Écoles Normales Supérieures - PC

Algèbre

- **187.** \star *a*) Soit $X \subset \mathbb{N}$ telle que 0 et 1 appartiennent à X et $\lim_{n \to +\infty} \frac{1}{n} \operatorname{Card}(X \cap \llbracket 0, n \rrbracket) = 0$. Montrer que, pour tout $k \in \mathbb{N}^*$, il existe $j \in \mathbb{N}$ telle que $\operatorname{Card}(X \cap \llbracket j, j + k \rrbracket) = 2$.
- **188.** Soient deux réels a et b. On pose $P = X^4 + aX^3 + bX^2 + X$. On suppose que les racines de P sont toutes distinctes deux à deux et qu'elles appartiennent à un même cercle du plan complexe. Montrer que 3 < ab < 9.
- **189.** Soit $(P_n)_{n\in\mathbb{N}}$ une suite définie par $P_0\in\mathbb{R}[X]$ de degré $\geqslant 2$ et $\forall n\in\mathbb{N}, P_{n+1}=XP_n'$. Montrer qu'il existe une suite de réels positifs $(\lambda_n)_{n\in\mathbb{N}}$ convergeant vers 0 telle que, pour tout $n\in\mathbb{N}$, les racines complexes de P_n appartiennent au disque de centre 0 et de rayon λ_n .
- **190.** Soit E l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ à coefficients 0 ou 1 qui sont inversibles. Quel est le nombre maximal de 1 d'un élément de E?
- **191.** On dit qu'une matrice est positive si tous ses coefficients sont positifs. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer l'équivalence entre :
- (i) A est monotone, c'est-à-dire A est inversible et A^{-1} positive,
- (ii) $\forall X \in \mathbb{R}^n$, $AX \geqslant 0 \Rightarrow X \geqslant 0$.

- **192.** Soit E un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ tel que $\forall A \in E, \operatorname{rg}(A) \leq 1$. Montrer que $\dim(E) \leq n$.
- **193.** Déterminer les $X \in \mathcal{M}_2(\mathbb{R})$ telle que $X^2 + X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- **194.** Caractériser les matrices $A \in \mathcal{M}_n(\mathbb{R})$ nilpotentes d'indice n-1.
- **195.** Existe-t-il deux matrices N et P de $\mathcal{M}_n(\mathbb{R})$ telles que $N^2=0, P^2=P, NP$ est nilpotente et $(NP)^2 \neq 0$?
- **196.** Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^3 = 0$. Montrer qu'il existe une unique matrice $X \in$ $\mathcal{M}_n(\mathbb{R})$ telle que $X + MX + XM^2 = M$.
- **197.** On pose $A_0=\begin{pmatrix} 3/4 & 1/2 \\ 1/2 & 5/4 \end{pmatrix}$ puis, pour tout $n\in\mathbb{N},$ $A_{n+1}=2A_n-A_n^2.$ Déterminer la limite de $(\det(A_n))$ quand $n \to +\infty$
- **198.** On pose $A_1=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)$ et, pour $n\in\mathbb{N}^*,\,A_{n+1}=\left(\begin{array}{c|c}A_n&I_{2^n}\\\hline I_{2^n}&A_n\end{array}\right)$. Montrer que A_n admet (n+1) valeurs propres $\lambda_0 < \lambda_1 < \cdots < \lambda_n$ d'ordres respectifs $\binom{n}{k}$ pour $0 \leqslant k \leqslant n$.
- **199.** On munit $\mathbb{R}_n[X]$ du produit scalaire défini par $\langle P,Q\rangle=\int_0^1 P(x)Q(x)\,\mathrm{d}x$. Montrer que $M=\left(\left\langle X^i,X^j\right\rangle\right)_{(i,j)\in \llbracket 0,n\rrbracket^2}$ est inversible.
- **200.** Soient a_0, \ldots, a_n des réels.

Pour des polynômes $P, Q \in \mathbb{R}_n[X]$, on définit $\langle P, Q \rangle = \sum_{k=1}^n P^{(k)}(a_k) \, Q^{(k)}(a_k)$.

- a) Montrer que \langle , \rangle est un produit scalaire sur $\mathbb{R}_n[X]$.
- b) Montrer qu'il existe une base (P_0,\ldots,P_n) de $\mathbb{R}_n[X]$, orthonormée pour ce produit scalaire et telle que, pour chaque $i \in [0; n]$, le polynôme P_i soit de degré i et à coefficient dominant strictement positif.
- c) Déterminer $P_k^{(k)}(a_k)$ pour tout $k \in [0; n]$. d) On suppose $a_0 = \cdots = a_n = a$. Déterminer les polynômes P_k .
- **201.** Soient $n, k \in \mathbb{N}^*$ et (f_1, \ldots, f_k) une famille de vecteurs de \mathbb{R}^n . On suppose que $\forall x \in \mathbb{R}^n \setminus \{0\}, \exists i \in \{1, \dots, k\}, \langle x, f_i \rangle > 0.$
- a) Donner un exemple de famille de \mathbb{R}^n vérifiant cette propriété.
- a) Montrer que (f_1, \ldots, f_k) est une famille génératrice de \mathbb{R}^n .

202. Soit $n \in \mathbb{N}$ et $M \in \mathcal{S}_n(\mathbb{R})$. En notant (s_1, \ldots, s_n) les valeurs propres de M, on pose

$$N_p(M) = \left(\sum_{i=1}^n |s_i|^p\right)^{1/p}.$$

- a) Montrer que $(A, B) \mapsto \operatorname{tr}(AB)$ est un produit scalaire sur $\mathcal{S}_n(\mathbb{R})$. En déduire que N_2 est une norme sur $S_n(\mathbb{R})$.
- **b)** Montrer que $N_1(M) = \sup\{|\operatorname{tr}(MO)|, O \in \mathcal{O}_n(\mathbb{R})\}$. En déduire que N_1 est une norme $\operatorname{sur} \mathcal{S}_n(\mathbb{R})$.
- **203.** Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{A}_n(\mathbb{R})$.
- a) Montrer que les valeurs propres dans \mathbb{C} de A sont imaginaires pures.
- **b)** Que dire de det(A) si n est impair?
- c) On suppose n pair et on considère la matrice $J \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1. Montrer que det(A + J) = det(A)
- **204.** Soit $A=(a_{i,j})_{(i,j)\in \llbracket 1,n\rrbracket^2}$ vérifiant $\forall (i,j)\in \llbracket 1,n\rrbracket^2,\ a_{i,j}\in \{0,1\}.$ On note $J\in \mathbb{R}$ $\mathcal{M}_n(\mathbb{R})$ la matrice dont tous les coefficients sont égaux à 1. On suppose qu'il existe $k \in \mathbb{N}^*$ tel que $A^T A = kI_n + J$. Montrer que A est inversible.
- **205.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = A^T$.
- a) Quelles sont les valeurs propres complexes possibles de A?
- b) Donner un exemple de matrice A qui vérifie $A^2 = A^T$ et qui possède toutes les valeurs propres possibles trouvées à la question précédente.
- **206.** a) Soit $S \in \mathcal{S}_n(\mathbb{R})$ inversible. Montrer que les assertions sont équivalentes :
- (i) S admet k valeurs propres positives (comptées avec multiplicité),
- (ii) il existe des sous-espaces vectoriels F et G de E tels que $\dim F = k$, $\dim G = n k$ et $\forall X \in F, X^T S X \ge 0 \text{ et } \forall Y \in G, Y^T S Y \le 0.$
- b) Soit $S \in \mathcal{S}_n(\mathbb{R})$ inversible. Soit $P \in GL_n(\mathbb{R})$. Montrer que P^TSP et S ont le même nombre de valeurs propres positives.
- **207.** *a*) Montrer que toute matrice symétrique positive admet une racine carrée.
- **b)** Montrer que $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable si et seulement s'il existe S symétrique définie positive telle que $SA = A^T S$.
- **208.** Soit E un espace euclidien. Soit a un endomorphisme autoadjoint de E. Soient $u \in E$ non nul et $V = \text{Vect}\{a^k(u) ; k \in \mathbb{N}\}$. Montrer que l'endomorphisme induit par a sur V n'a que des valeurs propres simples.

Analyse

- **209.** Soit A un ensemble de \mathbb{R}^2 . On dit que $x, y \in A$ sont connectés si et seulement s'il existe $f \in \mathcal{C}^0([0,1], A)$ telle que f(0) = x et f(1) = y.
- a) Montrer que tous les points de \mathbb{R}^2 sont connectés.
- **b)** Déterminer les points connectés de $\mathbb{R}^2 \setminus \{(0,0)\}$.
- c) Déterminer les points connectés de $\mathbb{R}^2 \setminus \{x, ||x|| = 1\}$.

49

- d) Déterminer les points connectés de $\mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{Z}^2} \mathcal{B}_o(i, \varepsilon)$ où $\varepsilon \in \mathbb{R}^{+*}$.
- **210.** On considère $f: A \in \mathcal{M}_n(\mathbb{R}) \mapsto \sup_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, où le spectre est pris sur \mathbb{C} . L'application f est-elle lipschitzienne?
- **211.** On pose $a_1 \ge 0$ puis $a_{n+1} = 10^n a_n^{n^2}$ pour tout $n \in \mathbb{N}^*$. À quelle condition sur a_1 la suite (a_n) tend-elle vers 0?
- **212.** On pose, pour $n \in \mathbb{N}$, $f(n) = \sum_{k=0}^{n} \frac{n^k}{k!}$. Donner un équivalent de f(n).
- **213.** Étudier les suites u et v telles que $u_0 = v_0 = 0$ et $u_1 = v_1 = 1$ et, pour tout $n \ge 1$, $\begin{cases} u_{n+1} = au_n + bv_n + cu_{n-1} + dv_{n-1} \\ v_{n+1} = a'u_n + b'v_n + c'u_{n-1} + d'v_{n-1} \end{cases}$ avec toutes les constantes réelles.
- **214.** Pour $a \in \mathbb{R}$, soit (u_n) définie par $u_0 \in [0, 1]$ et $\forall n, x_{n+1} = ax_n(1 x_n)$.
- a) Pour quelles valeurs de a a-t-on $\forall n, u_n \in [0,1]$? Que peut-on dire alors de la suite (x_n) ?
- **b)** Montrer que, si $a \in [1,2]$, alors x_n tend vers $\frac{a-1}{a}$.
- c) On suppose que $a \in [2,3]$ et que (x_n) converge. Quelle est la limite de (x_n) ?
- **215.** Soit $(p_{i,j})_{(i,j)\in\mathbb{N}^2}$ une famille de réels positifs ou nuls telle que $p_{i,j}=0$ si j>i. On suppose que $\forall n \in \mathbb{N}, \ \sum_{i=0}^n p_{n,j} = 1$. Montrer l'équivalence des deux assertions suivantes :
- i) pour chaque $j \in \mathbb{N}$, la suite $(p_{n,j})_{n \in \mathbb{N}}$ tend vers 0,
- ii) pour toute suite convergente $(s_n)_{n\geqslant 0}$ de limite S, on a $\lim_{n\to\infty}\sum_{i=0}^n p_{n,j}s_j=S$.
- **216.** Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 telle que f(0) = 0 et $f'(0) \neq 0$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle vérifiant $u_0 \neq u_1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n \frac{u_n u_{n-1}}{f(u_n) f(u_{n-1})} f(u_n)$.

 a) Montrer que, si u_0 et u_1 sont assez petits, alors $\lim_{n \to +\infty} u_n = 0$.
- b) Sous les hypothèses de a), déterminer un équivalent de u_n lorsque n tend vers $+\infty$.
- **217.** Pour $c \in \mathbb{C}$, on définit la suite (z_n) par $z_0 = 0$ et $z_{n+1} = z_n^2 + c$ pour tout $n \in \mathbb{N}$. On pose $\mathcal{M} = \{c \in \mathbb{C}, (z_n) \text{ est bornée}\}.$
- a) Montrer que, si $|c| \leq 1/4$, alors $c \in \mathcal{M}$.
- **b)** Montrer que, si $|c| \ge 3$, alors $c \notin \mathcal{M}$.
- c) Discuter de l'ensemble $\mathcal{M} \cap \mathbb{R}$.
- **218.** Soient $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ deux suites réelles. Soit $S\in\mathbb{R}$. On suppose que : (i) $\forall n\in\mathbb{N},\ b_n>0$; (ii) la série $\sum b_n$ diverge ; (iii) $\lim_{n\to\infty}\frac{a_n}{b_n}=S$.

Montrer que $\lim_{n\to\infty} \frac{a_0+\cdots+a_n}{b_0+\cdots+b_n} = S$.

219. \star Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels positifs telle que $\sum_{n=0}^{+\infty}x_n=A$. Quelles sont les valeurs

que peut prendre $\sum_{n=0}^{+\infty} x_n^2$?

- **220.** Soit $g:[0,+\infty[\to\mathbb{R}$ de classe \mathcal{C}^2 telle que g(0)=g'(0)=0 et g''(0)>0. Pour $\lambda>0$, on pose $A_\lambda=\{x>0,\ g(x)=\lambda x\}$. Montrer qu'il existe $\mu>0$ tel que $\forall \lambda\in]0,\mu],\ A_\lambda\neq\emptyset$.
- **221.** Soient $f:[0,1]\to\mathbb{R}$ continue par morceaux et $g:[0,1]\to\mathbb{R}$ continue. On suppose que f+g est croissante. Montrer que f([0,1]) est un intervalle.
- **222.** * Trouver toutes les fonctions $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telles que : $\forall t \in \mathbb{R}, \ f(t)^2 = f\left(t\sqrt{2}\right)$.
- **223.** Soient $f,g:[0,1]\to [0,1]$ continues. On suppose $f\circ g=g\circ f$ et g croissante. Montrer que f et g admettent un point fixe commun.
- **224.** Déterminer les fonctions f de classe C^1 sur [-1,1] telles que : $\forall (x,y) \in [-1,1]^2, \ f(x)-f(y)\geqslant f(x)^2(x-y).$
- **225.** Déterminer les fonctions $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telles que $\forall x \in \mathbb{R}, f(7x+1) = 49f(x)$.
- **226.** Soit $f:t\mapsto \sum_{k=1}^N a_k\sin(2\pi kt)$ où les a_k sont des nombres réels avec $a_N\neq 0$. On note

 N_j le nombre de racines comptées avec multiplicité (notion qu'on admettra) de $f^{(j)}$ sur [0,1]. Montrer que $(N_j)_{j\geqslant 0}$ est une suite croissante qui tend vers 2N.

- **227.** Soit $V = \{ f \in \mathcal{C}^1([0;1], \mathbb{R}) ; f(0) = 0 \text{ et } f(1) = 1 \}$. Trouver tous les réels α tels que : $\forall f \in V$, $\exists x \in [0,1], f(x) + \alpha = f'(x)$.
- **228.** Soit $g: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $\lim_{t \to +\infty} g(t) = 0$ et f telle que f'(t) f(t) = g(t). On pose a = f(0). Montrer qu'il existe une unique valeur a pour laquelle $\lim_{t \to +\infty} f(t) = 0$.
- **229.** Soit $f \in \mathcal{C}^1(\mathbb{R}^+,\mathbb{R})$ ne prenant pas les valeurs 0 et 1. On suppose que $\forall x \geqslant 0, f'(x) = \frac{1}{f(x)} + \frac{1}{f(x)-1}$. Déterminer la limite de f en $+\infty$.
- **230.** Soit $f: \mathbb{R} \to \mathbb{R}$ 1-lipschitzienne, $\lambda \in]0,1[$ et $a \in \mathbb{R}$. Montrer qu'il existe une unique application $F: \mathbb{R} \to \mathbb{R}$ lipschitzienne telle que $\forall x \in \mathbb{R}, F(x) = f(x) + \lambda F(x+a)$.
- **231.** Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} . On pose $f_a: x \mapsto f(x+a)$ et $F_f = \operatorname{Vect}(f_a)_{a \in \mathbb{R}}$. *a*) Trouver f telle que F_f est de dimension finie. Préciser la dimension.

- **b)** Montrer que, si F_f est de dimension finie, alors $F_{f'}$ est aussi de dimension finie.
- c) Trouver les fonctions f telles que dim $F_f = 1$.
- d) Trouver les fonctions f telles que dim $F_f = 2$.
- **232.** Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 telle que $\lim_{x \to +\infty} f(x) = 0$. On pose, pour $t \in \mathbb{R}^+$, $\lambda(t) = \max_{x \in \mathbb{R}} (|f(x)| \exp(-tx^2)).$
- a) On suppose $f(0) \neq 0$. Déterminer $\lim_{t \to +\infty} \lambda(t)$.
- b) On suppose maintenant f(0) = 0 et $f'(0) \neq 0$. Déterminer un équivalent de λ en $+\infty$.
- c) Même question en supposant la fonction f de classe \mathcal{C}^{∞} , $f(0) = \cdots = f^{(k-1)}(0) = 0$ et $f^{(k)}(0) \neq 0.$
- **233.** On dit que (x_n) converge au sens de Cesàro vers ℓ lorsque $\underbrace{x_1 + \dots + x_n}_{n \to +\infty} \xrightarrow[n \to +\infty]{n \to +\infty} \ell$. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ qui vérifient la propriété suivante : pour toute suite réelle (x_n) , si la suite (x_n) converge au sens de Cesàro vers ℓ , alors la suite $(f(x_n))$ converge au sens de Cesàro vers $f(\ell)$.
- **234.** Soit g une fonction \mathcal{C}^2 de \mathbb{R}^+ dans \mathbb{R} telle que g(0) = g'(0) = 0 et g''(0) > 0. On pose, pour λ dans \mathbb{R}^{+*} , $A(\lambda) = \{x > 0, \ g(x) = \lambda x\}$.
- a) Montrez qu'il existe $\lambda_0 > 0$ tel que, pour tout λ dans $]0; \lambda_0[, A(\lambda) \neq \emptyset$.
- b) On pose $\lambda^* = \sup\{\lambda > 0, \ A(\lambda) \neq \emptyset\}$ (cela peut être $+\infty$). Montrer que, pour tout λ dans $]0; \lambda^*[, A(\lambda)]$ est non vide.
- c) On pose $X_{\lambda} = \inf\{x > 0, \ g(x) = \lambda x\}$ quand c'est défini. Montrer que $X_{\lambda} \neq 0$.
- d) En toute généralité, la fonction $h: \lambda \mapsto X_{\lambda}$ est-elle continue sur $]0; \lambda^*[?]$
- e) Montrer que cette fonction h est continue au voisinage de 0.
- **235.** Soit $M \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_n(\mathbb{C}))$. On suppose que, pour tout t, M(t) est inversible. L'objectif est de montrer que $\frac{\mathrm{d}}{\mathrm{d}t} \left(\det \left(M \left(t \right) \right) \right) = \det \left(M \left(t \right) \right) \operatorname{tr} \left(M \left(t \right)^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \left(M \left(t \right) \right) \right).$
- a) Le montrer si M est diagonale. b) Montrer que $\forall U \in \mathcal{M}_n(\mathbb{R})$, $\lim_{\varepsilon \to 0} \frac{\det{(I_n + \varepsilon U)} \det{(I_n)}}{\varepsilon} = \operatorname{tr}(U)$. c) On suppose qu'il existe $t_0 \in \mathbb{R}$ tel que $M(t_0) = I_n$. Montrer la relation en t_0 .
- d) Traiter le cas général.
- **236.** Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On pose $f_a : x \mapsto f(a+x)$ et $F_f = \text{Vect}(f_a, a \in \mathbb{R})$.
- a) Si F_f est de dimension finie, montrer que $F_{f'}$ l'est aussi.
- b) Quelle est la dimension de F_f lorsque $f = \exp ?$
- c) Réciproquement, montrer que si dim $(F_f) = 1$, alors $f = \exp$.
- **237.** On suppose $e=rac{p}{q}\in\mathbb{Q}.$ Montrer que $q\int_0^1x^ne^x\,\mathrm{d}x\in\mathbb{N}^*.$ Conclure. Adapter la preuve précédente pour prouver $e^{\overset{\circ}{2}} \notin \mathbb{Q}$.

52

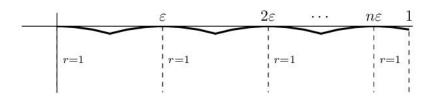
- **238.** Soit $f: \mathbb{R} \mapsto \mathbb{R}$ une application continue. On suppose que $x \mapsto f(x) + \int_0^x f(t) dt$ tend vers le réel ℓ en $+\infty$. Montrer que f possède une limite en $+\infty$ que l'on déterminera.
- **239.** Soit $f:[0,1]\to\mathbb{R}^+$ et intégrable telle que, pour tout $x\in[0,1]$, f(x)f(1-x)=1. Montrer que $\int_0^1 f\geqslant 1$.
- **240.** Soit $f \in \mathcal{C}^1([0;1],\mathbb{R})$ telle que $\int_0^1 f(t) dt = 0$. Montrer que $\left| \int_0^1 f(t) dt \right| \leqslant \frac{1}{8} \|f'\|_{\infty}$.
- **241.** Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$ une fonction de classe C^1 , à valeurs dans \mathbb{R}^{+*} , décroissante et intégrable sur \mathbb{R}^{+*} .
- a) On suppose que $\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} 0$. Montrer que $\frac{f(x)}{\int_x^{+\infty} f(t) dt} \xrightarrow[x \to +\infty]{} 0$
- **b)** On suppose que $\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} -\infty$. Que dire de $\lim_{x \to +\infty} \frac{f(x)}{\int_x^{+\infty} f(t) dt}$?
- **242.** Soit (P_n) une suite de polynômes de $\mathbb{R}[X]$ telle que $\lim_{n \to +\infty} \sup_{x \in [-1,1]} |P_n(x) e^x| = 0$. Montrer que $\deg(P_n) \underset{n \to +\infty}{\longrightarrow} +\infty$.
- **243.** Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définie sur $[0,+\infty[$ par $f_0=1$ et $\forall n\in\mathbb{N},$ $f_n(0)=1$ et $f'_{n+1}(x)=e^x\sqrt{f_n(x)}$. Justifier l'existence de $\lim_{n\to+\infty}f_n(x)$ et déterminer sa valeur.
- **244.** Encadrer et donner un équivalent en $+\infty$ de $S: x \mapsto \sum_{k=0}^{+\infty} \frac{x^k}{\sqrt{k!}}$.
- **245.** a) Montrer que la suite $\left(\sum_{k=1}^n \frac{1}{k} \ln(n)\right)_{n \in \mathbb{N}^*}$ converge. On note γ sa limite.
- **b)** Montrer que la fonction $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .
- c) Calculer $\Gamma(n)$ pour $n \in \mathbb{N}^*$. Donner un développement asymptotique de $\ln(\Gamma(n+1))$ à la précision $O(\ln(n))$. En considérant la fonction $\Psi: x \mapsto \frac{\Gamma'(x)}{\Gamma(x)}$, montrer que $\Gamma'(1) = -\gamma$. Ind. On admet que l'on peut « dériver » le développement précédent c'est-à-dire que $\Psi(n+1) = \ln(n) + O(1/n)$.
- d) Montrer que Ψ est croissante et justifier le développement admis précédemment.
- **246.** Soient $f,g:\mathbb{R}\to\mathbb{R}$ des fonctions continues. On suppose qu'il existe des constantes $C_1,C_2,a,b\in\mathbb{R}^{+*}$ telles que $\forall x\in\mathbb{R}, |f(x)|\leqslant \frac{C_1}{(1+|x|)^a}$ et $|g(x)|\leqslant \frac{C_2}{(1+|x|)^b}$.

Lorsque c'est possible, on pose $f * g(x) = \int_{-\infty}^{+\infty} f(x-y) \, g(y) \, \mathrm{d}y$.

- a) À quelle condition sur C_1, C_2, a, b la fonction f * g est-elle définie sur \mathbb{R} ?
- **b**) On suppose maintenant a et b strictement supérieurs à 1. Montrer qu'il existe $C_3>0$ telle que $\forall x\in\mathbb{R},\quad |f*g(x)|\leqslant \frac{C_3}{(1+|x|)^{\min(a,b)}}$.
- **247.** Soit $(a,b) \in \mathbb{R}^2$. Trouver toutes les fonctions $f \in \mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$ bornées sur \mathbb{R}^2 et telles que $f = a \frac{\partial f}{\partial x} + b \frac{\partial f}{\partial y}$.
- **248.** ** Montrer que la fonction $f: P \in \mathbb{R}_n[X] \mapsto f(P) = \int_0^1 (P(x) e^x)^2 dx$ admet un unique point critique.

Géométrie

- **249.** Montrer qu'un polygone à n sommets inscrit dans le cercle unité est d'aire maximale si et seulement s'il est régulier.
- **250.** Soit $\varepsilon \in]0;1[$. Soit n le plus grand entier naturel tel que $n\varepsilon \leqslant 1$. On trace les cercles de rayon 1 et de centres $(k\varepsilon,-1)$ pour $0\leqslant k\leqslant n$. Donner un développement limité de la somme des longueurs des arcs de cercle (voir figure).



Probabilités

- **251.** On considère une urne contenant $n \ge 2$ boules : 2 boules sont rouges et les n-2 autres sont blanches. On tire les boules une par une sans remise. On s'arrête une fois qu'on a tiré les deux boules rouges. En moyenne, combien reste-t-il de boules dans l'urne?
- **252.** On considère une urne vide qu'on remplit successivement d'une boule blanche (avec une probabilité p) ou d'une boule rouge (avec une probabilité 1-p). On arrête de la remplir lorsqu'on obtient la première boule rouge. Puis on la vide jusqu'à tirer la boule rouge. Déterminer le nombre moyen de boules blanches restantes à la fin.
- **253.** On dispose d'une urne vide. On ajoute des boules une par une et on s'arrête dès qu'on a ajouté une boule rouge. La probabilité d'ajouter une boule rouge est à chaque étape est égale à $\frac{1}{m}$, avec $m \in \mathbb{N}^*$. On mélange ensuite les boules et on les retire une à une jusqu'à retirer la boule rouge. Calculer l'espérance du nombre de boules restantes.

- 54
- **254.** Soit $n \in \mathbb{N}^*$. Pour A partie de $[\![1,n]\!]^2$, on note M(A) la matrice carrée de taille n à coefficients dans $\{0,1\}$ caractérisée par $\forall (i,j), M(A)_{i,j} = 1 \iff (i,j) \in A$. On considère l'ensemble P des parties de $[\![1,n]\!]^2$ de cardinal n et une variable aléatoire X suivant la loi uniforme sur P. Quelle est la probabilité que M(X) soit inversible ?
- **255.** Soit $(X_n)_{n\in\mathbb{N}^*}$ des variables aléatoires indépendantes suivant la loi uniforme sur $\{-1,1\}$. Pour $n\in\mathbb{N}^*$, soit $M_n=\frac{X_1+\cdots+X_n}{\sqrt{n}}$. Déterminer $\mathbf{E}\left(M_n^k\right)$ pour $k\in\mathbb{N}$. Ind. Distinguer selon la parité de k.
- **256.** \star Soient, pour $\lambda > 0$, A_{λ} , B_{λ} , C_{λ} , D_{λ} quatre variables aléatoires indépendantes suivant la loi de Poisson de paramètre λ .
- a) Calculer $\lim_{\lambda \to +\infty} \mathbf{P} \left(A_{\lambda} X^2 + B_{\lambda} X + C_{\lambda} \right)$ n'a que des racines réelles).
- **b)** Même question pour $A_{\lambda}X^3 + B_{\lambda}X^2 + C_{\lambda}X + D_{\lambda}$.
- **257.** Soit $n \in \mathbb{N}^*$. On munit l'ensemble S_n des permutations de $\{1,2,\ldots,n\}$ de la probabilité uniforme. Soit $k \in \{1,\ldots,n\}$. Pour $\sigma \in S_n$, on note $P_k(\sigma) = \left\{(i_1,\ldots,i_k) \in \{1,\ldots,n\}^k \; , \; i_1 < i_2 < \cdots < i_k \; \text{et} \; \sigma(i_1) < \sigma(i_2) < \cdots < \sigma(i_k)\right\}$ l'ensemble des sous-suites croissantes de longueur k de la permutation σ . Déterminer l'espérance de $\operatorname{Card}(P_k)$.
- **258.** Soient $\lambda \in [0,1]$, $(X_{k,n})_{1 \leqslant k \leqslant n \atop n \geqslant 1}$ des variables aléatoires mutuellement indépendantes, où $X_{k,n}$ suit la loi $\mathcal{B}\left(\lambda/n\right)$. On pose $X_n = X_{1,n} + \cdots + X_{n,n}$. Soit $t \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} \mathbf{E}(\exp(tX_n))$.
- **259.** On dit qu'une variable aléatoire X à valeurs réelles est infiniment divisible si, pour tout $n \in \mathbb{N}^*$, il existe des variables aléatoires $X_{1,n}, \ldots, X_{n,n}$ indépendantes et de même loi telles que $X \sim X_{1,n} + \cdots + X_{n,n}$.
- a) Donner des exemples de variables aléatoires indéfiniment divisibles.
- **b)** Soit X une variable aléatoire infiniment divisible non nulle telle que $\mathbf{E}(X)=0$ et $\mathbf{E}(X^2)<+\infty$. Montrer que, pour tout $A>0,\ \mathbf{P}(X>A)>0$.
- **260.** Pour $x \in \mathbb{R}$, on pose $\gamma(x) = \frac{1}{\sqrt{\pi}} e^{-x^2/2}$. Soit $(X_n)_{n \in \mathbb{N}^*}$ des variables aléatoires indépendantes qui suivent la loi uniforme sur $\{-1,1\}$. Pour $n \in \mathbb{N}^*$, on pose $M_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$. Montrer que pour tout polynôme $P \in \mathbb{R}[X]$, on a $\lim_{n \to \infty} \mathbf{E}(P(M_n)) = \int_{-\infty}^{+\infty} \gamma(x) P(x) \, \mathrm{d}x$.
- **261.** On note D(X) le nombre de diviseurs premiers de X, où X suit la loi uniforme sur [1, n].
- a) Calculer $\lim_{n\to+\infty} \mathbf{E}(D(X))$.
- **b**) On admet que $\sum_{p \text{ premier, } p \leqslant n} \frac{1}{p} \sim \ln(\ln n)$. Montrer $\lim_{n \to +\infty} \mathbf{P}\left(\left|\frac{D(X)}{\ln(\ln n)} 1\right| \geqslant \varepsilon\right) = 0$.

262. Soient $C \in GL_q(\mathbb{R})$ et $N \in \mathcal{M}_q(\mathbb{R})$ nilpotente. Soit $p \in]0,1[$. On définit $(B_n)_{n \in \mathbb{N}}$ par $B_0 = I_n$ et $B_{n+1} = A_n B_n$, où $\mathbf{P}(A_n = C) = p$ et $\mathbf{P}(A_n = N) = 1 - p$. Déterminer $\lim_{n \to +\infty} \mathbf{P}(B_n \neq O)$.

263. On munit \mathbb{R}^2 de sa structure euclidienne canonique.

Soient
$$\theta \in]-\pi,\pi]$$
 et $p \in]0,1[$. On note $R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ et $M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Soit (u_n) une suite de vecteurs aléatoires de \mathbb{R}^2 avec $u_0 = (1,0)^T$ et telle que, pour tout $n \in \mathbb{N}$, $\mathbf{P}(u_{n+1} = R(\theta)u_n) = p$ et $\mathbf{P}(u_{n+1} = Mu_n) = 1 - p$. Déterminer la limite de $(\mathbf{E}(\|u_n\|)$ pour $\theta = \frac{2\pi}{3}$ puis pour θ quelconque.

264. Soit
$$\theta \in [0\,;2\pi]$$
. Soit $p\in]0\,;1\,[$. On pose $R=\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ et $Q=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Les variables aléatoires $(A_n)_{n\in\mathbb{N}^*}$ sont indépendantes et vérifient $\mathbf{P}(A_n=R)=p$ et $\mathbf{P}(A_n=Q)=1-p$. On note $U_0=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ puis, pour chaque $n\in\mathbb{N}^*$, $U_n=A_nU_{n-1}$. On note $t_1< t_2< t_3<\dots$ les instants n successifs où $A_n=Q$.

- a) Trouver la loi de $||U_{t_1}||$ où || || désigne la norme euclidienne canonique.
- **b**) Pour $N \in \mathbb{N}^*$, donner une approximation du nombre d'indices i tels que $t_i \leq N$. Dans toute la suite, on suppose que $\theta = \frac{2\pi}{3}$.
- c) Calculer $\mathbf{E}(\ln \|U_{t_1}\|)$.
- d) Déterminer la loi de $||U_{t_2}||$.
- e) Déterminer la loi de $||U_{t_k}||$ pour $k \in \mathbb{N}^*$.
- f) Déterminer $\mathbf{E}(\ln ||U_{t_k}||)$ pour $k \in \mathbb{N}^*$.