

Mathématiques 2

PSI

2020

CONCOURS CENTRALE·SUPÉLEC

4 heures

Calculatrice autorisée

Les fonctions de Lambert

Objectifs

L'objet de ce problème est l'étude de différentes propriétés des fonctions de Lambert ainsi que leur application en probabilités.

Dépendance des parties

Les fonctions V et W définies dans la partie I sont utilisées dans les parties II, III et IV. Les parties II, III et IV sont indépendantes les unes des autres.

Notations

Pour des entiers k et n avec $0 \le k \le n$, le coefficient binomial « k parmi n » est noté $\binom{n}{k}$.

Lorsque $k \leq n$, [k, n] représente l'ensemble des nombres entiers compris, au sens large, entre k et n.

I Fonctions de Lambert

Dans cette partie, on définit les fonctions de Lambert et on étudie certaines de leurs propriétés. On considère, dans toute cette partie, l'application

$$f: \begin{vmatrix} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x e^x \end{vmatrix}$$

- **Q 1.** Justifier que l'application f réalise une bijection de l'intervalle $[-1, +\infty[$ sur l'intervalle $[-e^{-1}, +\infty[$. Dans la suite du sujet, la réciproque de cette bijection est notée W. On rappelle que ceci signifie que, pour tout réel $x \ge -e^{-1}$, W(x) est l'unique solution de l'équation f(t) = x (équation d'inconnue $t \in [-1, +\infty[)$).
- **Q 2.** Justifier que W est continue sur $[-e^{-1}, +\infty[$ et est de classe \mathcal{C}^{∞} sur $]-e^{-1}, +\infty[$.
- **Q 3.** Expliciter W(0) et W'(0).
- **Q 4.** Déterminer un équivalent de W(x) lorsque $x \to 0$ ainsi qu'un équivalent de W(x) lorsque $x \to +\infty$.
- **Q 5.** Tracer, sur le même dessin, les courbes \mathcal{C}_f et \mathcal{C}_W représentatives des fonctions f et W. Préciser les tangentes aux deux courbes au point d'abscisse 0 ainsi que la tangente à \mathcal{C}_W au point d'abscise $-\mathrm{e}^{-1}$.
- **Q 6.** Pour quelles valeurs du paramètre réel α la fonction $x \mapsto x^{\alpha}W(x)$ est-elle intégrable sur]0,1]?
- **Q** 7. Pour quelles valeurs du paramètre réel α la fonction $x \mapsto x^{\alpha}W(x)$ est-elle intégrable sur $[1, +\infty]$?
- **Q 8.** Démontrer que l'application f réalise une bijection de l'intervalle $]-\infty,-1]$ sur l'intervalle $[-e^{-1},0[$. Dans la suite du sujet, la réciproque de cette bijection est notée V.
- **Q 9.** Pour un paramètre réel m, on considère l'équation d'inconnue $x \in \mathbb{R}$

$$xe^x = m ag{I.1}$$

Déterminer, en fonction de m, le nombre de solutions de (I.1). Expliciter les solutions éventuelles à l'aide des fonctions V et W.

Q 10. Pour un paramètre réel m, on considère l'inéquation d'inconnue $x \in \mathbb{R}$

$$xe^x \leqslant m$$
 (I.2)

En utilisant les fonctions V et W, déterminer, suivant les valeurs de m, les solutions de (I.2). Illustrer graphiquement les différents cas.

Q 11. Pour des paramètres réels non nuls a et b, on considère l'équation d'inconnue $x \in \mathbb{R}$

$$e^{ax} + bx = 0 ag{I.3}$$

Déterminer, suivant les valeurs de a et b, le nombre de solutions de (I.3). Expliciter les solutions éventuelles à l'aide des fonctions V et W.

IV Approximation de W

On définit dans cette partie une suite de fonctions $(w_n)_{n\geqslant 0}$ et on étudie sa convergence vers la fonction W définie dans la partie I.

Pour tout réel positif x, on considère la fonction ϕ_x définie par

$$\phi_x: \begin{vmatrix} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & x \exp(-x \exp(-t)) \end{vmatrix}$$

et on définit, sur \mathbb{R}^+ , une suite de fonctions $(w_n)_{n\geqslant 0}$ par,

$$\forall x \in \mathbb{R}^+, \qquad \begin{cases} w_0(x) = 1 \\ w_{n+1}(x) = \phi_x(w_n(x)) \end{cases}$$

Q 35. Démontrer que, pour tout réel positif x, W(x) est un point fixe de ϕ_x , c'est-à-dire une solution de l'équation $\phi_x(t) = t$.

Q 36. Démontrer que, pour tout réel positif x, la fonction ϕ_x est de classe \mathcal{C}^2 sur $\mathbb R$ et que

$$\forall t \in \mathbb{R}, \qquad 0 \leqslant \phi_x'(t) \leqslant \frac{x}{e}.$$

Q 37. En déduire que

$$\forall x \in [0,\mathrm{e}], \quad \forall n \in \mathbb{N}, \qquad |w_n(x) - W(x)| \leqslant \left(\frac{x}{e}\right)^n |1 - W(x)| \, .$$

Q 38. Pour tout réel $a \in]0,e[$, justifier que la suite de fonctions (w_n) converge uniformément sur [0,a] vers la fonction W.

Q 39. La suite de fonctions (w_n) converge-t-elle uniformément vers W sur [0,e]?

