I. FONCTIONS DE LAMBERT

Appliquons le théorème de la bijection monotone à f sur l'intervalle $[-1; +\infty[$. C'est une application dérivable (et donc continue) sur \mathbb{R} , car produit de fonctions dérivables. Pour tout réel x > -1,

$$f'(x) = e^x + xe^x = e^x(1+x) > 0$$

La fonction f est donc strictement croissante sur $[-1; +\infty[$. D'après le théorème de la bijection monotone, elle réalise une bijection de l'intervalle $[-1; +\infty[$ sur son intervalle image. Comme

$$f(-1) = -e^{-1}$$
 et $f(x) = xe^x \xrightarrow[x \to +\infty]{} +\infty$

et que f est strictement croissante et continue sur l'intervalle $[-1; +\infty[$, l'intervalle image est $[-e^{-1}; +\infty[$. On a montré

L'application
$$f$$
 réalise une bijection de $[-1; +\infty[$ sur $[-e^{-1}; +\infty[$.

Le théorème de la bijection monotone fournit deux autres résultats : la continuité et la croissance stricte de la fonction réciproque sur $\left[-e^{-1};+\infty\right[$. Ils seront utilisés aux questions 2 et 4 et devront être justifiés au moment de la réponse à ces questions.

2 Une conséquence directe de la mise en œuvre du théorème de la bijection monotone à la question précédente est que

La fonction W est continue sur l'intervalle
$$\left[\,-\mathrm{e}^{\,-1}\,;+\infty\,\right[.$$

Par ailleurs, l'application f étant de classe \mathscr{C}^{∞} sur \mathbb{R} , comme produit de fonctions de classe \mathscr{C}^{∞} , et puisque sa dérivée ne s'annule pas sur]-1; $+\infty$ [,

La fonction W est de classe
$$\mathscr{C}^{\infty}$$
 sur l'intervalle] $-e^{-1}$; $+\infty$ [.

 $\boxed{\bf 3}$ Évaluons l'identité W \circ f= id en 0. Puisque f(0)=0, il vient

$$W(0) = 0$$

D'après la question précédente, W est dérivable en $0 \in]-e^{-1}; +\infty [$ et d'après le théorème de dérivation des fonctions réciproques

$$W'(0) = \frac{1}{f'(W(0))} = 1$$

 $\boxed{\mathbf{4}}$ Pour tout $x \in \left[-e^{-1}; +\infty \right[$, on a la relation

$$x = f(\mathbf{W}(x)) = \mathbf{W}(x)e^{\mathbf{W}(x)} \tag{1}$$

La fonction W est continue en 0 et W(0) = 0, d'où e $^{\mathrm{W}(x)} \sim 1$ et par quotient d'équivalents, on obtient

$$W(x) \underset{x \to 0}{\sim} x$$

On aurait aussi pu appliquer le théorème de Taylor-Young à la fonction W en 0. Puisqu'elle est de classe \mathscr{C}^{∞} au voisinage de 0, elle admet un développement limité à tout ordre, en particulier à l'ordre 1:

$$W(x) = W(0) + W'(0)(x - 0) + \underset{x \to 0}{o}(x)$$

ce qui fournit l'équivalent recherché.

Déterminons à présent un équivalent de W(x) en $+\infty$. Soit un réel x>0, la relation (1) justifie W(x)>0. Appliquons la fonction ln:

$$\ln(x) = \ln\left(W(x)e^{W(x)}\right) = \ln(W(x)) + W(x) \tag{2}$$

Comme la fonction W est strictement croissante et non bornée, elle tend vers $+\infty$ quand $x \to +\infty$. On en déduit par croissances comparées

$$\frac{\ln(W(x))}{W(x)} \xrightarrow[x \to +\infty]{} 0$$

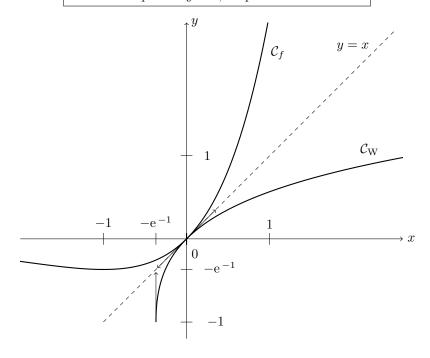
donc $\ln(W(x))$ est négligeable devant W(x) quand $x \to +\infty$. Finalement, d'après (2):

$$W(x) \underset{x \to +\infty}{\sim} \ln(x)$$

5 Les fonctions f et W sont dérivables en 0 et prennent la même valeur en 0, ainsi que leurs dérivées d'après la question 3. Leurs courbes représentatives possèdent donc une tangente commune au point d'abscisse x=0, dont l'équation est :

$$y = f(0) + f'(0)(x - 0) = W(0) + W'(0)(x - 0) = x$$

Les courbes C_f et C_W ont comme tangente commune la droite d'équation y = x, au point d'abscisse 0.



Les fonctions étant réciproques l'une de l'autre, les courbes \mathcal{C}_{W} et \mathcal{C}_f sont symétriques par rapport à la droite d'équation y=x. Le symétrique du point de \mathcal{C}_{W} d'abscisse $-\mathrm{e}^{-1}$ est le point de \mathcal{C}_f d'abscisse $\mathrm{W}(-\mathrm{e}^{-1})=-1$. Comme la tangente à la courbe \mathcal{C}_f a pour équation $y=f(-1)+f'(-1)(x-(-1))=-\mathrm{e}^{-1}$, par symétrie axiale, \mathcal{C}_{W} possède une tangente verticale au point d'abscisse $-\mathrm{e}^{-1}$.

La courbe $C_{\rm W}$ a pour tangente la droite $x=-{\rm e}^{-1}$ au point d'abscisse $-{\rm e}^{-1}$.

Le raisonnement précédent, de nature géométrique, suppose qu'il a été établi dans le cours que la symétrie axiale préserve le fait qu'une droite soit la tangente à une courbe, ce qui n'est pas le cas (la notion de tangente est définie à partir de la limite d'un taux d'accroissement). On ne recommandera cependant pas une rédaction plus analytique que celle proposée, compte-tenu de l'objectif de la question, qui reste le tracé des courbes \mathcal{C}_{W} et \mathcal{C}_f .

Une preuve plus dans l'esprit du programme consisterait à étudier le taux d'accroissement de la fonction W en $-e^{-1}$. Prenons un réel $y>-e^{-1}$. Puisque la fonction W est continue sur le segment $\left[-e^{-1};y\right]$ et dérivable sur l'intervalle ouvert $\left]-e^{-1};y\right[$, appliquons-lui l'égalité des accroissements finis sur le segment $\left[-e^{-1};y\right]$. Il existe un réel $c_y\in \left]-e^{-1};y\right[$ tel que

$$\frac{W(y) - W(-e^{-1})}{y - (-e^{-1})} = W'(c_y) = \frac{1}{f'(W(c_y))}$$

Ceci étant vrai pour tout réel $y\in \left]-\mathrm{e}^{\,-1}\,;+\infty\right[$, il vient par théorème d'encadrement :

$$c_y \xrightarrow[y \to -e^{-1}]{} -e^{-1}$$

La continuité de W en $-e^{-1}$ et celle de f' en -1 justifient les limites :

$$W(y) \xrightarrow{y \to -e^{-1}} -1^+$$
 et $f'(x) \xrightarrow{x \to -1^+} 0^+$

Par composition et quotient de limites,

$$\frac{\mathrm{W}(y)-\mathrm{W}(-\mathrm{e}^{\,-1})}{y-\left(-\mathrm{e}^{\,-1}\right)}\xrightarrow[y\to -\mathrm{e}^{\,-1}]{}^{+\infty}$$

Le taux d'accroissement de la fonction W en $-e^{-1}$ a pour limite $+\infty$, ce qui prouve l'existence d'une tangente verticale.

6 Soit α un réel. La fonction $x \mapsto x^{\alpha}W(x)$ est continue sur l'intervalle]0;1] et d'après un résultat de la question 4

$$x^{\alpha}W(x) \underset{x\to 0^{+}}{\sim} x^{\alpha+1}$$

Par le critère de comparaison aux intégrales de Riemann, la fonction est intégrable si et seulement si $\alpha + 1 > -1$, c'est-à-dire

La fonction $x \mapsto x^{\alpha}W(x)$ est intégrable sur]0;1] si et seulement si $\alpha > -2$.

7 Considérons à nouveau un réel α . La fonction $x \mapsto x^{\alpha}W(x)$ est continue sur l'intervalle $[1; +\infty[$. Utilisons la question 4 pour écrire le produit d'équivalents

$$x^{\alpha}W(x) \underset{x \to +\infty}{\sim} x^{\alpha} \ln(x)$$

Distinguons deux cas:

- Si $\alpha \ge -1$, alors pour tout réel $x \ge e$, $x^{\alpha} \ln(x) \ge x^{\alpha}$. Par critère de comparaison aux intégrales de Riemann, la fonction $x \mapsto x^{\alpha}W(x)$ est équivalente à une fonction non intégrable quand $x \to +\infty$. Elle n'est donc pas intégrable.
- Si $\alpha < -1$, on écrit pour tout réel $x \ge 1$:

$$x^{\alpha} \ln(x) = x^{(-1+\alpha)/2} x^{(\alpha+1)/2} \ln(x)$$

Puisque $\alpha + 1 < 0$, par croissances comparées,

$$x^{(\alpha+1)/2}\ln(x) \xrightarrow[x \to +\infty]{} 0$$

d'où
$$x^{\alpha} \ln(x) = \underset{x \to +\infty}{\text{o}} \left(x^{(-1+\alpha)/2} \right)$$

Or $(\alpha-1)/2 < -1$, la fonction $x \mapsto x^{\alpha} \ln(x)$ est alors intégrable sur $[1; +\infty[$ par comparaison aux intégrales de Riemann. La fonction $x \mapsto x^{\alpha}W(x)$, équivalente à une fonction intégrable quand $x \to +\infty$, est donc intégrable.

En conclusion

La fonction
$$x \mapsto x^{\alpha} \mathbf{W}(x)$$
 est intégrable sur $[\,1\,; +\infty\,[$ si et seulement si $\alpha < -1.$

8 La fonction f est continue et strictement décroissante sur l'intervalle $]-\infty;-1]$ d'après l'expression de f' établie à la question 1. Appliquons le théorème de la bijection monotone à f sur cet intervalle. Comme f est de limite nulle en $-\infty$, par croissances comparées, l'intervalle image est

$$\left[f(-1); \lim_{x \to -\infty} f(x) \right] = \left[-e^{-1}; 0 \right]$$

Par conséquent,

L'application
$$f$$
 établit une bijection de] $-\infty\,;-1\,]$ vers $\left[\,-\mathrm{e}^{\,-1}\,;0\,\right[.$

9 Résolvons l'équation séparément sur $]-\infty;-1[$ puis sur $[-1;+\infty[$. Soient deux réels m et x.

• Sur l'intervalle $]-\infty;-1[$, on a les équivalences

$$xe^x = m \iff f(x) = m \iff x = V(m)$$

L'équation (I.1) admet une solution si et seulement si V(m) < -1, c'est-à-dire si et seulement si $m \in]-e^{-1};0[$, comme V est strictement décroissante. Cette solution est alors unique, égale à V(m).

• Sur l'intervalle $[-1; +\infty[$, on a les équivalences

$$xe^x = m \iff f(x) = m \iff x = W(m)$$

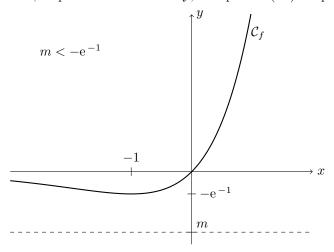
L'équation (I.1) admet une solution si et seulement si $W(m) \ge -1$, c'est-à-dire si et seulement si $m \in [-e^{-1}; +\infty[$, puisque W est strictement croissante. Elle est alors unique, égale à W(m).

En résumé:

- si $m \in]-\infty$; $-e^{-1}[$, l'équation n'a pas de solution;
- si $m = -e^{-1}$, l'équation a pour unique solution -1;
- si $m \in]-e^{-1}; 0[$, l'équation a deux solutions: V(m) et W(m);
- si $m \in [0; +\infty[$, l'équation a pour unique solution W(m).

 $\boxed{\mathbf{10}}$ Soit un réel m. Procédons par disjonction de cas suivant la valeur de m:

• Si $m < -e^{-1}$, d'après les variations de f, l'inéquation (I.2) n'a pas de solution.



- Si $m=-\mathrm{e}^{-1}$, les variations de la fonction f montrent qu'elle atteint son minimum global $-\mathrm{e}^{-1}$ uniquement en -1. L'inéquation (I.2) a donc pour unique solution -1.
- Si $m \in]-e^{-1};0[$, résolvons l'inéquation sur l'intervalle $]-\infty;-1[$ puis sur l'intervalle $[-1;+\infty[$ comme à la question 9.
 - $\circ \ \mbox{Pour tout} \ x \in \mbox{]} \infty \, ; -1 \, [, \mbox{ on a les équivalences}$

$$xe^x \leqslant m \iff f(x) \leqslant m \iff x \geqslant V(m)$$

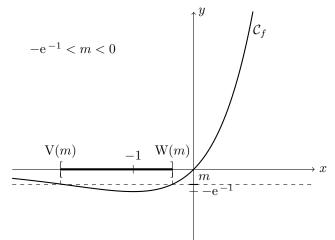
car V est décroissante. Les solutions sur l'intervalle] $-\infty$; -1 [constituent donc l'intervalle] $-\infty$; -1 [\cap [\vee [\vee [\vee] = [\vee [\vee] =] = [\vee] =] = [\vee] =] = [\vee] = [\vee] =] =] = [\vee] =] =

• Pour tout $x \in [-1; +\infty[$, on a les équivalences

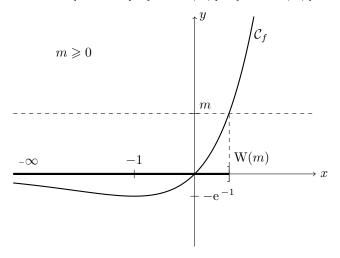
$$xe^x \leqslant m \iff f(x) \leqslant m \iff x \leqslant W(m)$$

car W est croissante. Les solutions sur l'intervalle $[-1; +\infty[$ forment donc l'intervalle $[-1; +\infty[\cap [-\infty; W(m)] = [-1; W(m)].$

On en déduit que les solutions de l'inéquation (I.2) correspondent à l'union d'intervalles $[V(m); -1[\cup [-1; W(m)] = [V(m); W(m)].$



• Si $m \ge 0$, l'intervalle $]-\infty;-1[$ est inclus dans l'ensemble des solutions de l'inéquation puisque la fonction f est à valeurs strictement négatives sur cet intervalle. Sur $[-1;+\infty[$, comme vu au point précédent, les solutions forment l'intervalle [-1;W(m)]. On en déduit que les solutions de l'inéquation (I.2) forment l'intervalle $]-\infty;-1[\cup[-1;W(m)]=]-\infty;W(m)]$.



En conclusion,

- si $m < -e^{-1}$, l'inéquation n'a pas de solution;
- si $m = -e^{-1}$, l'inéquation a pour solution -1;
- si $m \in]-e^{-1};0[$, l'inéquation a pour solutions [V(m);W(m)];
- si $m \in [0; +\infty[$, l'inéquation a pour solutions $]-\infty; W(m)[$.

 $\boxed{\mathbf{11}}$ Notons que si x est un réel et si a et b sont deux réels non nuls alors :

$$e^{ax} + bx = 0 \iff 1 + bxe^{-ax} = 0 \iff axe^{-ax} = -\frac{a}{b} \iff f(-ax) = \frac{a}{b}$$

Par suite, x est solution de l'équation (I.3) si et seulement si -ax est solution de l'équation (I.1) avec le paramètre m=a/b. Reprenons alors les conclusions de la question 9 avec ce paramètre:

- si $m \in]-\infty$; $-e^{-1}[$, l'équation n'a pas de solution;
- si $m = -e^{-1}$, l'équation admet pour solution 1/a;
- si $m \in]-e^{-1}; 0[$, l'équation admet deux solutions : -V(m)/a et -W(m)/a;
- si $m \in [0; +\infty[$, l'équation a pour unique solution -W(a/b)/a.

IV. APPROXIMATION DE W

35 Soit x un réel positif. Multiplions les deux membres de l'expression (1) vue à la question 4 par $\exp(-W(x))$:

$$x \exp(-W(x)) = W(x)$$

En utilisant deux fois cette identité on obtient :

$$\phi_x(\mathbf{W}(x)) = x \exp(-x \exp(-\mathbf{W}(x)))$$
$$= x \exp(-\mathbf{W}(x))$$
$$\phi_x(\mathbf{W}(x)) = \mathbf{W}(x)$$

d'où

Pour tout réel positif x, W(x) est un point fixe de ϕ_x .

36 Soit x un réel positif. La fonction ϕ_x est de classe \mathscr{C}^{∞} sur \mathbb{R} comme composée de fonctions de classe \mathscr{C}^{∞} sur \mathbb{R} . En particulier,

Pour tout réel positif x, la fonction ϕ_x est de classe \mathscr{C}^2 sur \mathbb{R} .

Calculons sa dérivée en rappelant que, si u est une fonction dérivable, la fonction $\exp u$ est dérivable de dérivée $u' \exp u$. Soit $t \in \mathbb{R}$,

$$\phi_x'(t) = x((-1) \times (-x \exp(-t)) \exp(-x \exp(-t))) = x^2 \exp(-t - x \exp(-t))$$

On en déduit $\phi_x' \geqslant 0$. Si x = 0, $\phi_x' = 0$ et le résultat est établi. Supposons donc x > 0 et dérivons à nouveau puisque ϕ_x est de classe \mathscr{C}^2 . Pour tout $t \in \mathbb{R}$,

$$\phi_x''(t) = x^2 (-1 + x \exp(-t)) \exp(-t - x \exp(-t))$$

Cette expression est du signe de $-1 + x \exp(-t)$, c'est-à-dire strictement positif pour $t < \ln(x)$ et strictement négatif pour $t > \ln(x)$. On en déduit que ϕ_x présente un maximum global en $t = \ln(x)$ égal à

$$\phi_x'(\ln(x)) = x^2 \exp(-\ln(x) - 1) = \frac{x}{e}$$

c'est-à-dire

$$\forall t \in \mathbb{R} \qquad 0 \leqslant {\phi_x}'(t) \leqslant \frac{x}{\mathrm{e}}$$

37 | Montrons le résultat par récurrence sur n en posant pour tout $n \in \mathbb{N}$,

$$\mathscr{P}(n)$$
: « $\forall x \in [0; e]$ $|w_n(x) - W(x)| \leq \left(\frac{x}{\rho}\right)^n |1 - W(x)|$ »

- $\underline{\mathscr{P}(0)}$ est vraie car pour tout $x \in [0; e], w_0(x) = 1$ et $\left(\frac{x}{e}\right)^0 = 1$.
- $\underline{\mathscr{P}(n)} \Longrightarrow \underline{\mathscr{P}(n+1)}$: soit $n \in \mathbb{N}$, supposons $\mathscr{P}(n)$ et prenons $x \in [0; e]$. • Si $w_n(x) = W(x)$, d'après la question 35

$$w_{n+1}(x) = \phi_x(W(x)) = W(x)$$

d'où
$$|w_{n+1}(x) - \mathbf{W}(x)| = 0 \leqslant \left(\frac{x}{\mathbf{e}}\right)^{n+1} |1 - \mathbf{W}(x)|$$

o Sinon, la fonction ϕ_x étant dérivable sur \mathbb{R} , appliquons-lui l'inégalité des accroissements finis sur le segment d'extrémités W(x) et $w_n(x)$. Avec la majoration obtenue à la question 36, on a

$$|\phi_x(w_n(x)) - \phi_x(\mathbf{W}(x))| \le \frac{x}{e} |w_n(x) - \mathbf{W}(x)|$$

d'où, par $\mathcal{P}(n)$ et parce que W(x) est un point fixe de ϕ_x ,

$$|w_{n+1}(x) - W(x)| \le \frac{x}{e} \left(\frac{x}{e}\right)^n |1 - W(x)|$$

On a établi que $\mathcal{P}(n+1)$ est vraie.

• Conclusion:

$$\forall x \in [0; e] \quad \forall n \in \mathbb{N} \qquad |w_n(x) - W(x)| \leqslant \left(\frac{x}{e}\right)^n |1 - W(x)|$$

38 Soit $a \in]0$; e [. L'application |1 - W| est continue sur le segment [0; a], donc bornée. Notons M un majorant sur cet intervalle. Soit $n \in \mathbb{N}$. D'après le résultat de la question précédente,

$$\forall x \in [0; a]$$
 $|w_n(x) - W(x)| \leq \left(\frac{a}{e}\right)^n M$

La fonction $|w_n-{\bf W}|$ possède donc une borne supérieure sur le segment $[\,0\,;a\,]$. Notons-la $\|w_n-{\bf W}\|_\infty$. Puisque $0< a/{\bf e}<1$, il vient

$$||w_n - \mathbf{W}||_{\infty} \leqslant \left(\frac{a}{e}\right)^n \mathbf{M} \xrightarrow[n \to \infty]{} 0$$

Ce qui montre la convergence normale de la suite $(w_n)_{n\geqslant 0}$ vers W. Ainsi,

Pour tout réel $a \in]0$; e [, la suite de fonctions $(w_n)_{n \geqslant 0}$ converge uniformément sur [0; a] vers la fonction W.

39 Montrons la convergence uniforme de la suite de fonctions $(w_n)_{n\geqslant 0}$ vers W sur [0;e]. Soit $\varepsilon > 0$. La continuité de la fonction W établie à la question 2, exprimée en e, assure l'existence d'un réel $\eta > 0$ tel que

$$\forall x \in [e - \eta; e]$$
 $|W(e) - W(x)| = |1 - W(x)| \le \varepsilon$

Soit $x \in [e - \eta; e]$. D'après la question 37, pour tout $n \in \mathbb{N}$

$$|w_n(x) - W(x)| \le \left(\frac{x}{e}\right)^n |1 - W(x)| \le \varepsilon$$

Utilisons à présent le résultat de la question 38 avec $a = e - \eta$. La convergence uniforme de $(w_n)_{n\geqslant 0}$ vers W sur [0;a] assure l'existence d'un rang $n_0 \in \mathbb{N}$ tel que pour tout entier $n\geqslant n_0$ et tout réel $x\in [0;e-\eta]$ on a $|w_n(x)-W(x)|\leqslant \varepsilon$. On a finalement montré

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad \forall x \in [0, e] \qquad |w_n(x) - W(x)| \leqslant \varepsilon$$

Ce qui prouve que

La suite de fonctions $(w_n)_{n\geqslant 0}$ converge uniformément sur $[\,0\,;\mathrm{e}\,]$ vers W.