finalement, comme f et g sont intégrables sur ] a ; b [ et coïncident sur ce même

intervalle,

⁄ b

a
f(t) dt =

⁄ b

a
g(t) dt

On a ainsi prouvé que

lim
næ+Œ

1

n

n≠1ÿ

k=1
g

3
a + k

b ≠ a

n

4
=

1

b ≠ a

⁄ b

a
g(t) dt

autrement dit, g œ Da,b

2 Commençons par calculer la di�érence des quantités à comparer : pour tout k > 1,

ak ≠ bk+1 =
1

k
≠ 1

2k+1 ≠ 1

k + 1
≠ 1

2k+2 =
1

k(k + 1)
≠ 1

2k+1 ≠ 1

2k+2

Or, d’après le théorème des croissances comparées,

k(k + 1)

2k
≠≠≠≠æ
kæ+Œ

0

Par conséquent, pour k au voisinage de +Œ,

ak ≠ bk+1 =
1

k(k + 1)
+ o

3
1

k(k + 1)

4
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soit encore ak ≠ bk+1 ≥
kæ+Œ

1

k(k + 1)

La quantité ak ≠ bk+1 étant équivalente à une quantité strictement positive, elle est

également strictement positive à partir d’un certain rang k0. En conclusion,

÷k0 > 1 ’k > k0 bk+1 < ak

Pour la seconde partie de la question, justifions d’abord que la fonction f est

bien définie. Pour cela, remarquons que pour tout k > k0, ak < bk. Ainsi, grâce au

résultat montré en première partie de question,

’k > k0 ak+1 < bk+1 < ak < bk

Les intervalles ([ ak ; bk ])k>k0
sont donc deux à deux disjoints. Soit t œ ] 0 ; 1 [. Exa-

minons plusieurs cas :

• S’il existe k > k0 tel que t œ [ ak ; bk ], nécessairement un tel k est unique d’après

le raisonnement précédent. Alors :

– Si t œ
#

ak ; ak + 1/2
k+1 #

, alors f(t) = k2
2

k+1
(t ≠ ak) et cette quantité est

bien définie.

– De même, si t œ
$

ak + 1/2
k+1

; bk

$
, alors f(t) = k2

2
k+1

(bk ≠ t) et cette

quantité est également bien définie.

– Enfin, si t = ak + 1/2
k+1

, alors bk ≠ t = t ≠ ak = 1/2
k+1

d’où f(t) = k2
.

• S’il n’existe pas de tel k, alors f(t) = 0.

Ainsi, La fonction f est bien définie.

La figure ci-dessous (qui n’est pas à l’échelle) permet de se faire une idée de

l’allure du graphe de f .

x

y

•
ak+1

•
bk+1

•
ak

•
bk

k2

(k + 1)2

1

La fonction f étant a�ne par morceaux, elle est continue sur tous les intervalles

!$
ak ; ak + 1/2

k+1 #"
k>k0

,
!$

ak + 1/2
k+1

; bk

#"
k>k0

et (] bk+1 ; ak [)k>k0

(elle est même nulle sur cette dernière famille d’intervalles) ainsi que sur l’inter-

valle ] bk0 ; 1 [ où elle est également nulle. Comme

ak ≠≠≠≠æ
kæ+Œ

0

la réunion de tous ces intervalles est égale à l’intervalle ] 0 ; 1 [. Vérifions que la fonc-

tion f est continue en chaque (ak)k>k0 ,
!
ak + 1/2

k+1"
k>k0

et (bk)k>k0 . Soit k > k0.

On a

lim
tæak

+
f(t) = lim

tæak
+

k2
2

k+1
(t ≠ ak) = 0 = lim

tæak≠
f(t)
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Comme f(ak) = 0, cela prouve que f est continue en ak. De même,

lim
tæbk

≠
f(t) = lim

tæbk
≠

k2
2

k+1
(bk ≠ t) = 0 = lim

tæbk+
f(t)

Puisque f(bk) = 0, on a aussi prouvé que f est continue en bk. Enfin,

lim
tæ(ak+1/2k+1)≠

f(t) = lim
tæ(ak+1/2k+1)≠

k2
2

k+1
(t ≠ ak) = k2

= f

3
ak +

1

2k+1

4

et lim
tæ(ak+1/2k+1)+

f(t) = lim
tæ(ak+1/2k+1)+

k2
2

k+1
(bk ≠ t) = k2

La fonction f est donc également continue en ak +
1

2k+1 . On peut conclure que

La fonction f est continue sur ] 0 ; 1 [.

Prouvons maintenant que f est intégrable sur ] 0 ; 1 [. Comme elle est nulle en

dehors des intervalles ([ ak ; bk ])k>k0
, calculons d’abord son intégrale sur chacun de

ces segments (ces intégrales existent puisque f est continue). Soit k > k0. L’intégrale

de f sur [ ak ; bk ] est égale à l’aire d’un triangle, de base

bk ≠ ak =
1

k
+

1

2k+1 ≠ 1

k
+

1

2k+1 =
1

2k

et de hauteur k2
. Par conséquent,

⁄ bk

ak

f(t) dt =
1

2
◊ 1

2k
◊ k2

=
k2

2k+1

Il est aussi possible de calculer l’intégrale en déterminant une primitive de la

fonction intégrée sur chaque segment où elle est continue.

Par suite, pour tout N > k0, grâce à la relation de Chasles et à la nullité de f en

dehors des intervalles ([ ak ; bk ])k>k0
,

⁄ 1

aN

f(t) dt =

Nÿ

k=k0

⁄ bk

ak

f(t) dt =

Nÿ

k=k0

k2

2k+1

Comme, par croissances comparées,

k4

2k+1 ≠≠≠≠æ
kæ+Œ

0

on peut écrire, pour k au voisinage de +Œ,

k2

2k+1 = o

3
1

k2

4

Les termes de la somme sont par conséquent négligeables devant le terme général

d’une série de Riemann convergente. Il s’ensuit que la série

ÿ

k>k0

k2

2k+1

est convergente par comparaison de séries à termes positifs. Puisque aN ≠≠≠≠≠æ
Næ+Œ

0,

on obtient par passage à la limite

⁄ 1

0
f(t) dt =

+Œÿ

k=k0

k2

2k+1
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En particulier, l’intégrale de gauche est convergente. Comme la fonction f est positive

sur ] 0 ; 1 [, cela permet de conclure que

La fonction f est intégrable sur ] 0 ; 1 [.

Il est possible de calculer explicitement la somme de cette série, en utilisant

les dérivées première et seconde de la série entière
q

xk
évaluées en 1/2.

Soit maintenant n > k0. La fonction f étant positive,

1

n

n≠1ÿ

k=1
f

3
k

n

4
> 1

n
f

3
1

n

4
=

1

n
f

3
an +

1

2n+1

4
=

1

n
n2

= n ≠≠≠≠≠æ
næ+Œ

+Œ

Il s’ensuit par minoration

1

n

n≠1ÿ

k=1
f

3
0 + k

1 ≠ 0

n

4
=

1

n

n≠1ÿ

k=1
f

3
k

n

4
≠≠≠≠≠æ
næ+Œ

+Œ

et on a déjà prouvé que

1

1 ≠ 0

⁄ 1

0
f(t) dt =

+Œÿ

k=k0

k2

2k+1 < +Œ

Par conséquent, f /œ D0,1

Cette question a donc permis de prouver, grâce à un contre-exemple, que le

théorème des sommes de Riemann n’est plus valable lorsqu’on travaille avec

des fonctions continues et intégrables sur un intervalle ouvert.

3 La fonction t ‘æ 2
Ô

t est une primitive de la fonction continue Ï sur ] 0 ; 1 [. Par

conséquent, pour tout A œ ] 0 ; 1 [,

⁄ 1

A
Ï(t) dt = 2

Ô
1 ≠ 2

Ô
A ≠≠≠æ

Aæ0
2

La fonction Ï étant positive, cela prouve que

La fonction Ï est intégrable sur ] 0 ; 1 [.

On a même

⁄ 1

0
Ï(t) dt = 2

On aurait aussi pu justifier le caractère intégrable de Ï en reconnaissant une

intégrale de Riemann convergente, mais le calcul de l’intégrale va de toute

façon s’avérer utile pour la suite.

Par ailleurs, pour tout n œ Nú
,

1

n

n≠1ÿ

k=1
Ï

3
k

n

4
=

1

n

n≠1ÿ

k=1

1
k/n

=
1

n

n≠1ÿ

k=1

Ô
nÔ
k

=
1Ô
n

n≠1ÿ

k=1

1Ô
k

Déterminons la limite de cette quantité en e�ectuant une comparaison série-intégrale.

La fonction Ï étant décroissante sur Rú
+ et intégrable au voisinage de 0,

’k œ Nú
⁄ k+1

k

dtÔ
t
6 1Ô

k
6

⁄ k

k≠1

dtÔ
t
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En sommant ces inégalités, on obtient grâce à la relation de Chasles,

⁄ n

1

dtÔ
t

=

n≠1ÿ

k=1

⁄ k+1

k

dtÔ
t

6
n≠1ÿ

k=1

1Ô
k

6
n≠1ÿ

k=1

⁄ k

k≠1

dtÔ
t

=

⁄ n≠1

0

dtÔ
t

En calculant les intégrales de gauche et de droite, il s’ensuit

2
Ô

n ≠ 2
Ô

1 6
n≠1ÿ

k=1

1Ô
k

6 2
Ô

n ≠ 1 ≠ 2
Ô

0

d’où 2 ≠ 2Ô
n

6 1Ô
n

n≠1ÿ

k=1

1Ô
k

6 2

Ú
1 ≠ 1

n

Comme les membres de gauche et de droite convergent vers 2 lorsque n tend vers +Œ,

on déduit du théorème d’encadrement que

1Ô
n

n≠1ÿ

k=1

1Ô
k

≠≠≠≠≠æ
næ+Œ

2

On a ainsi démontré que

1

n

n≠1ÿ

k=1
Ï

3
k

n

4
≠≠≠≠≠æ
næ+Œ

⁄ 1

0
Ï(t) dt

c’est-à-dire Ï œ D0,1

4 Pour tout t œ ] 0 ; 1/2 [, Âh(t) = t≠1/2
(1 ≠ t)≠1/2

. La fonction Âh est par conséquent

dérivable sur ] 0 ; 1/2 [ comme produit de fonctions dérivables. Soit t œ ] 0 ; 1/2 [. On a

ÂhÕ
(t) = ≠1

2

!
t≠3/2

(1 ≠ t)≠1/2 ≠ t≠1/2
(1 ≠ t)≠3/2"

= ≠1

2
t≠3/2

(1 ≠ t)≠3/2
(1 ≠ 2t)

Or, t≠3/2
(1 ≠ t)≠3/2

(1 ≠ 2t) > 0

d’où ’t œ
6

0 ;
1

2

5
ÂhÕ

(t) 6 0

Cela prouve que La fonction Âh est décroissante sur

6
0 ;

1

2

5
.

Ce résultat invite à mettre à nouveau en œuvre une comparaison série-intégrale.

Remarquons tout d’abord que la fonction Âh est continue sur ] 0 ; 1 [ et que

Âh(t) =
1Ô
t

1Ô
1 ≠ t

≥
tæ0

1Ô
t

= Ï(t)

Or la fonction Ï est intégrable sur ] 0 ; 1 [ d’après la question 3. Par comparaison

d’intégrales de fonctions positives, on en déduit que la fonction Âh est intégrable

sur ] 0 ; 1/2 ]. Alors, pour tout n œ Nú
et tout k œ [[ 1 ; n ≠ 1 ]], par décroissance de la

fonction Âh sur l’intervalle ] 0 ; 1/2 ],

⁄ k+1
2n

k
2n

Âh(t) dt 6 1

2n
Âh

3
k

2n

4
6

⁄ k
2n

k≠1
2n

Âh(t) dt

Il s’ensuit que, pour tout n œ Nú
,

n≠1ÿ

k=1

⁄ k+1
2n

k
2n

Âh(t) dt 6
n≠1ÿ

k=1

1

2n
Âh

3
k

2n

4
6

n≠1ÿ

k=1

⁄ k
2n

k≠1
2n

Âh(t) dt
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soit, par la relation de Chasles,

⁄ 1
2

1
2n

Âh(t) dt 6
n≠1ÿ

k=1

1

2n
Âh

3
k

2n

4
6

⁄ n≠1
2n

0
Âh(t) dt

Comme
1

2n
≠≠≠≠≠æ
næ+Œ

0 et
n ≠ 1

2n
≠≠≠≠≠æ
næ+Œ

1

2

on déduit du caractère intégrable de Âh sur ] 0 ; 1/2 ] que

lim
næ+Œ

⁄ 1
2

1
2n

Âh(t) dt = lim
næ+Œ

⁄ n≠1
2n

0
Âh(t) dt =

⁄ 1
2

0
Âh(t) dt

Le théorème d’encadrement permet alors d’a�rmer que

n≠1ÿ

k=1

1

2n
Âh

3
k

2n

4
≠≠≠≠≠æ
næ+Œ

⁄ 1
2

0
Âh(t) dt

soit encore
1

n

n≠1ÿ

k=1

Âh
3

k

2n

4
≠≠≠≠≠æ
næ+Œ

2

⁄ 1
2

0
Âh(t) dt

On a démontré que Âh œ D0, 1
2

5 La fonction h est continue sur ] 0 ; 1 [ et on a déjà justifié à la question précédente

qu’elle est intégrable au voisinage de 0. En outre, pour t au voisinage de 1,

h(t) =
1

t(1 ≠ t)
≥

tæ1

1Ô
1 ≠ t

La fonction t ‘æ 1≠t étant de classe C 1
et strictement décroissante sur ] 0 ; 1 [, d’après

le théorème de changement de variable en posant u = 1 ≠ t, les intégrales

⁄ 1

1/2

dtÔ
1 ≠ t

et

⁄ 1/2

0

duÔ
u

=

⁄ 1/2

0
Ï(u) du

sont de même nature. Comme celle de droite est convergente d’après la question 3,

celle de gauche l’est également. La fonction t ‘æ 1/
Ô

1 ≠ t est donc intégrable au

voisinage de 1, ce qui permet de conclure que

La fonction h est intégrable sur ] 0 ; 1 [.

Remarquons alors que, pour tout t œ ] 0 ; 1 [, h(1 ≠ t) = h(t). E�ectuons alors à

nouveau le changement de variable u = 1 ≠ t. Cela donne

⁄ 1/2

0
h(t) dt =

⁄ 1/2

1
h(1 ≠ u)(≠ du) =

⁄ 1

1/2
h(u) du

Alors, grâce à la relation de Chasles,

2

⁄ 1/2

0
h(t) dt =

⁄ 1/2

0
h(t) dt +

⁄ 1

1/2
h(t) dt =

⁄ 1

0
h(t) dt

Comme les fonctions h et Âh coïncident sur ] 0 ; 1/2 ], on conclut que

⁄ 1

0
h(t) dt = 2

⁄ 1/2

0
Âh(t) dt
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6 Soit n œ Nú
. La relation de Chasles permet d’écrire que

2n≠1ÿ

k=1

1

2n
h

3
k

2n

4
=

n≠1ÿ

k=1

1

2n
h

3
k

2n

4
+

2n≠1ÿ

k=n

1

2n
h

3
k

2n

4

Intéressons-nous à la somme de droite. Comme, pour tout t œ ] 0 ; 1 [ , h(1≠t) = h(t),
celle-ci se réécrit

2n≠1ÿ

k=n

1

2n
h

3
k

2n

4
=

2n≠1ÿ

k=n

1

2n
h

3
1 ≠ k

2n

4
=

2n≠1ÿ

k=n

1

2n
h

3
2n ≠ k

2n

4

E�ectuons le changement d’indice j = 2n ≠ k. Cela donne

2n≠1ÿ

k=n

1

2n
h

3
k

2n

4
=

nÿ

j=1

1

2n
h

3
j

2n

4
=

n≠1ÿ

j=1

1

2n
h

3
j

2n

4
+

1

2n
h

3
1

2

4

Par suite,

2n≠1ÿ

k=1

1

2n
h

3
k

2n

4
= 2

n≠1ÿ

k=1

1

2n
h

3
k

2n

4
+

1

2n
h

3
1

2

4

Or, d’après les questions 4 et 5,

2

n≠1ÿ

k=1

1

2n
h

3
k

2n

4
≠≠≠≠≠æ
næ+Œ

2

⁄ 1/2

0
h(t) dt =

⁄ 1

0
h(t) dt

et par ailleurs,
1

2n
h

3
1

2

4
≠≠≠≠≠æ
næ+Œ

0

En conclusion,

2n≠1ÿ

k=1

1

2n
h

3
k

2n

4
≠≠≠≠≠æ
næ+Œ

⁄ 1

0
h(t) dt

7 E�ectuons une nouvelle comparaison série-intégrale. Étant donné que la fonction h
est décroissante et intégrable sur ] 0 ; 1/2 ], et que pour tout entier n œ Nú

et tout

entier j œ [[ 0 ; n ]], on a j/(2n + 1) œ [ 0 ; 1/2 ],

’k œ [[ 1 ; n ≠ 1 ]]

⁄ k+1
2n+1

k
2n+1

h(t) dt 6 1

2n + 1
h

3
k

2n + 1

4
6

⁄ k
2n+1

k≠1
2n+1

h(t) dt

Cela entraîne que pour tout n œ Nú
,

n≠1ÿ

k=1

⁄ k+1
2n+1

k
2n+1

h(t) dt 6
n≠1ÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
6

n≠1ÿ

k=1

⁄ k
2n+1

k≠1
2n+1

h(t) dt

d’où, d’après la relation de Chasles,

⁄ n
2n+1

1
2n+1

h(t) dt 6
n≠1ÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
6

⁄ n≠1
2n+1

0
h(t) dt

Étant donné que

lim
næ+Œ

1

2n + 1
= 0 et lim

næ+Œ

n ≠ 1

2n + 1
= lim

næ+Œ

n

2n + 1
=

1

2

on déduit de l’intégrabilité de h sur ] 0 ; 1/2 ] et du théorème d’encadrement que
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n≠1ÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
≠≠≠≠≠æ
næ+Œ

⁄ 1/2

0
h(t) dt

Or, pour tout n œ Nú
,

nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
=

n≠1ÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
+

1

2n + 1
h

3
n

2n + 1

4

La fonction h étant continue sur ] 0 ; 1 [,

1

2n + 1
h

3
n

2n + 1

4
≠≠≠≠≠æ
næ+Œ

0 ◊ h

3
1

2

4
= 0

d’où finalement

nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
≠≠≠≠≠æ
næ+Œ

⁄ 1/2

0
h(t) dt

Reproduisons alors le raisonnement de la question 6. Pour tout n œ Nú
,

2nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
=

nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
+

2nÿ

k=n+1

1

2n + 1
h

3
k

2n + 1

4

En se rappelant que h(1 ≠ t) = h(t) pour tout t œ ] 0 ; 1 [, la somme de droite vaut

2nÿ

k=n+1

1

2n + 1
h

3
k

2n + 1

4
=

2nÿ

k=n+1

1

2n + 1
h

3
1 ≠ k

2n + 1

4

=

2nÿ

k=n+1

1

2n + 1
h

3
2n + 1 ≠ k

2n + 1

4

2nÿ

k=n+1

1

2n + 1
h

3
k

2n + 1

4
=

nÿ

j=1

1

2n + 1
h

3
j

2n + 1

4
(j = 2n + 1 ≠ k)

Ainsi, d’après la première partie de la question,

2nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
= 2

nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
≠≠≠≠≠æ
næ+Œ

2

⁄ 1/2

0
h(t) dt

D’après la question 5, on obtient finalement

2nÿ

k=1

1

2n + 1
h

3
k

2n + 1

4
≠≠≠≠≠æ
næ+Œ

⁄ 1

0
h(t) dt

8 Pour tout n œ Nú
, posons Sn =

1

n

n≠1q
k=1

h (k/n). D’après les questions 6 et 7,

S2n ≠≠≠≠≠æ
næ+Œ

⁄ 1

0
h(t) dt et S2n+1 ≠≠≠≠≠æ

næ+Œ

⁄ 1

0
h(t) dt

Comme les sous-suites des termes pairs et impairs convergent vers la même limite,

on en déduit que

Sn ≠≠≠≠≠æ
næ+Œ

⁄ 1

0
h(t) dt

Autrement dit, h œ D0,1
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9 Au vu du résultat à obtenir, il est raisonnable d’e�ectuer un changement

de variable faisant intervenir une fonction trigonométrique. Comme de plus,

pour tout t œ ] 0 ; 1 [,

h(1 ≠ t) = h(t)

on cherche à reproduire cette symétrie par rapport au point 1/2. On peut

donc essayer les changements de variable

t =
1

2
(1 + sin(x)) et t =

1

2
(1 + cos(x))

Des calculs au brouillon montrent que les deux permettent d’aboutir au ré-

sultat.

E�ectuons le changement de variable x = Arcsin (2t≠1) dans l’intégrale. Comme

pour tout t œ ] 0 ; 1 [, on a 2t ≠ 1 œ ] 0 ; 1 [, la nouvelle variable x est bien définie.

En outre, la fonction t ‘æ Arcsin (2t ≠ 1) est de classe C 1
et strictement croissante

sur ] 0 ; 1 [ ; le changement de variable est donc licite. Celui-ci s’inverse en

t =
1

2
(1 + sin(x)) d’où dt =

1

2
cos(x) dx

Le changement de variable donne alors

⁄ 1

0

dt
t(1 ≠ t)

=

⁄ fi/2

≠fi/2

1

2
cos(x) dx

Ú
1

2

!
1 + sin(x)

"
◊ 1

2

!
1 ≠ sin(x)

" =

⁄ fi/2

≠fi/2

cos(x) dx
1 ≠ sin(x)2

Comme, pour tout x œ ] ≠fi/2 ; fi/2 [ , cos(x) > 0, il s’ensuit

⁄ 1

0

dt
t(1 ≠ t)

=

⁄ fi/2

≠fi/2

cos(x) dx
cos(x)2

=

⁄ fi/2

≠fi/2

cos(x) dx

cos(x)
=

⁄ fi/2

≠fi/2
dx = fi

On a obtenu

⁄ 1

0
h(x) dx = fi

10 On a prouvé à la question 3 que

1Ô
n

n≠1ÿ

k=1

1Ô
k

≠≠≠≠≠æ
næ+Œ

2

Par conséquent,
1Ô
n

nÿ

k=1

1Ô
k

=
1Ô
n

n≠1ÿ

k=1

1Ô
k

+
1

n
≠≠≠≠≠æ
næ+Œ

2

Autrement dit,

nÿ

k=1

1Ô
k

≥
næ+Œ

2
Ô

n

11 Soit n œ Nú
. Remarquons que

n≠1ÿ

i=1

1
i(n ≠ i)

=
1

n

n≠1ÿ

i=1

1Û
i

n

3
1 ≠ i

n

4 =
1

n

n≠1ÿ

i=1
h

3
i

n

4

Or, d’après les questions 8 et 9,
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1

n

n≠1ÿ

i=1
h

3
i

n

4
≠≠≠≠≠æ
næ+Œ

⁄ 1

0
h(t) dt = fi

Ainsi, lim
næ+Œ

n≠1ÿ

i=1

1
i(n ≠ i)

= fi

Ce résultat n’étant pas une conséquence de la question 10, le choix des au-

teurs du sujet de faire commencer cette question par « en déduire » n’est pas

judicieux.

12 Soit – > 0. Comme la suite

A
n≠1ÿ

i=1

1
i(n ≠ i)

B

nœNú

converge d’après la question précédente, elle est bornée. Soit donc M œ R+ tel que,

pour tout n œ Nú
,

0 6
n≠1ÿ

i=1

1
i(n ≠ i)

6 M

De la même manière, soit K œ R+ tel que pour tout n œ Nú, |Án| 6 K. En outre,

comme (Án)nœNú est de limite nulle, il existe N œ Nú
tel que pour tout n > N,

|Án| < –/(2M). Alors, pour tout n > N,

n≠1ÿ

i=1

|Ái|
i(n ≠ i)

=

N≠1ÿ

i=1

|Ái|
i(n ≠ i)

+

n≠1ÿ

i=N

|Ái|
i(n ≠ i)

Maintenant, d’une part,

N≠1ÿ

i=1

|Ái|
i(n ≠ i)

6
N≠1ÿ

i=1

KÔ
n ≠ N

=
K(N ≠ 1)Ô

n ≠ N
≠≠≠≠≠æ
næ+Œ

0

Il existe donc N
Õ > N tel que pour tout n > N

Õ
,

0 6
N≠1ÿ

i=1

|Ái|
i(n ≠ i)

6 –

2

D’autre part, pour tout n > N,

n≠1ÿ

i=N

|Ái|
i(n ≠ i)

6 –

2M

n≠1ÿ

i=1

1
i(n ≠ i)

6 –

2M
M =

–

2

Ainsi, pour tout n > N
Õ
, 0 6

n≠1ÿ

i=1

|Ái|
i(n ≠ i)

6 –

On a démontré que

’– > 0 ÷N
Õ œ N ’n > N

Õ

-----

n≠1ÿ

i=1

|Ái|
i(n ≠ i)

----- 6 –

Par définition de la limite, cela prouve que

lim
næ+Œ

n≠1ÿ

i=1

|Ái|
i(n ≠ i)

= 0
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13 Pour tout n > 2, on a

n≠1ÿ

i=1

1
i(n ≠ i)

3
(1 + Ái)(1 + Án≠i)

1 + Án
≠ 1

4
=

n≠1ÿ

i=1

1
i(n ≠ i)

1 + Ái + Án≠i + ÁiÁni

1 + Án

≠
n≠1ÿ

i=1

1
i(n ≠ i)

Cette quantité peut se réécrire

3
1

1 + Án
≠ 1

4 n≠1ÿ

i=1

1
i(n ≠ i)

+
1

1 + Án

A
n≠1ÿ

i=1

Ái
i(n ≠ i)

+

n≠1ÿ

i=1

Án≠i
i(n ≠ i)

+

n≠1ÿ

i=1

ÁiÁn≠i
i(n ≠ i)

B

Étudions séparément la convergence de chaque terme.

• D’abord, d’après la question 11,

1

1 + Án
≠ 1 ≠≠≠≠≠æ

næ+Œ
0 et

n≠1ÿ

i=1

1
i(n ≠ i)

≠≠≠≠≠æ
næ+Œ

fi

d’où

3
1

1 + Án
≠ 1

4 n≠1ÿ

i=1

1
i(n ≠ i)

≠≠≠≠≠æ
næ+Œ

0

• Ensuite, grâce à l’inégalité triangulaire,

-----

n≠1ÿ

i=1

Ái
i(n ≠ i)

----- 6
n≠1ÿ

i=1

|Ái|
i(n ≠ i)

et la quantité de droite tend vers 0 d’après la question 12. Par encadrement,

on en déduit que

n≠1ÿ

i=1

Ái
i(n ≠ i)

≠≠≠≠≠æ
næ+Œ

0

• Pour le troisième terme, e�ectuons le changement d’indice j = n≠i. Cela donne

n≠1ÿ

i=1

Án≠i
i(n ≠ i)

=

n≠1ÿ

j=1

Áj
j(n ≠ j)

On retrouve le deuxième terme dont on vient de prouver qu’il a une limite nulle.

• Enfin, comme la suite (Án)nœNú converge, elle est bornée : soit K œ R+ tel que

pour tout k œ Nú, |Ák| 6 K. Alors, par inégalité triangulaire,

-----

n≠1ÿ

i=1

ÁiÁn≠i
i(n ≠ i)

----- 6
n≠1ÿ

i=1

|Ái| |Án≠i|
i(n ≠ i)

6 K

n≠1ÿ

i=1

|Ái|
i(n ≠ i)

≠≠≠≠≠æ
næ+Œ

0

Il en découle, d’après le théorème d’encadrement,

n≠1ÿ

i=1

ÁiÁn≠i
i(n ≠ i)

≠≠≠≠≠æ
næ+Œ

0

Comme 1/(1 + Án) ≠≠≠≠≠æ
næ+Œ

0, tout ceci permet de conclure que

n≠1ÿ

i=1

1
i(n ≠ i)

3
(1 + Ái)(1 + Án≠i)

1 + Án
≠ 1

4
≠≠≠≠≠æ
næ+Œ

0


