III Partie III: Étude d'un endomorphisme sur un espace préhilbertien

III.A - Les polynômes d'Hermite.

On note w l'application de $\mathbb R$ dans $\mathbb R$, de classe C^∞ , définie pour tout $x \in \mathbb R$ par $w(x) = \mathrm{e}^{-\mathrm{x}^2}$. Pour tout $n \in \mathbb N$, on note H_n l'application de $\mathbb R$ dans $\mathbb R$ définie pour tout $x \in \mathbb R$ par $H_n(x) = (-1)^n \mathrm{e}^{\mathrm{x}^2} \mathrm{w}^{(n)}(\mathrm{x})$, où $w^{(n)}$ désigne la dérivée n-ième de w.

En particulier : $H_0(x) = 1$.

- **Q 14.** Calculer, pour tout $x \in \mathbb{R}, H_1(x), H_2(x), H_3(x)$.
- **Q 15.** Montrer, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$:

$$H_{n+1}(x) = 2xH_n(x) - H'_n(x)$$
.

- **Q 16.** En déduire que, pour tout $n \in \mathbb{N}$, H_n est un polynôme de degré n dont vous déterminerez la parité.
- **Q 17.** Déterminer, pour tout $n \in \mathbb{N}$, le coefficient dominant de H_n .

III.B - Un produit scalaire.

On note E l'ensemble des applications f de $\mathbb R$ dans $\mathbb R$ continues et telles que $\int_{-\infty}^{+\infty} f^2(x)e^{-x^2} dx$ converge.

Q 18. Montrer que E est un \mathbb{R} espace vectoriel contenant $\mathbb{R}[X]$.

Q 19. On note
$$\langle .,. \rangle$$
 l'application de E^2 dans $\mathbb R$ qui à tout $(f,g) \in E^2$ associe $\frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{+\infty} f(x)g(x)e^{-x^2} dx$.

Montrer que $\langle .,. \rangle$ est un produit scalaire sur E.

On notera ||.|| la norme euclidienne associée à ce produit scalaire.

III.C - Lien entre le produit scalaire et les polynômes d'Hermite

Q 20. Montrer, pour tout $n \in \mathbb{N}^*$ et tout $P \in \mathbb{R}[X]$:

$$\langle P', H_{n-1} \rangle \equiv \langle P, H_n \rangle,$$

Q 21. En déduire, pour tout $n \in \mathbb{N}^*$ et tout $P \in \mathbb{R}_{n-1}[X]$: $(P \mid H_n) = 0$.

Q 22. Montrer que, pour tout $n \in \mathbb{N}$, la famille $(H_0, ..., H_n)$ est une base orthogonale de $\mathbb{R}_n[X]$.

Soit $n \in \mathbb{N}$.

Q 23. Montrer: $||H_n||^2 = \langle H_n^{(n)}, H_0 \rangle$.

Q 24. En déduire la valeur de $||H_n||$.

III.D - Étude d'un endomorphisme autoadjoint

On note u,v,w les applications définies de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$, pour tout $P\in\mathbb{R}[X]$, par :

$$u(P) = -P'' + 2XP' + P$$
, $v(P) = 2XP - P'$, $w(P) = P'$.

Q 25. Montrer que u est un endomorphisme de $\mathbb{R}[X]$ et que $\forall n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par u.

Par la suite, on notera u_n l'endomorphisme induit par u sur $\mathbb{R}_n[X]$.

On admet que v et w sont aussi des endomorphismes de $\mathbb{R}[X]$, et on note Id l'application identique de $\mathbb{R}[X]$.

- **Q 26.** Etablir: $v \circ w = u \text{Id et } w \circ v = u + \text{Id.}$
- **Q 27.** En déduire : $u \circ v v \circ u = 2v$.
- **Q 28.** Montrer que, pour tout $\lambda \in \mathbb{R}$ et tout $P \in \mathbb{R}[X]$, si $u(P) = \lambda P$, alors $u(v(P)) = (\lambda + 2)v(P)$.
- **Q 29.** Montrer que $\forall k \in \mathbb{N}$, H_k est un vecteur propre de u et déterminer la valeur propre associée.
- **Q 30.** Soit $n \in \mathbb{N}$. Justifier que u_n est diagonalisable sur \mathbb{R} .
- **Q 31.** Établir, pour tout $(P,Q) \in \mathbb{R}[X]^2$:

$$\langle P', Q' \rangle = \langle u(P), Q \rangle - \langle P, Q \rangle.$$

Soit $n \in \mathbb{N}$.

- **Q 32.** Montrer que u_n est un endomorphisme autoadjoint de $\mathbb{R}_n[X]$.
- Q 33. Justifier, d'une deuxième manière, que u_n est diagonalisable sur \mathbb{R} dans une base orthonormée de $\mathbb{R}_n[X]$ formée de vecteurs propres de u_n .
- **Q 34.** Donner une base orthonormale de $\mathbb{R}_n[X]$ constituée de vecteurs propres de u_n .

IV Partie IV: Une famille totale

Dans cette partie, nous conservons les notations de la partie III. L'espace E muni de son produit scalaire et la famille $(H_n)_{n\in\mathbb{N}}$ précédemment construite. Nous allons montrer que $(\text{vect}(\mathbf{H_n},\mathbf{n}\in\mathbb{N}))^{\perp}=\{0\}$. On dit dans ce cas là que la famille $(H_n)_{n\in\mathbb{N}}$ est totale dans l'espace préhilbertien E ou encore que c'est une base hilbertienne de E.

Q 35. Soit $\xi \in \mathbb{R}$. Pour $\xi \in E$, montrer que $x \mapsto f(x)e^{-ix\xi}e^{-x^2}$ est intégrable sur \mathbb{R} .

On pourra écrire $f(x)e^{-ix\xi}e^{-x^2} = f(x)e^{-x^2/2}e^{-ix\xi}e^{-x^2/2}$.

On définit ainsi

$$\forall \xi \in \mathbb{R}, \mathcal{F}(f)(\xi) = \int\limits_{-\infty}^{+\infty} f(t)e^{-it\xi}e^{-t^2} dt.$$

 $\mathcal F$ est une application linéaire sur E, appelée la transformation de Fourier de f sur l'espace préhilbertien E. Nous admettrons pour la suite que $\mathcal F$ est injective sur E.

Q 36. Montrer que, pour tout entier naturel p, la fonction $x \mapsto x^{2p} \exp(-x^2)$ est intégrable sur \mathbb{R} .

On note
$$M_p = \int_{-\infty}^{+\infty} x^{2p} \exp(-x^2) dx$$
. Déterminer la valeur de M_p .

Q 37. Soit $f \in E$. Justifier que

$$\forall \xi \in \mathbb{R}, \, \mathcal{F}(f)(\xi) = \int\limits_{-\infty}^{+\infty} \sum\limits_{n=0}^{+\infty} f(x) e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} \, dx$$

Q 38. Montrer que $\mathcal{F}(f)$ est développable en série entière sur \mathbb{R} .

Dans la suite de la partie, on suppose que $f \in (\text{vect}(H_n, n \in \mathbb{N}))^{\perp}$. Le but est de montrer que f est la fonction nulle.

- **Q 39.** Montrer que $\forall n \in \mathbb{N}, \int_{-\infty}^{+\infty} x^n f(x) e^{-x^2} dx = 0.$
- **Q 40.** En déduire que $\mathcal{F}(f)$ est la fonction nulle.
- Q 41. Conclure.

 $\bullet \bullet \bullet FIN \bullet \bullet \bullet$