PROBLÈME 1

Étude d'une famille de séries entières

Dans tout le problème, α désigne un nombre réel. On note \mathcal{D}_{α} l'ensemble des réels x pour lesquels la série entière $\sum_{n\geq 1}\frac{x^n}{n^{\alpha}}$ est convergente et on pose, pour tout $x\in\mathcal{D}_{\alpha}$:

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}.$$

Objectifs

Ce problème est composé de trois parties indépendantes.

Dans la **Partie I**, on étudie quelques propriétés élémentaires des fonctions f_{α} .

L'objectif de la **Partie II** est de construire un logarithme complexe.

Enfin, la **Partie III** permet d'obtenir un équivalent de $f_{\alpha}(x)$ lorsque x tend vers 1, dans le cas $\alpha \in]0, 1[$.

Partie I - Quelques propriétés des fonctions f_{α}

- **Q6.** Déterminer le rayon de convergence R commun aux séries entières définissant les fonctions f_a .
- **Q7.** Déterminer, suivant les valeurs du réel α , le domaine de définition \mathcal{D}_{α} de la fonction f_{α} . On distinguera les $cas \ \alpha \in]-\infty, 0], \ \alpha \in]0, 1]$ et $\alpha \in]1, +\infty[$.
- **Q8.** On suppose dans cette question $\alpha > 0$. Déterminer, pour tout $x \in \mathcal{D}_{\alpha}$, le signe de $f_{\alpha}(x)$.
- **Q9.** Expliciter f_0 , f_{-1} et f_1 .
- **Q10.** Soit $\alpha > 1$. Prouver que f_{α} est continue sur \mathcal{D}_{α} .
- **Q11.** Soit $\alpha \le 1$. Prouver que $\lim_{x \to 1^-} f_{\alpha}(x) = +\infty$. On pourra comparer f_{α} à f_1 .

Partie II - Un logarithme complexe

Q14. Donner sans démonstration le développement en série entière au voisinage de 0 de la fonction qui à $x \in]-1, 1[$ associe $\ln(1+x)$.

Pour tout nombre complexe z, tel que la série $\sum_{n\geq 1} \frac{(-z)^n}{n}$ est convergente, on note : $S(z) = -\sum_{n=1}^{+\infty} \frac{(-z)^n}{n}$.

Q15. Donner le rayon de convergence R de la série entière définissant S. Pour tout x réel élément de]-R, R[, déterminer la valeur de $\exp(S(x))$.

Soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. On considère la série entière de la variable *réelle t* suivante :

$$\sum_{n>1} (-1)^{n-1} \frac{z_0^n}{n} t^n.$$

En cas de convergence, on note g(t) sa somme.

On a donc, pour $t \in \mathbf{R}$ tel que la série est convergente, $g(t) = S(tz_0)$.

- Q16. Déterminer le rayon de convergence de la série entière définissant g.
- **Q17.** Prouver que g est définie et de classe C^{∞} sur [0,1]. Déterminer, pour tout $t \in [0,1]$, g'(t).
- **Q18.** On pose $h = \exp \circ g$. Prouver que pour tout $t \in [0, 1]$:

$$h'(t) = \frac{z_0}{1 + tz_0} h(t).$$

Q19. Résoudre l'équation différentielle de la question précédente et en déduire que :

$$\exp(S(z_0)) = z_0 + 1.$$