Objectifs

Dans cette **partie**, on introduit la matrice B_n et on en étudie ses propriétés spectrales à l'aide d'un endomorphisme de dérivation.

Soit $n \in \mathbb{N}^*$ un entier naturel fixé. Pour $k \in [0, n]$, on note $f_k : \mathbb{R} \to \mathbb{C}$ la fonction définie par :

$$\forall x \in \mathbb{R}, f_k(x) = \cos^k(x) \sin^{n-k}(x).$$

On note V_n le \mathbb{C} -espace vectoriel défini par :

$$V_n = \operatorname{Vect}_{\mathbb{C}}(f_0, f_1, \dots, f_n) = \left\{ \sum_{k=0}^n \lambda_k f_k \mid (\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1} \right\}.$$

- **Q21.** Montrer que la famille (f_0, \ldots, f_n) est libre. En déduire la dimension de l'espace vectoriel complexe V_n .
- **Q22.** Pour $k \in [0, n]$, montrer que $f'_k \in V_n$. En déduire que :

$$\begin{array}{cccc} \varphi_n : & V_n & \to & V_n \\ & f & \mapsto & \varphi_n(f) = f' \end{array}$$

définit un endomorphisme de V_n et que sa matrice B_n dans la base (f_0, f_1, \ldots, f_n) est la matrice :

$$B_{n} = \begin{pmatrix} 0 & -1 & 0 & \cdots & \cdots & 0 \\ n & 0 & -2 & \ddots & & \vdots \\ 0 & n-1 & 0 & -3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & -n \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathbf{M}_{n+1}(\mathbb{R}).$$

Pour $k \in [0, n]$, on note $g_k : \mathbb{R} \to \mathbb{C}$ la fonction définie par : $\forall x \in \mathbb{R}, \ g_k(x) = e^{i(2k-n)x}$.

- **Q23.** Montrer que : $\forall x \in \mathbb{R}, \ g_k(x) = (\cos x + i \sin x)^k (\cos x i \sin x)^{n-k}$.
- **Q24.** En déduire, à l'aide de la formule du binôme de Newton, que : $\forall k \in [0, n], g_k \in V_n$.
- **Q25.** Pour $k \in [0, n]$, calculer g'_k . En déduire que φ_n est diagonalisable. Donner la liste des valeurs propres complexes de φ_n et décrire les espaces propres correspondants.
- **Q26.** Pour quelles valeurs de *n* l'endomorphisme φ_n est-il un automorphisme de V_n ?

Q27. Écrire la décomposition de g_n dans la base (f_0, \ldots, f_n) et en déduire que :

$$\operatorname{Ker}(B_n - i n I_{n+1}) = \operatorname{Vect} \begin{pmatrix} q_0 \\ q_1 \\ \vdots \\ q_n \end{pmatrix},$$

où pour tout $k \in [0, n]$, on note $q_k = i^{n-k} \binom{n}{k}$.

Partie III - Les matrices de Kac de taille n + 1

Objectifs

Dans cette **partie**, on introduit la matrice A_n . On utilise les résultats de la **Partie II** pour étudier les propriétés spectrales de la matrice A_n .

Soit $n \in \mathbb{N}^*$ un entier naturel fixé. On note A_n la matrice tridiagonale suivante :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ n & 0 & 2 & \ddots & & \vdots \\ 0 & n-1 & 0 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & n \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathbf{M}_{n+1}(\mathbb{R}).$$

Le terme général a_{kl} de la matrice A_n vérifie donc

- $a_{k,k+1} = k \text{ si } 1 \le k \le n$,
- $a_{k,k-1} = n k + 2 \text{ si } 2 \le k \le n + 1$,
- $a_{kl} = 0$ pour tous les couples $(k, l) \in [1, n+1]^2$ non couverts par les formules précédentes.

On note enfin $D_n \in \mathbf{M}_{n+1}(\mathbb{C})$ la matrice diagonale dont le k-ième terme diagonal d_{kk} vérifie $d_{kk} = i^{k-1}$.

- **Q28.** Soient $M = (m_{kl})_{1 \le k,l \le p} \in \mathbf{M}_p(\mathbb{C})$ une matrice de taille p et $D = (d_{kl})_{1 \le k,l \le p} \in \mathbf{M}_p(\mathbb{C})$ une matrice diagonale de taille p. Exprimer le terme général de la matrice DM en fonction des m_{kl} et des d_{kl} , puis exprimer le terme général de la matrice MD en fonction des m_{kl} et des d_{kl} .
- **Q29.** Montrer que $D_n^{-1}A_nD_n = -iB_n$ où B_n est la matrice déterminée dans la **Partie II**. En déduire une relation simple entre $\chi_{A_n}(X)$ et $\chi_{B_n}(iX)$, où χ_{A_n} et χ_{B_n} sont les polynômes caractéristiques respectifs de A_n et B_n .
- **Q30.** En déduire, à l'aide de la **Partie II**, que A_n est diagonalisable sur \mathbb{R} , que les valeurs propres de A_n sont les entiers de la forme 2k n pour $k \in [0, n]$ et que :

$$\operatorname{Ker}(A_n - n I_{n+1}) = \operatorname{Vect} \begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{pmatrix},$$

où pour tout $k \in [0, n]$, on note $p_k = \binom{n}{k}$.

Partie IV - Un peu de probabilités

Objectifs

Dans cette **partie**, on donne une application probabiliste de l'étude de la matrice A_n . Seul le résultat de la question **Q30** est utilisé, cette partie peut être traitée en admettant si besoin ce résultat.

Étant donné un entier $n \in \mathbb{N}^*$, on dispose de deux urnes U_1 et U_2 contenant à elles deux n boules numérotées de 1 à n. On note N_0 la variable aléatoire égale au nombre de boules initialement contenues dans l'urne U_1 .

À chaque instant entier $k \in \mathbb{N}^*$, on choisit un des *n* numéros de façon équiprobable puis on change d'urne la boule portant ce numéro. Les choix successifs sont supposés indépendants.

Pour $k \in \mathbb{N}^*$, on note N_k la variable aléatoire égale au nombre de boules dans l'urne U_1 après l'échange effectué à l'instant k.

Exemple: supposons n=4 et qu'à l'instant 0, l'urne U_1 contient les boules numérotées 1, 3, 4 et l'urne U_2 la boule 2. On a dans ce cas $N_0=3$.

- Si le numéro 3 est choisi à l'instant 1, on retire la boule 3 de U₁ et on la place dans U₂. On a alors N₁ = 2.
- Si le numéro 2 est choisi à l'instant 1, on retire la boule 2 de U_2 et on la place dans U_1 . On a alors $N_1 = 4$.

Pour $l \in [0, n]$, on note $E_{k,l}$ l'événement $(N_k = l)$ et $p_{k,l} = \mathbb{P}(E_{k,l})$ sa probabilité.

On note enfin $Z_k = \begin{pmatrix} p_{k,0} \\ p_{k,1} \\ \vdots \\ p_{k,n} \end{pmatrix} \in \mathbb{R}^{n+1}$ le vecteur qui code la loi de la variable aléatoire N_k .

- **Q31.** Pour $k \in \mathbb{N}$, que peut-on dire de la famille $(E_{k,0}, E_{k,1}, \dots, E_{k,n})$?
- **Q32.** Si l'urne U_1 contient j boules à l'instant k, combien peut-elle en contenir à l'instant k+1?
- **Q33.** Pour $k \in \mathbb{N}$ et $j, l \in [0, n]$, déterminer :

$$\mathbb{P}_{E_{k,l}}(E_{k+1,j}).$$

On traitera séparément les cas j = 0 et j = n.

Q34. Démontrer que pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(E_{k+1,0}) = \frac{1}{n} \mathbb{P}(E_{k,1}) \text{ et } \mathbb{P}(E_{k+1,n}) = \frac{1}{n} \mathbb{P}(E_{k,n-1})$$

et que:

$$\forall j \in [\![1,n-1]\!], \, \mathbb{P}(E_{k+1,j}) = \frac{n-j+1}{n} \, \mathbb{P}(E_{k,j-1}) + \frac{j+1}{n} \, \mathbb{P}(E_{k,j+1}).$$

Q35. En déduire que pour tout $k \in \mathbb{N}$,

$$Z_k = \frac{1}{n^k} A_n^k Z_0$$

où A_n est la matrice introduite dans la **Partie III**.

On suppose jusqu'à la fin du Problème qu'à l'instant 0, on a disposé de façon équiprobable et indépendamment les unes des autres les n boules dans l'une des urnes U_1 ou U_2 .

- **Q36.** Déterminer la loi π de N_0 .
- **Q37.** Montrer que pour tout $k \in \mathbb{N}$, N_k a la même loi que N_0 . On pourra utiliser la question **Q30** de la **Partie III**.
- **Q38.** Démontrer que π est l'unique loi de probabilité ayant la propriété suivante : si N_0 suit la loi π , alors toutes les variables N_k suivent la loi π .

FIN