Centrale - PC

Algèbre

1342. a) Trouver tous les $P \in \mathbb{R}[X]$ tels que $P(X^2) = (X^3 + 1)P(X)$.

- **b)** Trouver tous les $P \in \mathbb{R}[X]$ tels que $P(X^2) = P(X)P(X-1)$.
- **1343.** Soient $n \in \mathbb{N}$ et $a \in \mathbb{C}$. On pose $A_0 = 1$ et $\forall k \in \{1, ..., n\}, \ A_k = \frac{1}{k!} X(X ka)^{k-1}$.
- a) Montrer que la famille (A_0, A_1, \dots, A_n) est une base de $\mathbb{C}_n[X]$.
- **b)** Montrer que, pour tout $k \in \{1, \ldots, n\}$, $A'_k(X) = A_{k-1}(X-a)$.
- c) En déduire, pour j et k éléments de $\{0,1,\ldots,n\}$, la valeur de $A_k^{(j)}(ja)$.
- d) Soit $P \in \mathbb{C}_n[X]$ et soient $\alpha_0, \ldots, \alpha_n$ dans \mathbb{C} tels que $P = \sum_{k=0}^n \alpha_k A_k$ Montrer que, pour tout $j \in \{0, 1, \ldots, n\}, \ \alpha_j = P^{(j)}(ja)$.
- e) En déduire que $\forall (a, x, y) \in \mathbb{C}^3$, $(x + y)^n = y^n + \sum_{k=1}^n \binom{n}{k} x(x ka)^{k-1} (y + ka)^{n-k}$.
- **1344.** Soient $n \geqslant 2$, $\omega = e^{\frac{2i\pi}{n}}$ et $\Omega_n = \left(\omega^{(\ell-1)(m-1)}\right)_{1 \leqslant \ell, m \leqslant n}$.
- a) Exprimer $\det(\Omega_n)$ à l'aide des ω^k sous forme de produit.
- b) Calculer $\Omega_n \overline{\Omega_n}$. En déduire $|\det(\Omega_n)|$.
- c) On rappelle que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$. Calculer $\sum_{1 \leqslant \ell < k \leqslant n} (k+\ell)$.
- d) Calculer $\det(\Omega_n)$.
- **1345.** Soit E un \mathbb{C} -espace vectoriel de dimension $n \geqslant 2$. Soit p un projecteur de E de rang $r \leqslant n-1$. Soit $\Phi: \mathcal{L}(E) \to \mathcal{L}(E)$ définie par $\forall f \in \mathcal{L}(E), \ \Phi(f) = \frac{1}{2}(f \circ p + p \circ f)$.
- a) Calculer Φ^2 et Φ^3 .
- b) Montrer que Φ est diagonalisable.
- c) Trouver les valeurs propres et les dimensions des sous-espaces propres de Φ .
- **1346.** On note $E = \mathcal{C}^0([0,1],\mathbb{R})$. Soit Φ l'application qui à $f \in E$ associe $\Phi(f)$ définie par $\forall x \in [0,1], \ \Phi(f)(x) = \int_0^1 \min(x,t) f(t) \, \mathrm{d}t.$
- a) Vérifier que Φ est un endomorphisme de E.
- b) Déterminer le noyau et l'image de Φ .
- c) Déterminer les éléments propres de Φ .

1347. On pose
$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ -1 & \ddots & & \vdots & -a_1 \\ 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & -1 & -a_{n-1} \end{pmatrix}$$
 et $P = X^n + \sum_{k=0}^{n-1} a_k X^k$. Donner une

condition nécessaire et suffisante pour que A soit diagonalisable.

- **1348.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable.
- a) Montrer que, si $k \in \mathbb{N}$ est impair, il existe $P \in \mathbb{R}[X]$ tel que $P(A^k) = A$.
- b) Donner une condition nécessaire et suffisante sur les valeurs propres de A pour qu'il existe $P \in \mathbb{R}[X]$ tel que $P(A^2) = A$.
- **1349.** Soit E un K-espace vectoriel de dimension $n, f \in \mathcal{L}(E)$ diagonalisable ayant n valeurs propres distinctes. Soit $g \in \mathcal{L}(E)$ tel que $f \circ g = g \circ f$.
- a) Montrer que q est diagonalisable.
- **b)** Montrer qu'il existe $P \in K_{n-1}[X]$ tel que g = P(f).
- c) Trouver dim (C(f)) où $C(f) = \{h \in \mathcal{L}(E), f \circ h = h \circ f\}.$
- **1350.** Soit $A \in \mathrm{GL}_n(\mathbb{C})$.
- a) La matrice $B=\begin{pmatrix}A&A\\0&A\end{pmatrix}\in\mathcal{M}_{2n}(\mathbb{C})$ est-elle diagonalisable ?
- **b)** Montrer que la matrice $C = \begin{pmatrix} 0 & A \\ I_n & A \end{pmatrix}$ est diagonalisable si et seulement si A l'est.

1351. Soit
$$n \in \mathbb{N}^*$$
. Pour $k \in [0, n]$, on définit les applications linéaires $D: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & P(X+1) - P(X) \end{array} \right.$, $\Delta_k: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R} \\ P & \mapsto & D^k(P)(0) \end{array} \right.$ ainsi que les polynômes $H_0 = 1$ et $H_k = \frac{X(X-1)\cdots(X-k+1)}{k!}$.

- a) L'endomorphisme D est-il diagonalisable
- b) Montrer que $(\Delta_0, \ldots, \Delta_n)$ est une base de $\mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$.
- **1352.** Soient $n \ge 2$, E un K-espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.
- a) On suppose qu'il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une base de E. Montrer que u est diagonalisable si et seulement si u possède n valeurs propres distinctes.
- b) On suppose que u possède n valeurs propres distinctes. Montrer qu'il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une base de E.
- c) Supposons que les seuls sous-espaces de E stables par u sont $\{0\}$ et E. Montrer que, pour tout x non nul, la famille $(x, u(x), \dots, u^{n-1}(x))$ est une base de E.
- **1353.** Si A et B sont des éléments de $\mathcal{M}_n(\mathbb{R})$, on pose $\langle A, B \rangle = \operatorname{tr}(A^T B)$.
- a) Montrer que \langle , \rangle est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- **b)** Montrer que, pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{R})$, $||AB|| \leq ||A|| \, ||B||$.
- c) Montrer que le sous-espace des matrices symétriques et celui des matrices antisymétriques sont supplémentaires et orthogonaux dans $\mathcal{M}_n(\mathbb{R})$.

1354. Soit E un espace euclidien de dimension finie n>2. Soit a un vecteur de E de norme 1. Soit $k\in\mathbb{R}$. Pour tout $x\in E$, on pose $f(x)=x+k\langle a,x\rangle\,a$.

- a) Montrer que f est un endomorphisme diagonalisable.
- b) Trouver les valeurs propres et les vecteurs propres de f.
- c) Trouver une condition nécessaire et suffisante pour qu'il existe $g \in \mathcal{S}(E)$ tel que $g^2 = f$.

1355. Soit E un espace euclidien. Soit $f \in \mathcal{L}(E)$. On dit que f est une similitude s'il existe $\lambda \in \mathbb{R}^+$ tel que pour tout $x \in E$, $||f(x)|| = \lambda ||x||$.

- a) Montrer que f est une similitude si, et seulement s'il existe $\lambda \in \mathbb{R}^+$ et $g \in \mathcal{O}(E)$ tels que $f = \lambda g$
- **b)** Montrer que f est une similitude si et seulement si f préserve l'orthogonalité : $\forall (x,y) \in E^2, \langle x,y \rangle = 0 \Longrightarrow \langle f(x), f(y) \rangle = 0.$

1356. On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire $\langle A, B \rangle = \operatorname{tr}(A^T B)$.

- a) Montrer que, pour toute matrice A de $\mathcal{M}_n(\mathbb{R})$, $||A^T|| = ||A||$, $||A^TA|| = ||AA^T||$ et $|\operatorname{tr}(A)| \leq \sqrt{n} ||A||$.
- **b)** Soient A et B deux matrices orthogonales telles que $\frac{1}{3}A + \frac{2}{3}B$ est orthogonale. Montrer que A = B.

1357. Soit (E, \langle , \rangle) un espace euclidien. Soit ℓ une forme linéaire non nulle sur E.

- a) Montrer qu'il existe un unique vecteur $a \in E$ tel que $\forall x \in E, \ \ell(x) = \langle a, x \rangle$.
- **b)** Pour $x \in E$, on pose $f(x) = \ell(x)a \ell(a)x$. Déterminer Ker f.
- c) Montrer que $Ker(\ell)$ est un sous-espace propre de f.
- d) Montrer que f est diagonalisable.
- e) Montrer que f est autoadjoint. Commenter.

1358. Soit $n \in \mathbb{N}$, $n \ge 2$. Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique. Soit f l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

- a) Montrer que $\mathbb{R}^n = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$.
- **b)** Montrer que A est semblable à une matrice du type $\begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}$ où C est une matrice carrée inversible de taille paire.

1359. Soit $n \in \mathbb{N}$. Pour $P, Q \in \mathbb{R}_n[X]$, on pose $\langle P, Q \rangle = \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2} dt$.

- a) Vérifier que \langle , \rangle est un produit scalaire sur $\mathbb{R}_n[X]$.
- **b**) Pour tout $P \in \mathbb{R}_n[X]$, on pose f(P) = 2XP' P''. Montrer que f est un endomorphisme autoadjoint de $\mathbb{R}_n[X]$.
- c) Déterminer les valeurs propres de f.

1360. Soit $n \ge 2$. On pose $A = (\min\{i, j\})_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbb{R})$.

- a) Trouver une matrice B triangulaire supérieure telle que $A = B^T B$.
- b) Montrer que A est inversible.
- c) Montrer que les valeurs propres de A sont strictement positives.

1361. Soit E un espace euclidien.

- a) Soit u un endomorphisme autoadjoint positif. Soit $x \in E$. Montrer que $\langle x, u(x) \rangle = 0$ si et seulement si $x \in \text{Ker}(u)$.
- b) Soient a et b deux endomorphismes autoadjoints positifs.
- i) Montrer qu'il existe h autoadjoint positif tel que $h^2 = b$.
- ii) On pose f = ab et g = hah. Montrer que g est diagonalisable.
- iii) En remarquant que f=(ah)h montrer que f et g ont les mêmes valeurs propres et que les sous-espaces propres associés ont même dimension. Qu'en conclure sur f?

1362. On veut montrer le théorème spectral. Soit $n \ge 2$.

- a) Soit $S \in \mathcal{S}_n(\mathbb{R})$. Soit $P \in \mathbb{R}_2[X]$ irréductible et unitaire. Montrer que P(S) est inversible (sans utiliser le théorème spectral).
- b) En déduire une démonstration du théorème spectral.

Analyse

1363. Soit
$$T = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- a) La matrice T est-elle diagonalisable?
- b) La matrice T est-elle la limite d'une suite de matrices diagonalisables?
- c) Soit $P \in \mathbb{R}_n[X]$. Montrer que P est scindé sur \mathbb{R} si et seulement si il existe c > 0 tel que $\forall z \in \mathbb{C}, |P(z)| \geqslant c |\operatorname{Im}(z)|$.
- d) Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$ telle que $A_k \xrightarrow[k\to\infty]{} A$. Montrer que A est trigonalisable.
- **1364.** Pour $n \in \mathbb{N}$, on pose $u_n = \frac{1}{n \ln^2(n)}$. Montrer que $\sum u_n$ converge. Quelle est la nature de $\sum u_n^{1-\frac{1}{\ln(\ln(n))}}$
- **1365.** a) Montrer la convergence et calculer $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$.
- **b**) On pose $v_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{2k+1}$. Montrer que la série $\sum v_n$ converge.
- c) Étudier la convergence de la série $\sum \ln \left(\tan \left(\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \right) \right)$.

1366. Soit $f:[0,1] \to \mathbb{R}^{+*}$ une fonction continue.

a) Pour $n \in \mathbb{N}^*$, montrer qu'il existe a_0, \ldots, a_{n-1} dans [0,1] tels que :

$$\forall k \in [1, n], \int_0^{a_k} f(t) dt = \frac{k}{n} \int_0^1 f(t) dt.$$

- **b**) Étudier la nature de la suite de terme général $u_n = \frac{1}{n} \sum_{k=1}^{n-1} a_k$.
- c) On suppose maintenant que $f: \mathbb{R}^+ \to \mathbb{R}^{+*}$ est continue et que $\int_0^{+\infty} f(t) dt$ est divergente. Soit $(b_n)_{n\geqslant 0}$ une suite de réels strictement positifs. Montrer qu'il existe une suite $(v_n)_{n\geqslant 0}$ telle que $v_0=0$ et pour $n\in\mathbb{N},$ $b_n=\int_{\mathbb{R}}^{v_{n+1}}f(t)\mathrm{d}t.$
- d) Étudier la nature de la suite $(v_n)_{n\geq 0}$.
- **1367.** Soit $f \in \mathcal{C}^1(\mathbb{R}^{+*}, \mathbb{R})$, strictement croissante, concave, telle que $f(x) \to +\infty$ quand $x \to +\infty$. On considère $I = \int_1^{+\infty} \frac{\sin(f(t))}{t} dt$ et, pour $n \in \mathbb{N}$, $S_n = \sum_{i=1}^n \frac{\sin(f(k))}{k}$.
- a) On prend $f = \mathrm{id}_{\mathbb{R}^{+*}}$. Montrer par une intégration par parties que I converge.
- **b)** On prend $f: t \mapsto 10\ln(t)$. Trouver une primitive de $u \mapsto \frac{\sin(\ln(u))}{u}$ et en déduire la nature de I.
- c) On prend $f: t \mapsto t^{\alpha}$ avec $\alpha > 0$. Pour quelles valeurs de α les conditions de l'énoncé sont-elles respectées ? Déterminer alors la nature de I sous ces conditions.
- d) Tracer le graphe de $n\mapsto S_n$ pour $n\in [1,1000]$ lorsque $f(t)=t^\alpha$ avec $\alpha=0,5$ puis $\alpha = 0.8$.
- e) Idem pour $f(t) = 10 \ln(t)$.
- f) Établir une conjecture.

On suppose maintenant que $f(t) = O\left(\frac{1}{t\beta}\right)$ avec $\beta > 0$.

- g) Quelles fonctions ont cette propriété parmi celles déjà rencontrées dans l'énoncé?

 h) Montrer que, pour $n \geqslant 1$ et $t \in [n, n+1]$, $\left| \frac{\sin(f(t))}{t} \frac{\sin(f(n))}{n} \right| \leqslant \frac{f'(n)}{n} + \frac{1}{n^2}$.
- i) Démontrer la conjecture.

1368. Soit E l'ensemble des fonctions continues de \mathbb{R}^+ dans \mathbb{R} de carré est intégrable sur

- a) Montrer que E est un espace vectoriel.
- a) Soit $f: \mathbb{R}^+ \to \mathbb{R}$ de classe C^2 telle que f^2 et $(f'')^2$ soient intégrables sur \mathbb{R}^+ . Montrer que $f' \in E$.
- **b**) On suppose de plus que f(0) = 0.

 $\text{Montrer que } \left(\int_0^{+\infty} f'(t)^2 \, \mathrm{d}t \right)^2 \leqslant \left(\int_0^{+\infty} f(t)^2 \, \mathrm{d}t \right) \left(\int_0^{+\infty} f''(t)^2 \, \mathrm{d}t \right) \text{ et préciser le }$ cas d'égalité.

- **1369.** Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$ une fonction continue de carré intégrable sur]0,1]. Soit ℓ un réel strictement positif.
- a) On suppose que $\lim_{x \to +\infty} f(x) \int_{0}^{x} f(t)^{2} dt = \ell$. Si f admet une limite en $+\infty$, quelle est cette limite?

- **b)** Trouver toutes les fonctions f telles que $\forall x > 0, f(x) \int_0^x f(t)^2 dt = \ell$.
- c) On suppose que $\lim_{x\to +\infty} f(x) \int_0^x f(t)^2 dt = \ell$. Déterminer un équivalent de f(x) quand
- **1370.** Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 telle que, pour tout x>0, on ait f''(x) > 0 et f(x+1) = x f(x).
- a) Montrer que f' s'annule sur] 1, 2 [. En déduire le tableau de variations de f sur \mathbb{R}^{+*} .
- b) Montrer que f est de signe constant sur \mathbb{R}^{+*} et préciser son signe.
- c) Étudier la limite de f en $+\infty$.
- d) Nature de $I = \int_{1}^{+\infty} f(t) dt$, $J = \int_{0}^{1} f(t) dt$, $\int_{1}^{+\infty} \frac{1}{f(t)} dt$?
- **1371.** Soient $u_0 \in \mathcal{C}^0([0,1],\mathbb{R})$ et, pour $n \in \mathbb{N}$, $u_{n+1} : x \in [0,1] \mapsto 1 + \int_0^x u_n(t-t^2) dt$. Étudier la convergence simple et uniforme de la suite (u_n) .
- **1372.** *a*) Soit $x \in [0, 1]$ et $n \in \mathbb{N}$.

Justifier que
$$\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx$$
 et $\sum_{k=0}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2$.

- **b)** En déduire que $\sum_{k=0}^{n} \left(x \frac{k}{n}\right)^2 \binom{n}{k} x^k (1 x)^{n-k} = \frac{1}{n} x (1 x).$
- c) Soit $f:[0,1] \to \mathbb{R}$. On pose $B_n(f) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$.

Montrer que
$$B_{n+1}(f)'(x) = (n+1) \sum_{k=0}^{n} \left(f\left(\frac{k+1}{n+1}\right) - f\left(\frac{k}{n+1}\right) \right) \binom{n}{k} x^k (1-x)^{n-k}$$
.

En déduire que, si f est croissante (resp. convexe), $B_n(f)$ l'est aussi.

d) On pose $S(x) = \sum_{k=0}^{n} \left| x - \frac{k}{n} \right| \binom{n}{k} x^k (1-x)^{n-k}$. Montrer que $S(x) \leqslant \frac{1}{2\sqrt{n}}$. En déduire

que, si f est de classe C^1 , il existe c>0 tel que $\forall n\in\mathbb{N}^*, \sup_{[0,1]}|f-B_n(f)|\leqslant \frac{c}{\sqrt{n}}$. e) Montrer que, si f est continue, $\lim_{n\to+\infty}B_n(f)(x)=f(x)$.

1373. Pour
$$x \in \mathbb{R}^{+*}$$
, on pose $F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$.

- a) Montrer que F est définie et de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*}
- **b)** Établir une relation entre F(x+1) et F(x).
- c) Donner un équivalent de F en 0 et en $+\infty$.
- **1374.** a) À l'aide d'une équation différentielle, développer en série entière $f: x \mapsto \frac{\arcsin x}{\sqrt{1-\alpha^2}}$

b) Quel est le rayon de convergence R de cette série entière? Étudier la convergence de la série entière en x=R et en x=-R.

1375. a) Montrer que
$$\int_0^{+\infty} e^{-x^2} dx$$
 converge.

- b) Soit $x \in]-1,1[$. Montrer que $\sum_{n=1}^{+\infty} x^{n^2}$ converge. On note g(x) sa somme.
- c) Trouver un équivalent de g(x) lorsque $x \to 1^-$.
- d) Soit $h: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ continue, décroissante, intégrable. Étudier la convergence de $S: t \mapsto \sum_{n \geqslant 1} h(nt)$. Donner un équivalent de S(t) quand $t \to 0^+$.

1376. Soit D_n le nombre de permutations de [1, n] sans point fixe.

- a) Montrer que $n! = \sum_{k=0}^{n} \binom{n}{k} D_k$.
- b) Montrer que le rayon de convergence de $\sum \frac{D_n}{n!} x^n$ est supérieur ou égal à 1.
- c) On pose $f: x \mapsto \sum_{n=0}^{+\infty} \frac{D_n}{n!} \, x^n$ et $g: x \mapsto f(x) \, e^x$. Calculer g(x).
- d) Écrire D_n sous la forme d'une somme et en déduire un équivalent de D_n .

1377. On note a_n le nombre de partitions d'un ensemble à n éléments. On pose $a_0=1$.

- a) Pour $n \in \mathbb{N}$, montrer que $a_{n+1} = \sum_{k=0}^{n} \binom{n}{k} a_k$. En déduire que $a_n \leqslant n!$ pour tout $n \in \mathbb{N}$.
- **b)** Montrer que le rayon de convergence R de $\sum \frac{a_n}{n!} x^n$ est $\geqslant 1$.
- c) On pose $f: x \mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$.
- *i*) Trouver une équation différentielle du premier ordre vérifiée par f.
- $\it ii$) Résoudre l'équation différentielle et déterminer $\it f$.
- $i\ddot{u}$) En déduire une formule pour exprimer a_n en fonction de n.

1378. a) Soit $(u_n)_{n\geqslant 0}\in\mathbb{C}^{\mathbb{N}}$ de limite nulle. Montrer que $\frac{1}{n}\sum_{k=0}^{n-1}u_k\xrightarrow[n\to\infty]{}0.$

Soit
$$(a_n)_{n\geqslant 0}\in\mathbb{C}^{\mathbb{N}}$$
 telle que $na_n\xrightarrow[n\to\infty]{}0$. On pose $F:x\mapsto\sum_{n=0}^{+\infty}a_nx^n$.

- **b)** Montrer que F est bien définie sur]-1,1 [.
- c) On suppose que $\sum a_n$ converge et que $\ell = \sum_{n=0}^{+\infty} a_n$. Montrer que $\lim_{x\to 1^-} F(x) = \ell$.
- d) Ce résultat reste-t-il vrai si on suppose seulement que $(na_n)_{n\in\mathbb{N}}$ est bornée?

1379. a) Montrer que $\forall n \in \mathbb{N}^*$, $\int_0^{\pi} \frac{\mathrm{d}x}{1 + \cos^2(nx)} = \int_0^{\pi} \frac{\mathrm{d}x}{1 + \cos^2(x)}$ et calculer leur valeur.

b) Soit $f:[0,\pi]\to\mathbb{R}$ continue et croissante. Déterminer $\lim_{n\to+\infty}\int_0^\pi \frac{f(x)}{1+\cos^2(nx)}\,\mathrm{d}x$.

1380. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{\mathrm{d}x}{1+x^n}$

a) Déterminer la limite de la suite (I_n) , notée ℓ . Donner un équivalent de $I_n - \ell$.

b) Justifier l'existence de $J = \int_0^1 \frac{\ln(1+t)}{t} dt$ et montrer que $J = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$.

c) En déduire un développement asymptotique à trois termes de I_n .

1381. Soient a, b > 0.

a) Montrer que $\sum_{n=0}^{+\infty} \frac{1}{(a+nb)^2} = \int_0^{+\infty} \frac{te^{-at}}{1-e^{-bt}} dt.$

b) Montrer que $\sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb} = \int_0^1 \frac{t^{a-1}}{1+t^b} dt$.

c) Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}.$

1382. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $f_n(x) = (-1)^n \frac{e^{-nx}}{n}$.

a) En utilisant la série de fonctions $\sum f_n$, calculer si elle existe la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.

b) On donne $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Calculer $\int_0^{+\infty} \ln(1+e^{-x}) \, \mathrm{d}x$.

c) Équivalent de $\int_0^{+\infty} \ln(1+e^{-nx}) dx$ lorsque $n \to +\infty$.

1383. Pour $x \in \mathbb{R}$, on pose $f(x) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} e^{itx} dt$.

a) Montrer que f est définie et de classe C^1 sur \mathbb{R} .

b) On donne $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. Calculer f(0).

c) Exprimer f à l'aide des fonctions usuelles

1384. On pose $f: x \mapsto \int_{-\infty}^{+\infty} \frac{xe^{it}}{x^2 + t^2} dt$.

a) Montrer que f est définie sur \mathbb{R}^{+*} .

b) Montrer que $f(x) = \int_{-\infty}^{+\infty} \frac{e^{ixu}}{u^2 + 1} du$. En déduire la limite de f en 0.

- c) Calculer le laplacien de $(x,t)\mapsto \frac{x}{x^2+t^2}$.
- d) Montrer que f est de classe C^2 sur \mathbb{R}^{+*} et qu'elle est solution d'une équation différentielle linéaire d'ordre 2.
- e) Donner une expression simple de f.

1385. Soit
$$f: x \mapsto \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2} dt$$
.

- a) Quel est l'ensemble de définition de f?
- b) Sur quel ensemble f est-elle continue?
- c) Sur quel ensemble f est-elle de classe C^1 ? Calculer f'.

1386. On pose
$$J_n: x \mapsto \frac{1}{\pi} \int_0^{\pi} \cos(nt - x \sin t) dt$$

- a) Montrer que J_n est de classe C^2 .
- **b**) Déterminer une équation différentielle vérifiée par J_n
- c) Déterminer les solutions développables en série entière de cette équation différentielle.

1387. Soient
$$\alpha \in]0,1[$$
 et $I: x \mapsto \int_0^{+\infty} t^{\alpha-1} e^{ixt} e^{-t} dt.$

- a) Montrer que I est définie sur \mathbb{R} . Exprimer I en fonction de I_0 et de fonctions usuelles.
- **b**) Trouver un équivalent de I en $\pm \infty$. Exprimer le développement asymptotique de I à l'ordre 2.

1388. Soit
$$f: x \mapsto \int_0^{+\infty} \frac{1 - \cos t}{t^2} e^{-xt} dt$$
.

- a) Donner le domaine de définition de f. Montrer que f est continue sur ce domaine.
- b) Montrer que f est de classe C^2 sur \mathbb{R}^{+*} .
- c) Calculer f(x).

1389. Pour
$$x \in \mathbb{R}^+$$
, on pose $f(x) = \int_0^{+\infty} \frac{e^{-xt} \sin t}{t} dt$.

- a) Montrer que f est bien définie sur \mathbb{R}^+ et déterminer $\lim_{x\to +\infty} f(x)$.
- **b)** Montrer que f est de classe C^1 sur \mathbb{R}^{+*} et exprimer f à l'aide de fonctions usuelles.
- c) Discuter la convergence absolue de l'intégrale $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$.

1390. Soit E l'espace des fonctions continues et intégrables sur $\mathbb R$. On munit E de la norme $\| \ \|_1$ définie par $\| f \|_1 = \int_{\mathbb R} |f(t)| \, \mathrm{d}t$. Soit B l'ensemble des fonctions continues et bornées sur $\mathbb R$. On munit B de la norme $\| \ \|_{\infty}$. Si $f \in E$, on définit $\hat f$ par $\forall t \in \mathbb R$, $\hat f(t) = \int_{\mathbb R} f(x) e^{-ixt} \, \mathrm{d}x$.

a) Montrer que l'application $\Phi: E \to B, \ f \mapsto \hat{f}$ est bien définie et qu'elle est continue.

- **b**) Pour tout $\alpha>0$, on pose $f_{\alpha}:x\mapsto e^{-\alpha x^2}$. Montrer que \hat{f}_{α} est de classe \mathcal{C}^1 sur \mathbb{R} . On donne $\int_{\mathbb{T}} e^{-x^2} dx = \sqrt{\pi}$. Donner une expression de $\hat{f}_{\alpha}(t)$ pour tout réel t.
- **1391.** Soit $(x_0, x_1, x_2, x_3) = (1, 3, 2, 3)$. Soit $\Sigma = \left\{ \sum_{i=0}^{3} (x_i P(i))^2, P \in \mathbb{R}_2[X] \right\}$. Montrer que Σ admet un minimum et le déterminer.
- **1392.** On note \langle , \rangle le produit scalaire canonique de \mathbb{R}^n . Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $b \in \mathbb{R}^n$. Pour $x \in \mathbb{R}^n$, on pose $f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$.
- a) Montrer que f est de classe \mathbb{C}^1 sur \mathbb{R}^n et calculer ∇f .
- b) Montrer que f admet un minimum global sur \mathbb{R}^n et exprimer le point x^* où ce minimum est atteint.
- **1393.** On munit \mathbb{R}^n de sa structure euclidienne canonique. Pour $a \in \mathbb{R}^n$ et r > 0, on note B(a,r) [resp. $\overline{B}(a,r)$ et $\partial B(a,r)$] la boule ouverte de centre a et de rayon r [resp. la boule fermée et la frontière de la boule]. Soit $f: \overline{B}(a,r) \to \mathbb{R}$ une fonction continue sur $\overline{B}(a,r)$ et

de classe
$$C^2$$
 sur $B(a,r)$. Pour $x \in B(a,r)$, on définit $\Delta f(x) = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}(x)$.

- a) On suppose $\Delta f > 0$ sur B(a,r). Montrer que f atteint un maximum et que celui-ci ne peut pas être atteint en un point de B(a, r).
- **b**) On suppose $\Delta f \geqslant 0$ sur B(a,r). Montrer que $\sup_{x \in \overline{B}(a,r)} f(x) = \sup_{x \in \partial B(a,r)} f(x)$. Ind. Pour $\varepsilon > 0$, considérer $\tilde{f}_{\varepsilon} : x \mapsto f(x) + \varepsilon ||x - a||^2$

Probabilités

- **1394.** Dans une urne contenant N boules numérotées de 1 à N, on pioche n boules avec $n \leq N$ (en une seule fois). On note X la variable aléatoire qui donne le maximum des numéros des boules tirées.
- a) Donner la loi de X.
- **b)** Montrer que $\sum_{k=n}^{N} \binom{k}{n} = \binom{N+1}{n+1}$.
- c) En déduire l'espérance de X.
- d) Déterminer la variance de X.
- 1395. Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On suppose que, pour tout $n \in \mathbb{N}$, $\mathbf{P}(X=n) > 0$ et que la loi conditionnelle de Y sachant (X=n) est la loi uniforme $sur \{0, 1, \ldots, n\}.$
- a) Exprimer la loi de Y en fonction de celle de X. Montrer que Y et X Y suivent la même
- b) On pose Z = Y + 1 et on suppose que Z suit la loi géométrique de paramètre p.
- i) Déterminer la loi de X.

- ii) Montrer que les variables aléatoires Y et X Y sont indépendantes.
- c) Réciproquement, montrer que si les variables Y et X-Y sont indépendantes alors Z=Y+1 suit une loi géométrique.
- **1396.** Une particule, initialement placée en 0, se déplace à chaque instant de manière équiprobable d'une unité vers la gauche ou vers la droite, indépendamment des déplacements précédents. Pour $n \in \mathbb{N}$, on note X_n l'abscisse de la particule à l'instant n.
- a) Déterminer l'espérance et la variance de X_n .
- **b)** Soit $k \in \mathbb{N}$ et $\ell \in \{-k, \ldots, k\}$. Exprimer $\mathbf{P}(X_{2k} = 2\ell)$.
- **1397.** Un chocolatier met des images dans ses tablettes de chocolat. Il y a N images différentes et, à chaque achat, on obtient uniformément et indépendamment une des images. Soit X_k le nombre de tablettes achetées pour obtenir k images différentes.
- a) Quelle est la loi de $X_{k+1} X_k$? Calculer $\mathbf{E}(X_k)$.
- **b**) Donner un équivalent de $\mathbf{E}(X_N)$ quand N tend vers l'infini.
- c) Trouver de même un équivalent de $\sigma(X_N)$.
- **1398.** Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. suivant la loi uniforme $\{-1,1\}$. Pour $n\in\mathbb{N}^*$, on pose $S_n=X_1+\cdots+X_n$.
- a) Calculer la loi de $|S_{2n}|$.

- **b)** Montrer que $\mathbf{E}(|S_{2n}|) = \frac{1}{2^{2n-2}} \sum_{\ell=n+1}^{2n} \binom{2n}{\ell}$.
- $\textbf{\textit{c}) Montrer que}: \sum_{\ell=n+1}^{2n} \binom{2n}{\ell} = 2^{2n-1} \frac{1}{2} \binom{2n}{n}. \text{ Calculer } \sum_{\ell=n+1}^{2n} \ell \binom{2n}{\ell}.$
- **1399.** On considère une matrice aléatoire $A_n = (X_{i,j})_{1 \le i,j \le n}$ où les $X_{i,j}$ sont indépendantes et suivent la loi uniforme sur $\{-1,1\}$. On pose $D_n = \det(A_n)$.
- a) Déterminer $\mathbf{E}(D_n)$.
- **b)** Montrer que $V(D_n) = n!$ par récurrence sur n.