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I. UNE PROPRIETE SUR LES SOMMES DE RIEMANN

Attention a ne pas se laisser berner par I'apparente facilité de cette premiere
question : elle contient de petites subtilités en raison desquelles la seule invo-
cation du théoreme des sommes de Riemann ne suffit pas.

Par hypotheése, la fonction g est prolongeable par continuité au segment [a;b].

Elle est donc intégrable sur 'intervalle | a;b[. Puisque, pour tout entier n > 2 et

tout k € [1;n—1],

b—
a—i—k—aG]a;b[
n

on a, pour tout n > 2,

n—1 n—1
lZg <a+kb_a> = lZf <a+kb_a)
n n ni—~ n

k=1

Tllnzlf<a+kb;a)—f§j)

k=0

Or, d’une part, f(a)/n —— 0, et d’autre part, le théoréme des sommes de Riemann
n—+oo
pour les fonctions continues sur un segment assure que

n—1

b* b
i2f<a+k na) — bia/f(t)dt

k=0

1n71 b—a 1 b
. nont. L L t) dt
ar conséquent, — g g <a+ n > n—otoo  b— a/a 0

Finalement, comme f et g sont intégrables sur Ja;b[ et coincident sur ce méme

intervalle,
b b
[ o= [ g
On a ainsi prouvé que

n—1 b
. 1 b—a 1
n1—1>IPoon29<a+k n )_ba/ag(t)dt

k=1
autrement dit,

@ Commencgons par calculer la différence des quantités & comparer : pour tout k& > 1,
1 1 1 1 1 1 1
ap = br+1 = k 9kl L x1  okt2 k(k+1) 2k+1  2k+2
Or, d’apres le théoreme des croissances comparées,
E(k+1)

2k k—+o0

Par conséquent, pour k£ au voisinage de +oo,

k(kl—s—l) To <k:(k:1+1)>

ap, — b1 =
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1
it —-b N~ T
soit encore W7 Oty e k(k + 1)

La quantité aj — b1 étant équivalente a une quantité strictement positive, elle est
également strictement positive a partir d’un certain rang ky. En conclusion,

Fho >1 Yk ko brir < a

Pour la seconde partie de la question, justifions d’abord que la fonction f est

bien définie. Pour cela, remarquons que pour tout k > kg, ap < bg. Ainsi, grace au
résultat montré en premiere partie de question,

Vk > ko Q41 < bk+1 < ap < b

Les intervalles ([a ; by ]);>y, sont donc deux a deux disjoints. Soit ¢ € ]0;1[. Exa-
minons plusieurs cas:

o S’il existe k > ko tel que t € [ay ; by |, nécessairement un tel k est unique d’apres
le raisonnement précédent. Alors:

— Site [ap;ar+1/28 [ alors f(t) = k221 (¢t — ay) et cette quantité est
bien définie.

De méme, si t € | ay +1/2"1 ;b |, alors f(t) = k*281 (b, — 1) et cette
quantité est également bien définie.

— Enfin, si t = aj, + 1/2F1 alors by —t =t — aj, = 1/2F d’ont f(t) = k?
e S’il n’existe pas de tel k, alors f(t) = 0.

Ainsi, ’La fonction f est bien définie. ‘
La figure ci-dessous (qui n’est pas & I’échelle) permet de se faire une idée de
I’allure du graphe de f.
Yy
(k+1)% |4
1
.
k2 || :

1

\

1

1

'.

a_k'+1 bk+1 ar >—

La fonction f étant affine par morceaux, elle est continue sur tous les intervalles
(Jarsaw +1/2%0]) o (Jan + 172540500 [) sy, et (ks ar Dysi,

(elle est méme nulle sur cette derniére famille d’intervalles) ainsi que sur linter-

valle | bg, ; 1[ o elle est également nulle. Comme

tion f est continue en chaque (ag)r>k,, (ak + 1/2’““)

ar — 0
k—+o0

la réunion de tous ces intervalles est égale & l'intervalle | 0;1[. Vérifions que la fonc-

k>ko et (bk)k>ko' Soit k 2 ko.

lim f(t) = lim k2 2¥1(t —ap) =0= lim f(t)
t—apt t—apt

t—ar—
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Comme f(ay) =0, cela prouve que f est continue en ai. De méme,

lim f(t) = lim k%2 2F1(b, —t) =0= lim f(¢)
t—rbg t—br+

t—br

Puisque f(br) =0, on a aussi prouvé que f est continue en by. Enfin,

1
lim £ = i k2 2R — a) — K2 — (a + )
—(ap+1/2641)7 7o) t—(ap+1/28+1)" ( ¢) I ok+1
et lim t) = lim k2 281 (by, —t) = k2
t— (ap+1/2k+1)T f( ) t—(ap+1/2k+1)T (B )

La fonction f est donc également continue en ay + On peut conclure que

ok+1°

’La fonction f est continue sur ]0;1]. ‘

Prouvons maintenant que f est intégrable sur |0;1[. Comme elle est nulle en
dehors des intervalles ([ax ; bk |);sy,, calculons d’abord son intégrale sur chacun de
ces segments (ces intégrales existent puisque f est continue). Soit k > ko. L’intégrale
de f sur [ag ; by ] est égale & l'aire d’un triangle, de base

1 1 1 1

1
bk—ak:g"'gkﬂ_g"'gkﬂzﬁ

et de hauteur k2. Par conséquent,

1 1 k2
f(t) dt = 5 27 2k+1

ak

Il est aussi possible de calculer 'intégrale en déterminant une primitive de la
fonction intégrée sur chaque segment ou elle est continue.

Par suite, pour tout N > kg, grace a la relation de Chasles et a la nullité de f en
dehors des intervalles ([ ag ; by ])k>k0,

1 b N k2
[ o=y [“roa= 35
an k=Fk k=Fk
0 0
Comme, par croissances comparées,
k4
0

2k+1 k—+o00

on peut écrire, pour k£ au voisinage de +oo,

k2 1
et — O\ 2

Les termes de la somme sont par conséquent négligeables devant le terme général
d’une série de Riemann convergente. Il s’ensuit que la série

k2
> e

k>ko

est convergente par comparaison de séries a termes positifs. Puisque ay — 0,
N—+oc0

on obtient par passage a la limite

+oo
k‘2
/ f dt 2k+1
k=

ko
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En particulier, I'intégrale de gauche est convergente. Comme la fonction f est positive
sur ] 0; 1], cela permet de conclure que

La fonction f est intégrable sur ]0;1]. ‘

Il est possible de calculer explicitement la somme de cette série, en utilisant
les dérivées premiere et seconde de la série entiere > x* évaluées en 1/2.

Soit maintenant n > kg. La fonction f étant positive,

n—1
1 k 1 1 1 1 1
72]" “)>=fl=-)==flan+—)=-n’=n —— 400
ni=" \n n n n on+l n n—+oo

Il s’ensuit par minoration
n—1 n—1
1 1-0 1 k
Ef(O—Fk):Ef() — +©
nk:l n n n n—+oo

et on a déja prouvé que

1 1 +0o0 2
m f(t) dt_kzk: 2k+1 < +00
=Ko

Par conséquent,

Cette question a donc permis de prouver, grace a un contre-exemple, que le
théoreme des sommes de Riemann n’est plus valable lorsqu’on travaille avec
des fonctions continues et intégrables sur un intervalle ouvert.

La fonction ¢ + 24/ est une primitive de la fonction continue ¢ sur ]0;1[. Par
conséquent, pour tout A € ]0;1],

/lgo(t)dt=2ﬁ—2\/KA—%>2

A
La fonction ¢ étant positive, cela prouve que

’La fonction ¢ est intégrable sur ] 0;1]. ‘

1
On a méme / p(t)dt =2
0

On aurait aussi pu justifier le caractere intégrable de ¢ en reconnaissant une
intégrale de Riemann convergente, mais le calcul de l'intégrale va de toute
facon s’avérer utile pour la suite.

Par ailleurs, pour tout n € N*|

17171 k B 1n71 1 B 1n71\/ﬁ_ 1 n—1 1
i (3) R VAR T T Ve

k=1

Déterminons la limite de cette quantité en effectuant une comparaison série-intégrale.
La fonction ¢ étant décroissante sur R* et intégrable au voisinage de 0,

k+1 k
dt 1 dt
Vk € N* / — < —=< / —
o VE VE S SVt
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En sommant ces inégalités, on obtient grace a la relation de Chasles,

n—1

E e BT

k=1
En calculant les intégrales de gauche et de droite, il s’ensuit

n—1
2y/n —2v1 < — < 2yn—-1-20

d’oit 2 - } szlf F

Comme les membres de gauche et de droite convergent vers 2 lorsque n tend vers +00,
on déduit du théoréeme d’encadrement que

n n—+oo
vn kZ:1 vk
On a ainsi démontré que

nl

1
724‘0 ( ) n—+00 /0 p(t) dt
c’est-a-dire

Pour tout ¢ € ]0;1/2], h(t) = t1/2(1 — t)~'/2. La fonction h est par conséquent
dérivable sur ] 0;1/2 [ comme produit de fonctions dérivables. Soit t € ]0;1/2[. On a

~ 1 1
() = -3 (321 =)~ V2 == V2(1 —4)73/2) = —§t—3/2(1 —1)73/2 (1 -2t

Or, 321 —)73/2(1—2t) > 0
1 ~
d’ou VtG}O;Z{ R(t) <0
.7 .. 1
Cela prouve que La fonction h est décroissante sur } 0; 3 [

Ce résultat invite a mettre & nouveau en ceuvre une comparaison série-intégrale.

Remarquons tout d’abord que la fonction h est continue sur |0;1[ et que

~ 1 1 1

)= ———  ~  — =t
Or la fonction ¢ est intégrable sur ]0;1[ d’aprés la question 3. Par comparaison
d’intégrales de fonctions positives, on en déduit que la fonction h est intégrable
sur ] 0;1/2]. Alors, pour tout n € N* et tout k € [1;n — 1], par décroissance de la
fonction h sur lintervalle ] 0;1/2],

k+1

n o~ 1 ~/ k Tm
/ h(t)dt < — h|l— | < / h(t) dt
k. 2n 2n k-1

2n 2n

Il s’ensuit que, pour tout n € N*,

n—1 k;;zl ~ n—1 1 ~ k n- 2n  ~
< — — <
Z/k h(t)dt < Y o= h <2n> < Z/L h(t) dt

k=1" 2n k=1
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soit, par la relation de Chasles,

1 n—1 n—1
2~ 1 ~/ k n ~
< — — <
/ Ay ar < Yo h(Qn) < /O h(t) dt
1

k=1

-1
0 et n

1
Comme - — - =
2n n—+oo 2n n—+oo 2

on déduit du caractére intégrable de h sur ]0;1/2] que
li : h(t) dt = i & h(t) d : h(t) d
o [, MOG= L ) M= [ o

Le théoréme d’encadrement permet alors d’affirmer que

n—1 1
1~ [k 5

S h(sr) —— h(t) dt
2n 2n n—+o00

k=1 0
1k 3
soit encore E}; h (211) — 2/0 h(t) dt
On a démontré que he D, 1

La fonction h est continue sur |0;1[ et on a déja justifié & la question précédente
qu’elle est intégrable au voisinage de 0. En outre, pour ¢ au voisinage de 1,

h(t)

1 1
V=) o1 V18
La fonction ¢ — 1—t étant de classe 4! et strictement décroissante sur ] 0; 1 [, d’aprés
le théoreme de changement de variable en posant u = 1 — t, les intégrales

/1 dt t /1/2 du /1/2 i
e — = o(u) du
12vV1—1 o Vu Jo

sont de méme nature. Comme celle de droite est convergente d’apres la question 3,
celle de gauche 'est également. La fonction ¢ — 1/4/1 —t est donc intégrable au
voisinage de 1, ce qui permet de conclure que

’La fonction h est intégrable sur ]0;1]. ‘

Remarquons alors que, pour tout ¢t € |0;1[, h(1 —¢) = h(t). Effectuons alors a
nouveau le changement de variable u = 1 — ¢t. Cela donne

Prwyar= [ h0 - du) = / " () du

0 1 1/2

Alors, grace a la relation de Chasles,

1/2 1/2 1 1
2/0 h(t) dt:/o h(t) dt+/1/2h(t) dt:/o h(t) dt

Comme les fonctions h et h coincident sur 10;1/2], on conclut que

/Olh(t) dt = 2/01/2 h(t) dt
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@ Soit n € N*. La relation de Chasles permet d’écrire que
2n—1 n—1 2n—1

1 k 1 k 1 k
kzzl ' <zn) = ;%h (zn) * kzzn ' <2n>

Intéressons-nous a la somme de droite. Comme, pour tout ¢t € |0;1[, h(1—t) = h(t),
celle-ci se réécrit

2n—1 2n—1 2n—1
1 k 1 k 1 2n — k
Z2nh<2n) = Zznh@‘zn) = ZM( o )

k=n k=n k=n

Effectuons le changement d’indice j = 2n — k. Cela donne

2n—1 n . n—1 .
1 k _ 1 J _ 1 J 1 1
Z%h (Zn) N Z%h (Qn) - Zth(2n>+2nh(2>

k=n j=1 =1
2n—1 n—1
1. (k& 1. (k& 1. /1
Par sui —h(—) = 25— —n(=
ar suite, ;mh(m) ;;Mh(Q”) +2nh<2)

Or, d’apres les questions 4 et 5,

n—ll k 1/2
222nh<2n> — 2/0 h(t) dt

|
B_‘
>
=
oL
~

k=1
. 1 1
et par ailleurs, —h () — 0
2n 2 n—+00
2n—1 1 k 1
E lusi —h|— —_— h(t) dt
n conclusion, kZ:l 5 (271) — /0 (t)

Effectuons une nouvelle comparaison série-intégrale. Etant donné que la fonction h
est décroissante et intégrable sur ]0;1/2], et que pour tout entier n € N* et tout
entier j € [0;n],ona j/(2n+1) €[0;1/2],

TnrT o1 k _ T
ke [1in—1] / h(t) dt < 2n+1h<2n—|—1> < / h(t) dt

2n+1 2n+1

Cela entraine que pour tout n € N*,

k+1 n

nol ety ! 1 k noloeste
< <
[ 0w < o (5) < £f 0 oa

2n+1 2n+1

~
Il

d’ou, d’apres la relation de Chasles,

b=y n_l 1 k 2nF1
< <
/1 h(t) dt < Zzn+1h<2n+1> = /0 hit) dt

2n+1 k=1

Etant donné que

. 1 . n—1 . n 1
lim — = et
n—+oo 21, + 1

im —— = lim =
n—+oo 21, 4+ 1 n—+oo 2n + 1 2

on déduit de lintégrabilité de h sur |0;1/2] et du théoréme d’encadrement que
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k 1/2
E / h(t) dt
2n + 1 2n+1 n—+00 0

Or, pour tout n € N*

n

n—1
1 k 1 n
h h
§2n+1 <2n+1> Z n+1 (2n+1)+2n+1 <2n+1)

k=1

La fonction h étant continue sur |0;1],

1 n
h 0xh 0
2n + 1 (2n+1> ot ( )

n

. 1 i 1/2
d’ott finalement ;Qn " lh (Qn n 1) — /0 h(t) dt

Reproduisons alors le raisonnement de la question 6. Pour tout n € N*,
2n n 2n
1 k 1 k 1 k
2.3 +1h(2 +1> =23 +1h(2 +1> 23 +1h(2 +1)
=1 K =1 " el "
En se rappelant que h(1 —t) = h(t) pour tout ¢ € ]0;1], la somme de droite vaut
2n 2n
1 k k
2 2n+1h<2n+1>: Z ( 2n+1>
k=n+1
2": 2n+1—k
2n +1

2n n .
1 k J .
h = h =2 1-k
Z 2n+1 <2n+1) ZQn—i—l <2n—|—1) Y nt )

k=n+1 J=1

Ainsi, d’apres la premiere partie de la question,

2n n 1/2
1 k 1 k
§2n+1h<2n+1> ;2n+1h(2n+1) p——— /0 ht) dt

D’apres la question 5, on obtient finalement

2n 1

1 k
g h < ) / h(t) dt
— 2n+1 2n+1) n—=+oo J,

1n=1
Pour tout n € N*, posons S,, = — >_ h(k/n). D’apres les questions 6 et 7,
Ng=1

1 1
S2n e h(t) dt et Sgn+1 e h(t) dt
Comme les sous-suites des termes pairs et impairs convergent vers la méme limite,
on en déduit que
1
Sy, —— h(t) dt

n—+oo 0

Autrement dit,



Mines Maths 2 PSI 2024 — Corrigé 11

@ Au vu du résultat a obtenir, il est raisonnable d’effectuer un changement
de variable faisant intervenir une fonction trigonométrique. Comme de plus,
pour tout t €]0;1],

h(1—t) = h(t)

on cherche a reproduire cette symétrie par rapport au point 1/2. On peut
donc essayer les changements de variable

= %(1 + sin(z)) et t= %(1 + cos(x))

Des calculs au brouillon montrent que les deux permettent d’aboutir au ré-
sultat.

Effectuons le changement de variable z = Arcsin (2t — 1) dans l'intégrale. Comme
pour tout ¢t € ]0;1[, on a 2t —1 € ]0;1], la nouvelle variable = est bien définie.
En outre, la fonction ¢ — Arcsin (2t — 1) est de classe € et strictement croissante
sur |0;1[; le changement de variable est donc licite. Celui-ci s’inverse en

1 1
= 5(1 + sin(z)) d’ou dt = 3 cos(z) dx

Le changement de variable donne alors

1
3 cos(z) da _ /71'/2 cos(z) dz
%(1 — sin(z))

Comme, pour tout = € | —7/2;7/2 [, Cos( ) = 0, il s’ensuit

/ / cos(z) dz _ ™2 cos(z) da: _/”/2 q
Vil —1t) —n)2 \/cos —m/2 cos(z) —m/2

1
On a obtenu / hz)dz =7
0

—x/24/1 —sin(z)?

[ - /‘”W

Tr =T

On a prouvé a la question 3 que

11
2
nk 1 k n—+00
) 1ga1 11 1
Par conséquent, —nZ—k = 727 + p — 2
k=1 k=1
1
Autrement dit, k_lﬁ L 2y/n

Soit n € N*. Remarquons que

1
Z TL*’L ﬁzl 1 )

Or, d’apres les questions 8 et 9,
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n—1 . 1
1
~Sh (Z> - h(t)dt =

0

Ainsi, lim =

Ce résultat n’étant pas une conséquence de la question 10, le choix des au-
teurs du sujet de faire commencer cette question par « en déduire » n’est pas
judicieux.

Soit o« > 0. Comme la suite

converge d’apres la question precedente, elle est bornée. Soit donc M € R, tel que,
pour tout n € N*|

Zm

De la méme manieére, soit K € R, tel que pour tout n € N*, |¢,| < K. En outre,
comme (£,)nen+ est de limite nulle, il existe N € N* tel que pour tout n > N,
len] < a/(2M). Alors, pour tout n > N,

Z |5z| Z |51| Z Z'(|Ei| >

Maintenant, d’une part

i KN—-1
Sobl oy K Ky 0
iln—1i) ‘= vn—N vn—N n—s+00
Il existe donc N > N tel que pour tout n > N/,
<Xl <3
(n—i) 2
D’autre part, pour tout n > N,
e 5
2M i(n —1) )
Ainsi, pour tout n > N/, Z =i

i)

On a démontré que

Va>0 3IN'eN vaxN |} el a
= i(n —1)
Par définition de la limite, cela prouve que
n—1 |€ ‘
lim ! =0

n—>+oo 1 /1 n — Z
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Pour tout n > 2, on a

(14+¢e)(14en—) 1+e;+en_i+eicn,

Zm( 1+e, - ) Zm 1+e,
Zm

Cette quantité peut se réécrire

n—1 n—1
5nt
<1+en )Z 1+sn<zm Z
€i€n—i
Z\/ n—z

Etudions séparément la convergence de chaque terme.

e D’abord, d’apres la question 11,

-1 — 0 et

1+e, n—+oo Z /i n _ ’L n—+oo

™

0

(1+€n )Z,/ TL—Z n—+0oo
Ensuite, grace a 'inégalité triangulaire,
n—1
e

(n—1) (n—1)
et la quantité de droite tend vers 0 d’apres la question 12. Par encadrement,
on en déduit que

Z =

Pour le troisieme terme eﬁectuons le changement d’indice j = n—i. Cela donne

Z — Z —s
On retrouve le deuX1eme terme dont on Vlent de prouver qu’il a une limite nulle.

Enfin, comme la suite (¢,),en+ converge, elle est bornée : soit K € R, tel que
pour tout k € N*, |ex| < K. Alors, par inégalité triangulaire,

n—1 n—1
leil

Z 515n i Z|5Z| |&n— Z| Z
\/ n—z \/ n—z ./ n—z n—+0o0o

Il en découle, d’apres le theoreme d’encadrement,

Z 5i€n i
/ n —_ Z n—+o0o

Comme 1/(1+¢,) — O, tout ceci permet de conclure que
n—+oo

— 0

n—+oo

(I+e)d+eni) 1)

Zm< 1+e¢,




