Etudier la convergence des intégrales suivantes :

$$\mathbf{(a)} \quad \int_0^1 \frac{\ln t}{1-t} \, \mathrm{d}t$$

(b)
$$\int_0^{+\infty} \ln \ln t \, dt$$

(a)
$$\int_0^1 \frac{\ln t}{1-t} dt$$
 (b)
$$\int_0^{+\infty} \ln t t dt$$
 (c)
$$\int_0^1 \frac{\cos \sqrt{t} - \cosh \sqrt{t}}{t^{3/2}} dt$$
 (d)
$$\int_{-\infty}^{+\infty} \frac{dt}{e^{-t} + t^2 e^{t}} dt$$

(d)
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{e^{-t} + t^2 e^t}$$

(a) L'application $f: t \longmapsto \ln t/(1-t)$ est continue sur]0;1[. Lorsque t tend vers 0, on a

$$f(t) \sim \ln t = o\left(\frac{1}{\sqrt{t}}\right)$$

Le critère de Riemann assure la convergence de $\int_0^{1/2} f(t) dt$. De plus, lorsque t tend vers 1, on a

$$\ln t \sim t - 1$$
 d'où $f(t) \xrightarrow[t \to 1]{} -1$

donc f est prolongeable par continuité en 1. Ainsi, $\int_{1/2}^{1} f(t) dt$ converge et finalement,

L'intégrale
$$\int_0^1 \frac{\ln t}{1-t} dt$$
 converge.

(b) Notons $f:t\longmapsto \ln \th t.$ La fonction f est définie sur $\mathbb{R}_+^*.$ Pour tout t>0, on a

$$\operatorname{th} t = \frac{e^t - e^{-t}}{e^t + e^{-t}} = \frac{1 - e^{-2t}}{1 + e^{-2t}} \qquad \text{d'où} \qquad f(t) = \ln(1 - e^{-2t}) - \ln(1 + e^{-2t})$$

On en déduit qu'en $+\infty$, $f(t) \sim -2e^{-2t}$ donc $\int_{1}^{+\infty} f(t) dt$ converge. En 0, on écrit

$$f(t) = \ln(2t + O(t^2)) + \ln(2 + O(t)) = \ln t + O(1) = o\left(\frac{1}{\sqrt{t}}\right)$$

Ainsi, $\int_0^1 f(t) dt$ converge et

L'intégrale
$$\int_0^{+\infty} \ln \ln t \, dt$$
 converge.

(c) L'application $f: t \longmapsto (\cos \sqrt{t} - \cosh \sqrt{t})/t^{3/2}$ est continue sur]0;1]. De plus, lorsque u tend vers 0,

$$\cos u - \mathrm{ch} u = \left(1 - \frac{u^2}{2} + O(u^4)\right) - \left(1 + \frac{u^2}{2} + O(u^4)\right) \sim -u^2 \qquad \mathrm{d'où} \qquad f(t) \sim -\frac{1}{\sqrt{t}}$$

Le critère de Riemann permet de conclure.

L'intégrale
$$\int_0^1 \frac{\cos\sqrt{t} - \cosh\sqrt{t}}{t^{3/2}}$$
 converge.

(d) L'application $t \longmapsto 1/(e^{-t} + t^2 e^t)$ est continue sur $\mathbb R$ et équivalente en $-\infty$ et $+\infty$ respectivement à e^t et e^{-t}/t^2 , qui sont les intégrandes d'intégrales convergentes. Par conséquent,

L'intégrale
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{e^{-t} + t^2 e^t}$$
 est convergente.

CCP PC 2013

Nature de $\int_0^1 \left| \ln t \right|^b (1-t)^a dt$ en fonction de $(a,b) \in \mathbb{R}^2$?

L'application $f: t \longmapsto |\ln t|^b (1-t)^b$ est définie, positive et continue sur]0;1[. De plus, elle admet les équivalents en 0 et en 1 suivants:

$$f(t) \underset{t \to 0^{+}}{\sim} |\ln t|^{b}$$
 et $f(t) \underset{t \to 1^{-}}{\sim} (1-t)^{a+b}$

Notons que quel que soit la valeur de b, $|\ln t|^b = o\left(1/\sqrt{t}\right)$, ce qui justifie que f est intégrable en 0 quel que soient les réels a et b. Le crittère de Riemann assure par ailleurs que f est intégrable en 1 si et seulement si a+b>-1, d'où pour conclure,

L'intégrale
$$\int_0^1 \left| \ln t \right|^b (1-t)^a \, \mathrm{d}t$$
 converge si et seulement si $a+b+1>0.$

3

_____(*) _____

- (a). A quelle condition sur $\alpha \in \mathbb{R}$ l'intégrale $I(\alpha) = \int_0^{+\infty} \frac{\arctan x}{x^{\alpha}} dx$ est-elle convergente?
- (b). Calculer I(3/2), en admettant (ou en démontrant) que $\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^4} = \frac{\pi}{2\sqrt{2}}$.
- (a) Notons

$$f: x \longmapsto \frac{\arctan x}{x^{\alpha}}$$

La fonction f est continue sur \mathbb{R}_+^* et admet les équivalents

$$f(x) \underset{x \to 0}{\sim} \frac{1}{x^{\alpha - 1}}$$
 et $f(x) \underset{x \to +\infty}{\sim} \frac{\pi}{2x^{\alpha}}$

On en déduit par le critère de Riemann que l'intégrale converge si et seulement si $\alpha - 1 < 1$ et $\alpha > 1$ soit

L'intégrale $I(\alpha)$ converge si et seulement si $\alpha \in]1;2[$.

(b) Pour $\alpha = 3/2$, on commence par effectuer une intégration par parties en dérivant arctan. Il vient

$$\int_0^{+\infty} \frac{\arctan x}{x^{3/2}} \, \mathrm{d}x = \left[-2 \frac{\arctan x}{\sqrt{x}} \right]_0^{+\infty} + 2 \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)\sqrt{x}} = 2 \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)\sqrt{x}}$$

L'intégration par parties est justifiée par l'existence de limite finies (nulles) pour $x \mapsto \arctan(x)/\sqrt{x}$ en 0 et en $+\infty$, et assure la convergence de la nouvelle intégrale. On peut maintenant effectuer le changement de variable $u = \sqrt{x}$ d'où $x = u^2$ et dx = 2u du, avec $x \mapsto \sqrt{x}$ de classe C^1 , bijective et strictement croissante de \mathbb{R}_+^* dans \mathbb{R}_+^* , et alors

$$I(3/2) = \int_0^{+\infty} \frac{4u \, \mathrm{d}u}{u(1+u^4)}$$

et grâce au résultat admis

$$I(3/2) = \pi\sqrt{2}$$

Remarque : Le calcul de l'intégrale admise peut par exemple s'effectuer en justifiant la décomposition en éléments simple suivante, laquelle peut s'obtenir en décomposant dans $\mathbb C$ avant de repasser dans $\mathbb R$ en groupant les quantités conjuguées (calcul un peu lourd mais faisable)

$$\frac{1}{1+u^4} = \frac{\sqrt{2}}{4} \left(\frac{u+\sqrt{2}}{u^2+u\sqrt{2}+1} - \frac{u-\sqrt{2}}{u^2-u\sqrt{2}+1} \right)$$

4

(*)

Justifier la convergence et calculer la valeur de $\int_0^{\pi/2} \cos x \ln(\tan x) dx$.

L'application $f: x \longmapsto \cos x \ln(\tan x)$ est continue sur $]0; \pi/2[$. Lorsque x tend vers 0, on a

$$\ln(\tan x) = \ln(x + O(x^3)) = \ln x + \ln(1 + O(x^2)) \sim \ln x$$

d'où

$$f(x) \sim \ln x = o\left(\frac{1}{\sqrt{x}}\right)$$

Cet équivalent assure l'intégrabilité de f au voisinage de 0. Lorsque x tend vers $\pi/2$, on a cette fois avec $u = \pi/2 - x$,

$$f(x) = -\sin u \ln(\tan u) \sim -u \ln u \xrightarrow[u \to 0]{} 0$$

La fonction f se prolonge donc par continuité en $\pi/2$ ce qui prouve finalement l'intégrabilité de f sur $]0;\pi/2[$. Ainsi,

L'intégrale
$$\int_0^{\pi/2} \cos x \ln(\tan x) dx$$
 est convergente.

Pour calculer l'intégrale, on fixe $\epsilon \in]0; \pi/4[$ et et on effectue une intégration par parties. Sachant que

$$\tan'(x) = \frac{1}{\cos^2 x}$$
 d'où $\frac{\mathrm{d}}{\mathrm{d}x} (\ln(\tan x)) = \frac{1}{\cos^2 x \tan x} = \frac{1}{\sin x \cos x}$

il vient

$$\int_{\epsilon}^{\pi/2 - \epsilon} \cos x \ln \tan x \, dx = \left[\sin x \ln \tan x \right]_{\epsilon}^{\pi/2 - \epsilon} - \int_{\epsilon}^{\pi/2 - \epsilon} \frac{1}{\cos x}$$
$$= \left[\sin x \ln \tan x + \ln \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right]_{\epsilon}^{\pi/2 - \epsilon}$$

L'application $F: x \longmapsto \sin x \ln \tan x - \ln \tan \left(\frac{\pi}{4} - \frac{x}{2}\right)$ est de limite nulle en 0 (puisque $\sin x \ln \tan x \sim x \ln x$). En $\pi/2$, on pose $x = \pi/2 - u$ et il vient

$$F(x) = -\cos u \ln \tan u + \ln \tan(u/2) = -\ln 2 + (1 - \cos u) \ln \tan u = -\ln 2 + O(u^2 \ln u)$$

On en déduit que F tend vers $-\ln 2$ en $\pi/2$, et donc en faisant tendre ϵ vers 0 que

$$\int_0^{\pi/2} \cos x \ln(\tan x) \, \mathrm{d}x = -\ln 2$$

Remarque : On aurait pu intégrer directement sur $]0;\pi/2-\epsilon]$ en remarquand que $\sin x \tan x$ a une limite finie en 0.

5 ______(*) _____

Justifier la convergence et calculer la valeur de $\int_1^2 \frac{t \ln t}{(t^2-1)^{3/2}} \, dt$.

Notons

$$\begin{array}{ccc} f: &]1;2] &\longrightarrow \mathbb{R} \\ & t &\longmapsto (t \ln t)/(t^2-1)^{3/2} \end{array}$$

L'application f est continue sur [1;2] et lorsque t tend vers 1, on a l'équivalent

$$f(t) = \frac{t \ln(1 + (t - 1))}{\left[(t + 1)(t - 1)\right]^{3/2}} \sim \frac{1}{2^{3/2}\sqrt{t - 1}}$$

Le critère de Riemann assure alors l'intégrabilité de f sur [1;2] et donc

L'intégrale
$$\int_{1}^{2} \frac{t \ln t}{(t^2 - 1)^{3/2}} dt$$
 est convergente.

Pour calculer cette dernière, on effectue une intégration par parties

$$\int_{1}^{2} \frac{t \ln t}{(t^{2} - 1)^{3/2}} dt = \left[\frac{-\ln t}{\sqrt{t^{2} - 1}} \right]_{1}^{2} + \int_{1}^{2} \frac{dt}{t\sqrt{t^{2} - 1}}$$

L'intégration par parties se justifie par l'équivalent

$$\frac{\ln t}{\sqrt{t^2 - 1}} = \frac{\ln(1 + (t - 1))}{\sqrt{t + 1}\sqrt{t - 1}} \underset{t \to 1}{\sim} -\frac{\sqrt{t - 1}}{2}$$

qui assure que le terme entre crochets a une limite finie nulle en 1. Dans la nouvelle intégrale, on pose maintenant le changement de variable $u = \sqrt{t^2 - 1}$ sachant que $t \longmapsto \sqrt{t^2 - 1}$ est un \mathcal{C}^1 -difféomorphisme de]1; $+\infty$ [dans \mathbb{R}_+^* . Ainsi, il vient

$$t = \sqrt{u^2 + 1}$$
 $dt = \frac{u \, du}{\sqrt{u^2 + 1}}$ et $\int_1^2 \frac{dt}{t\sqrt{t^2 - 1}} = \int_0^{\sqrt{3}} \frac{du}{u^2 + 1}$

En reportant cette égalité dans l'intégration par parties, on obtient

$$\int_{1}^{2} \frac{t \ln t}{(t^{2} - 1)^{3/2}} dt = -\frac{\ln 2}{\sqrt{3}} + \left[\arctan\right]_{0}^{\sqrt{3}}$$

soit

$$\int_{1}^{2} \frac{t \ln t}{(t^{2} - 1)^{3/2}} dt = \frac{\pi}{3} - \frac{\ln 2}{\sqrt{3}}$$

____ (*) ____

<u>b</u>

Calculer
$$\int_0^1 \frac{\mathrm{d}x}{2 + \lfloor 1/x \rfloor}$$

L'application $x \mapsto 1/(2 + \lfloor 1/x \rfloor)$ est continue par morceaux sur]0;1] (et même en escalier), et prolongeable par continuité en 0 (elle tend vers 0 en ce point). Ainsi, l'intégrale est bien convergente. Pour la calculer, écrivons que

$$\int_0^1 \frac{\mathrm{d}x}{2 + \lfloor 1/x \rfloor} = \lim_{k \to +\infty} \int_{1/k}^1 \frac{\mathrm{d}x}{2 + \lfloor 1/x \rfloor}$$

puis par la relation de Chasles, et pour tout $k \geq 2$,

$$\int_{1/k}^{1} \frac{\mathrm{d}x}{2 + \lfloor 1/x \rfloor} = \sum_{p=1}^{k-1} \int_{1/(p+1)}^{1/p} \frac{\mathrm{d}x}{2 + p} = \sum_{p=1}^{k-1} \frac{1}{p+2} \left(\frac{1}{p} - \frac{1}{p+1} \right)$$

Une double décomposition en éléments simples permet maintenant d'obtenir un téléscopage. En effet, pour tout $p \ge 1$,

$$\frac{1}{p(p+2)} = \frac{1}{2} \left(\frac{1}{p} - \frac{1}{p+2} \right) \qquad \text{et} \qquad \frac{1}{(p+1)(p+2)} = \left(\frac{1}{p+1} - \frac{1}{p+2} \right)$$

d'où

$$\sum_{p=1}^{k-1} \frac{1}{p+2} \left(\frac{1}{p} - \frac{1}{p+1} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{k+1} - \frac{1}{k+2} \right) - \left(\frac{1}{2} - \frac{1}{k+1} \right)$$

Il ne reste plus qu'à faire tendre k vers $+\infty$ pour obtenir

$$\int_0^1 \frac{\mathrm{d}x}{2 + \lfloor 1/x \rfloor} = \frac{1}{4}$$

7 ______(**

- (a). Discuter suivant la valeur du paramètre $\alpha \in \mathbb{R}$ la convergence de l'intégrale $I(\alpha) = \int_0^{\pi/2} (\tan x)^{\alpha} dx$.
- (b). Etablir une relation entre $I(\alpha)$ et $I(-\alpha)$.
- (c). A l'aide du changement de variable $u = \sqrt{\tan x}$, et de la valeur de l'intégrale donnée en 3.(b), calculer I(1/2).
- (d). Montrer que $\frac{\pi}{2n} \sum_{k=0}^{n-1} \sqrt{\tan(k\pi/2n)} \xrightarrow[n \to +\infty]{} I(1/2).$
- (a) Notons $f: x \mapsto (\tan x)^{\alpha}$. L'application f est continue sur $]0; \pi/2[$ et est équivalente en 0 à $x \mapsto x^{\alpha}$. Elle est donc intégrable au voisinage de 0 si et seulement si $\alpha > -1$. En $+\infty$, on a en posant $t = \pi/2 x$,

$$f(x) = (\tan x)^{\alpha} = \left(\frac{1}{\tan t}\right)^{-\alpha} \sim t^{-\alpha} = \frac{1}{(\pi/2 - x)^{\alpha}}$$

Ainsi, f est intégrable au voisinage de $\pi/2$ si et seulement si $\alpha < 1$. Par conséquent,

L'intégrale $I(\alpha)$ est convergente si et seulement si $\alpha \in]-1;1[$.

(b) Puisque f est à valeurs positive, la convergence de $I(\alpha)$ équivaut à l'intégrabilité de f. Cela permet d'effectuer le changement de variable affine $x = \pi/2 - t$ et d'obtenir

$$\int_0^{\pi/2} (\tan x)^{\alpha} = -\int_{\pi/2}^0 (\tan t)^{-\alpha}$$

soit

$$\forall \alpha \in]-1;1[, I(\alpha) = I(-\alpha)]$$

(c) D'après la question précédente,

$$I(1/2) = I(-1/2) = \int_0^{\pi/2} \frac{\mathrm{d}x}{\sqrt{\tan x}}$$

Effectuons le changement de variable $u = \sqrt{\tan x}$, avec le \mathcal{C}^1 -difféomorphisme $x \longmapsto \sqrt{\tan x}$ de $]0; \pi/2[$ dans \mathbb{R}_+^* . Ainsi,

$$x = \arctan u^2$$
 $dx = \frac{2u \, du}{1 + u^4}$ et $\int_0^{\pi/2} \frac{dx}{\sqrt{\tan x}} = 2 \int_0^{+\infty} \frac{du}{1 + u^4}$

et donc, étant donnée la valeur de cette intégrale par l'énoncé

$$I(1/2)=\pi/\sqrt{2}$$

Notons

X PC 2013

(d) Notons qu'il n'est pas possible d'appliquer les résultats sur les sommes de Riemann car la fonction $x \mapsto \sqrt{\tan x}$ est définie sur l'intervalle $[0; \pi/2[$ qui n'est pas un segment. Sa croissance permet en revanche d'affirmer que pour tout $n \ge 1$ et tout $k \in [1; n-1]$,

$$\int_{(k-1)\pi/(2n)}^{k\pi/(2n)} \sqrt{\tan x} \, \mathrm{d}x \le \frac{\pi}{2n} \sqrt{\tan \left(\frac{k\pi}{2n}\right)} \le \int_{k\pi/(2n)}^{(k+1)\pi/(2n)} \sqrt{\tan x} \, \mathrm{d}x$$

En sommant pour k allant de 1 à n-1, et en rajoutant un terme nul à la somme centrale, il vient

$$\int_{0}^{(1-1/n)\pi/2} \sqrt{\tan x} \, \mathrm{d}x \le \frac{\pi}{2n} \sum_{k=0}^{n-1} \sqrt{\tan \left(\frac{k\pi}{2n}\right)} \le \int_{\pi/(2n)}^{\pi/2} \sqrt{\tan x} \, \mathrm{d}x$$

On en déduit immédiatement par encadrement que

$$\boxed{\frac{\pi}{2n} \sum_{k=0}^{n-1} \sqrt{\tan\left(\frac{k\pi}{2n}\right)} \xrightarrow[n \to +\infty]{} I(1/2)}$$

8 ______ (**) _____ Mines PC 2013

Nature et calcul de $\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)\sqrt{4+t^2}}?$

$$f: t \longmapsto \frac{1}{(1+t^2)\sqrt{4+t^2}}$$

L'application f est définie et continue sur $\mathbb R$ et lorsque t tend vers l'infini, on a

$$f(t) \underset{+\infty}{\sim} \frac{1}{t^3}$$
 et $f(t) \underset{-\infty}{\sim} -\frac{1}{t^3}$

Le critère de Riemann assure alors la convergence de l'intégrale. Pour le calcul, on pose $t=2\,\mathrm{sh}u$. L'application $u\longmapsto\mathrm{sh}u$ est une bijection \mathcal{C}^1 strictement croissante de \mathbb{R} dans \mathbb{R} , ce qui valide le changement de variable. Ainsi,

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)\sqrt{4+t^2}} = \int_{-\infty}^{+\infty} \frac{2\mathrm{ch}u \ \mathrm{d}u}{(1+4\mathrm{sh}^2u)\sqrt{4+4\mathrm{sh}^2u}}$$

Sachant que $ch^2 - sh^2 = 1$, le deuxième terme se simplifie et ainsi

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{+\infty} \frac{du}{1 + 4 \operatorname{sh}^2 u} = \int_{-\infty}^{+\infty} \frac{du}{e^{2u} + e^{-2u} - 1} = \int_{-\infty}^{+\infty} \frac{e^{2u} du}{e^{4u} - e^{2u} + 1}$$

Posons maintenant $r = e^{2u}$ avec $u \longmapsto e^u$ bijection strictement croissante de \mathbb{R} vers $]0; +\infty[$. On obtient cette fois

$$\int_{-\infty}^{+\infty} f(t) \, dt = \frac{1}{2} \int_{0}^{+\infty} \frac{dr}{r^2 - r + 1}$$

Cette dernière intégrale se calcule après mise sous forme canonique du dénominateur. On peut ainsi écrire

$$\int_{0}^{+\infty} \frac{dr}{r^{2} - r + 1} = \int_{0}^{+\infty} \frac{dr}{(r - 1/2)^{2} + 3/4}$$

$$= \frac{2}{\sqrt{3}} \int_{0}^{+\infty} \frac{2/\sqrt{3} dr}{\left[2/\sqrt{3}(r - 1/2)\right]^{2} + 1}$$

$$= \frac{2}{\sqrt{3}} \left[\arctan\left(\frac{2}{\sqrt{3}}\left(r - \frac{1}{2}\right)\right)\right]_{0}^{+\infty}$$

$$\int_{0}^{+\infty} \frac{dr}{r^{2} - r + 1} = \frac{2}{\sqrt{3}} \left[\frac{\pi}{2} - \arctan\left(-\frac{1}{\sqrt{3}}\right)\right]$$

et finalement

$$\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = \frac{2\pi}{3\sqrt{3}}$$

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue, intégrable et dérivable en 0.

(a). Montrer que $x \mapsto f(x)/x$ est intégrable sur $[1; +\infty[$.

mercredi 28 novembre, 2018 Vincent Puyhaubert PC* Lycée Joffre

- (b). Justifier l'existence et donner la valeur en fonction de $\alpha, \beta > 0$ de $\int_{\mathbb{R}^{+*}} \frac{f(\beta t) f(\alpha t)}{t} dt$.
- (c). Calculer $\int_0^1 \frac{t-1}{\ln t} dt$.
- (a) Il suffit de remarquer que $|f(x)/x| \le |f(x)|$ pour tout $x \ge 1$. Cette domination assure, f étant intégrable sur \mathbb{R}_+ , que

L'application
$$x \longmapsto f(x)/x$$
 est intégrable sur $[1; +\infty[$.

(b) Soit x, y > 0. En séparant les intégrales puis en faisant deux changements de variable affine, on obtient

$$\int_{x}^{y} \frac{f(\beta t) - f(\alpha t)}{t} dt = \int_{\beta x}^{\beta y} \frac{f(t)}{t} dt - \int_{\alpha x}^{\alpha y} \frac{f(t)}{t} dt = \int_{\alpha y}^{\beta y} \frac{f(t)}{t} dt - \int_{\alpha x}^{\beta x} \frac{f(t)}{t} dt$$

Lorsque y tend vers $+\infty$, on peut écrire grâce à l'intégrabilité de $x \mapsto f(x)/x$

$$\int_{\alpha y}^{\beta y} \frac{f(t)}{t} dt = \int_{\beta y}^{+\infty} \frac{f(t)}{t} dt - \int_{\alpha y}^{+\infty} \frac{f(t)}{t} dt \xrightarrow{y \to +\infty} 0$$

Par ailleurs, f étant dérivable en 0, on peut écrire lorsque t tend vers 0,

$$f(t) = f(0) + t f'(0) + o(t)$$
 d'où $\frac{f(t)}{t} - \frac{f(0)}{t} = f'(0) + o(1)$

En particulier, l'application $t \mapsto f(t)/t - f(0)/t$ est bornée au voisinage de 0. On peut donc trouver $M \in \mathbb{R}_+$ et $\epsilon > 0$ tel que

$$\forall t \in]0; \epsilon[, \qquad \left| \frac{f(t)}{t} - \frac{f(0)}{t} \right| \le M$$

d'où pour $x < \epsilon/\beta$, en intégrant entre αx et βx ,

$$\left| \int_{\alpha x}^{\beta x} \frac{f(t)}{t} dt - \int_{\alpha x}^{\beta x} \frac{f(0)}{t} dt \right| \le \int_{\alpha x}^{\beta x} M dt = M(\beta - \alpha) x \xrightarrow[x \to 0]{} 0$$

Sachant que $\int_{\alpha \tau}^{\beta x} \frac{f(0)}{t} dt = f(0) \ln(\beta/\alpha)$, cela signifie que

$$\int_{\alpha x}^{\beta x} \frac{f(t)}{t} dt \xrightarrow[x \to 0]{} f(0) \ln(\beta/\alpha)$$

On en déduit la convergence de l'intégrale et sa valeur.

$$\int_0^{+\infty} \frac{f(\beta t) - f(\alpha t)}{t} dt = f(0) \ln(\alpha/\beta)$$

(c) L'application $t \mapsto (t-1)/\ln t$ est continue sur]0;1[. Elle est prolongeable par continuité en 0 (par 0) et en 1 (par 1, en vertu d'un développement limité). Elle est donc intégrable sur]0;1[ce qui permet d'effectuer le changement de variable $u = -\ln t$ (l'application $t \mapsto -\ln t$ est un \mathcal{C}^1 -difféomorphisme de]0;1[dans \mathbb{R}^*_+). Ainsi,

$$\int_0^1 \frac{t-1}{\ln t} dt = \int_{+\infty}^0 \frac{e^{-u}-1}{-u} (-e^{-u}) du = \int_0^{+\infty} \frac{e^{-u}-e^{-2u}}{u} du$$

En vertu du résultat du (b) (la fonction $t \mapsto e^{-t}$ étant intégrable sur \mathbb{R}_+), il s'ensuit que

$$\int_0^1 \frac{t-1}{\ln t} \, \mathrm{d}t = \ln 2$$

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 définie par $u_0>0$ et $\forall n\in\mathbb{N}, u_{n+1}=2u_n+2\sqrt{u_n}\sqrt{1+u_n}$

$$\text{Montrer que } \int_{u_n}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} = 2 \int_{u_{n+1}}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} \text{ et en déduire } \lim_{n \to +\infty} 4^{-n} u_n.$$

Notons $f: x \longmapsto 2x + 2\sqrt{x}\sqrt{1+x}$. L'application f réalise un \mathcal{C}^1 -difféomorphisme de \mathbb{R}_+^* dans lui-même, ce qui permet de poser le changement de variable $t = 2x + \sqrt{x}\sqrt{1+x}$. Alors,

$$dt = \left(2 + \frac{\sqrt{1+x}}{\sqrt{x}} + \frac{\sqrt{x}}{\sqrt{1+x}}\right) dx = \frac{2\sqrt{x}\sqrt{1+x} + 1 + 2x}{\sqrt{x}\sqrt{1+x}} dx$$

Remarquons alors que

$$t+1 = 2\sqrt{x}\sqrt{1+x} + 1 + 2x = (\sqrt{x} + \sqrt{1+x})^2$$
 et $t = 2\sqrt{x}(\sqrt{x} + \sqrt{1+x}) = 2\sqrt{x}\sqrt{t+1}$

et ainsi, pour tout a > 0,

$$\int_{a}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} = 2 \int_{f(a)}^{+\infty} \frac{\mathrm{d}t}{t\sqrt{1+t}}$$

En particulier, pour $n \in \mathbb{N}$ et $a = u_n$, il vient

$$\forall n \in \mathbb{N}, \qquad \int_{u_n}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} = 2 \int_{u_{n+1}}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}}$$

On en déduit par récurrence immédiate que pour tout entier n,

$$\int_{u_n}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} = \frac{1}{2^n} \int_{u_0}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}}$$

Remarquons maintenant que $1/(x\sqrt{1+x}) \sim 1/x^{3/2}$ lorsque x tend vers $+\infty$. On en déduit que

$$\int_{u_n}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} \underset{n \to +\infty}{\sim} \int_{u_n}^{+\infty} \frac{\mathrm{d}x}{x^{3/2}} = \frac{2}{\sqrt{u_n}} \tag{*}$$

d'où

$$\frac{2}{\sqrt{u_n}} \sim \frac{1}{2^n} \int_{u_0}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}}$$

et donc

$$4^{-n}u_n \xrightarrow[n \to +\infty]{} \frac{1}{4} \left(\int_{u_0}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} \right)^{-2}$$

Remarque : On peut calculer l'intégrale en posant $v = \sqrt{1+x}$. Ainsi, $x = v^2 - 1$, puis dx = 2v dv et

$$\int_{u_0}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{1+x}} = \int_{\sqrt{1+u_0}}^{+\infty} \frac{2\,\mathrm{d}v}{v^2 - 1} = \int_{\sqrt{1+u_0}}^{+\infty} \left(\frac{1}{v-1} - \frac{1}{v+1}\right) \,\mathrm{d}v = \ln\left(\frac{\sqrt{1+u_0} + 1}{\sqrt{1+u_0} - 1}\right)$$

La relation (*) se justifie par les transferts des relations de comparaison : si g est intégrable au voisinage de $+\infty$, et si f = o(g) (resp. $f \sim g$), alors f est également intégrable au voisinage de $+\infty$ et

$$\int_{x}^{+\infty} f(t) dt = o\left(\int_{x}^{+\infty} g(t) dt\right) \qquad (\text{resp.} \int_{x}^{+\infty} f(t) dt \sim \int_{x \to +\infty}^{+\infty} \int_{x}^{+\infty} g(t) dt)$$

Ce résultat est hors-programme mais se montre très facilement en passant par la définition des $o(\cdots)$ à l'aide des ϵ . On peut également utiliser le calcul de l'intégrale pour obtenir l'équivalent (\star) mais c'est moins élégant.

L'application $t \mapsto \cos^2 t$ est-elle intégrable sur \mathbb{R}^+ ? Même question pour $t \mapsto \frac{\cos^2 t}{t}$ sur $[1; +\infty[$.

Pour tout entier
$$n$$
, on note
$$I_n = \int_{n\pi-\pi/2}^{n\pi+\pi/2} \cos^2(t) dt \quad \text{et} \quad J_n = \int_{n\pi-\pi/2}^{n\pi+\pi/2} \frac{\cos^2(t)}{t} dt$$

L'intégrabilité de la fonction $t \longmapsto \cos(t)^2$ (resp. $t \longmapsto \cos(t)^2/t$) équivaut alors à la convergence des séries $\sum_{n \geq 1} I_n$ (resp. $\sum_{n \geq 1} J_n$).

Par π -périodicité de la fonction \cos^2 , il vient pour tout $n \ge 1$

$$I_n = \int_{-\pi/2}^{\pi/2} \cos(t)^2 dt = \frac{\pi}{2}$$

$$J_n = \int_{-\pi/2}^{\pi/2} \frac{\cos(u)^2}{u + n\pi} \, \mathrm{d}u \ge \frac{1}{(n - 1/2)\pi} \int_{-\pi/2}^{\pi/2} \cos(t)^2 \, \mathrm{d}t = \frac{1}{2n - 1}$$

Cette égalité et cette minoration assurent la divergence des deux séries pré-citées. Par conséquent,

Les fonctions $t \mapsto \cos(t)^2$ et $t \mapsto \cos(t)^2/t$ ne sont pas intégrables sur $[1; +\infty[$.

12

(*) _____

Etudier l'intégrabilité de $x \mapsto 1 - \operatorname{th}^{\alpha} x$ sur $]0; +\infty[$ en fonction du réel α .

Notons $f: x \longmapsto 1 - (\operatorname{th} x)^{\alpha}$, définie et continue sur \mathbb{R}_{+}^{*} . Lorsque x tend vers 0, on a l'équivalent th $x \sim x$. Par conséquent,

- Si $\alpha \geq 0$, f est prolongeable par continuité en 0 (par 1 si $\alpha > 0$, et 2 si $\alpha = 0$). On a donc intégrabilité de f en 0.
- Si $\alpha < 0$, alors $f(x) \sim x^{\alpha}$ et f est intégrable en 0 si et seulement si $\alpha < -1$.

Lorsque x tend vers $+\infty$, on a cette fois

$$thx = \frac{e^x - e^{-x}}{e^x + e^{-x}} = (1 - e^{-2x})(1 + e^{-2x})^{-1} = 1 - 2e^{-2x} + O(e^{-4x})$$

et donc

$$(thx)^{\alpha} \sim 1 - 2\alpha e^{-2x} + O(e^{-4x})$$
 puis $f(x) \sim 2\alpha e^{-2x}$

Ainsi, f est intégrable au voisinage de $+\infty$, quelle que soit la valeur de α . Pour conclure,

L'application $x \mapsto 1 - (\operatorname{th} x)^{\alpha}$ est intégrable sur \mathbb{R}_{+}^{*} si et seulement si $\alpha < -1$.

13

_ (**)

Montrer que l'intégrale $\int_0^{+\infty} x \sin(x^3) dx$ est convergente mais pas absolument convergente.

L'application $x \mapsto x \sin(x^3)$ est continue sur \mathbb{R}_+ . Soit A > 0. Sachant que $x \mapsto x^3$ est un \mathcal{C}^1 difféomorphisme de \mathbb{R}_+^* dans lui-même, on peut écrire avec $u = x^3$

$$\int_{1}^{A} x \sin(x^{3}) dx = \frac{1}{3} \int_{1}^{A^{3}} u^{1/3} \sin(u) \frac{du}{u^{2/3}} = \frac{1}{3} \int_{1}^{A^{3}} \frac{\sin u}{u^{1/3}} du$$

Dans cette dernière intégrale, on effectue une intégration par parties en intégrant sin, ce qui donne

$$\int_{1}^{A^{3}} \frac{\sin u}{u^{1/3}} \, du = \left[-\frac{\cos u}{u^{1/3}} \right]_{1}^{A^{3}} - \frac{1}{3} \int_{1}^{A^{3}} \frac{\cos u}{u^{4/3}} \, du$$

Sachant que $\int_{1}^{+\infty} \frac{\cos u}{u^{4/3}} du$ est absolument convergente donc convergente, ces deux égalités montrent que $\int_{1}^{A} x \sin(x^3) dx$ a une limite lorsque A tend vers $+\infty$. Ainsi,

L'intégrale
$$\int_0^{+\infty} x \sin(x^3) dx$$
 est convergente.

Notons maintenant pour tout entier $n \in \mathbb{N}$,

$$I_n = \int_{(n\pi)^{1/3}}^{((n+1)\pi)^{1/3}} |x \sin(x^3)| \, dx$$

La convergence absolue de $\int_0^{+\infty} x \sin(x^3) dx$ équivaut alors à celle de $\sum_{n\geq 0} I_n$. Or, à nouveau par changement de variable $u=x^{1/3}$, pour tout entier n,

$$I_n = \frac{1}{3} \int_{n\pi}^{(n+1)\pi} \frac{|\sin u|}{u^{1/3}} \, \mathrm{d}u \ge \frac{1}{3} \int_{n\pi}^{(n+1)\pi} \frac{|\sin u|}{(n\pi)^{1/3}} \, \mathrm{d}u$$

La fonction $|\sin|$ est π -périodique donc son intégrale sur une période ne dépend pas du choix de la période, et est égale à 2. Il s'ensuit la minoration $I_n \geq 2/\left[3(n\pi)^{1/3}\right]$ et donc la divergence de la série $\sum_{n\geq 0} I_n$. Par suite,

L'intégrale $\int_0^{+\infty} x \sin(x^3) dx$ n'est pas absolument convergente.

14

(***)

Soit f continue et intégrable sur \mathbb{R}^+ et $\alpha > 0$. On note

$$g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$

$$t \longmapsto f\left(\left|t - \frac{\alpha}{t}\right|\right)$$

Montrer que g est intégrable sur \mathbb{R}^{+*} et que $\int_0^{+\infty} g(t) dt = \int_0^{+\infty} f(t) dt$.

Notons

$$\varphi: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$t \longmapsto t - \alpha/t$$

L'application φ est \mathcal{C}^1 sur \mathbb{R}_+^* avec

$$\forall t > 0, \qquad \varphi'(t) = 1 + \frac{\alpha}{t^2}$$

Dès lors que φ' est strictement positive, il s'ensuit que φ réalise un \mathcal{C}^1 -difféomorphisme de \mathbb{R}_+^* vers son image par φ . Sachant que φ tend vers $-\infty$ en 0 et $+\infty$ en $+\infty$, cette image est égale à \mathbb{R} tout entier. Notons pour finir que φ s'annule en $\sqrt{\alpha}$, ce qui assure que $|\varphi|$ induit des \mathcal{C}^1 -difféomorphismes de $I_1 =]0; \sqrt{\alpha}]$ et $I_2 = [\sqrt{\alpha}; +\infty[$ vers \mathbb{R}_+ .

Puisque f est intégrable sur \mathbb{R}_+ , le théorème de changement de variable s'applique et prouve que $\varphi' \cdot (f \circ |\varphi|)$ est intégrable sur I_1 et I_2 avec

$$\int_{I_1} |\varphi'| \cdot (f \circ |\varphi|) = \int_{I_2} |\varphi'| \cdot (f \circ |\varphi|) = \int_{\mathbb{R}_+} f$$

soit

$$\int_0^{\sqrt{\alpha}} g(t) \left(1 + \frac{\alpha}{t^2} \right) dt = \int_{\sqrt{\alpha}}^{+\infty} g(t) \left(1 + \frac{\alpha}{t^2} \right) dt = \int_0^{+\infty} f(u) du$$

et donc en sommant

$$\int_0^{+\infty} g(t) \left(1 + \frac{\alpha}{t^2} \right) dt = 2 \int_0^{+\infty} f(u) du$$

Reste à justifier l'intégrabilité de g, et à se « débarrasser » du α/t^2 dans l'égalité ci-dessus. Remarquons déjà que $|\varphi'|$ est supérieure à 1, donc $|g| = |f \circ |\varphi|| \le |\varphi' \cdot f \circ |\varphi||$, ce qui assure par domination l'intégrabilité de g sur \mathbb{R}_+^* . A l'aide du \mathcal{C}^1 -difféomorphisme $t \longmapsto \alpha/t$, on obtient ensuite avec $u = \alpha/t$

$$\int_{+\infty}^0 f\left(\left|\frac{\alpha}{u}-u\right|\right) \frac{-\alpha\,\mathrm{d} u}{u^2} = \int_0^{+\infty} f\left(\left|t-\frac{\alpha}{t}\right|\right)\,\mathrm{d} t \qquad \text{d'où} \qquad \int_0^{+\infty} g(t) \frac{\alpha\,\mathrm{d} t}{t^2} = \int_0^{+\infty} g(t)\,\mathrm{d} t$$

On peut donc conclure:

L'application g est intégrable sur \mathbb{R}_+^* et $\int_0^{+\infty} g(t) dt = \int_0^{+\infty} f(t) dt$.

15 ______ (**)

Déterminer pour tout $\lambda > 0$ la valeur de $\int_0^\pi \frac{\mathrm{d}x}{1 + \lambda \cos^2 x}$ et en déduire que $\int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^3 \cos^2 x}$ converge.

Pour calculer l'intégrale, on commence par remarquer que $\cos^2(\pi - x) = \cos^2 x$ pour tout $x \in [0; \pi]$ d'où

$$\int_{0}^{\pi} \frac{\mathrm{d}x}{1 + \lambda^{2} \cos^{2} x} = 2 \int_{0}^{\pi/2} \frac{\mathrm{d}x}{1 + \lambda^{2} \cos^{2} x}$$

On effectue maintenant le changement de variable $u = \tan x$, sachant que $x \mapsto \tan x$ est un \mathcal{C}^1 -difféomorphisme de $[0; \pi/2[$ dans \mathbb{R}_+ . Alors,

$$x = \arctan u$$
 $dx = \frac{du}{1 + u^2}$ et $\cos^2 x = \frac{1}{1 + \tan^2 x} = \frac{1}{1 + u^2}$

d'où

$$\int_0^{\pi/2} \frac{\mathrm{d}x}{1 + \lambda^2 \cos^2 x} = \int_0^{+\infty} \frac{\mathrm{d}u}{1 + u^2 + \lambda^2} = \left[\frac{1}{\sqrt{1 + \lambda^2}} \arctan\left(\frac{u}{\sqrt{1 + \lambda^2}}\right) \right]_0^{+\infty}$$

et finalement

$$\int_0^{\pi} \frac{\mathrm{d}x}{1 + \lambda^2 \cos^2 x} = \frac{\pi}{\sqrt{1 + \lambda^2}}$$

Notons maintenant $f: x \longmapsto \frac{1}{1+x^3\cos^2 x}$ et pour tout entier n,

$$I_n = \int_{n\pi}^{(n+1)\pi} f(x) \, \mathrm{d}x$$

La fonction f étant positive, la convergence de l'intégrale $\int_0^{+\infty} f(x) dx$ équivaut à celle de la série $\sum_{n \geq 0} I_n$. Or, pour tout entier n,

$$\int_0^{\pi} \frac{\mathrm{d}x}{1 + ((n+1)\pi)^3 \cos^2 x} \le I_n \le \int_0^{\pi} \frac{\mathrm{d}x}{1 + (n\pi)^3 \cos^2 x}$$

soit d'après ce qui précède

$$\frac{\pi}{\sqrt{1 + ((n+1)\pi)^3}} \le I_n \le \frac{\pi}{\sqrt{1 + (n\pi)^3}}$$

Il s'ensuit que $I_n \sim \pi/(n\pi)^{3/2}$ et donc que la série $\sum_{n\geq 0} I_n$ converge par Riemann. Par suite,

L'intégrale
$$\int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^3 \cos^2(x)}$$
 est convergente.

16 | ______ X PC 201

Soit f de classe \mathcal{C}^1 de $I=[1;+\infty[$ dans $\mathbb{R}.$ On suppose que $(f')^2$ est intégrable sur I. Montrer que $t\longmapsto f(t)^2/t^2$ est intégrable sur I et déterminer la limite de $t\longmapsto f(t)^2/t$ en $+\infty$.

Soit $x \geq 1$. Par intégration par parties, on obtient

$$\int_{1}^{x} \frac{f(t)^{2}}{t^{2}} dt = \left[-\frac{f(t)^{2}}{t} \right]_{1}^{x} + \int_{1}^{x} \frac{f(t)f'(t)}{t} dt$$
$$= f(1)^{2} - \frac{f(x)^{2}}{x} + \int_{1}^{x} \frac{f(t)f'(t)}{t} dt$$

Or, d'après l'inégalité de Cauchy-Schwarz, on a également

$$\int_{1}^{x} \frac{f(t)f'(t)}{t} dt \le \left(\int_{1}^{x} \frac{f(t)^{2}}{t^{2}} dt\right)^{1/2} \left(\int_{1}^{x} f'(t)^{2} dt\right)^{1/2}$$
$$\le \left(\int_{1}^{x} \frac{f(t)^{2}}{t^{2}} dt\right)^{1/2} \left(\int_{1}^{+\infty} f'(t)^{2} dt\right)^{1/2}$$

en utilisant l'intégrabilité de f'^2 sur $[1;+\infty[.$ Au final, en notant

$$\Phi: x \longmapsto \int_1^x f(t)^2/t^2 dt$$
 $A = f(1)^2$ et $B = \left(\int_1^{+\infty} f(t)^2 dt\right)^{1/2}$

il vient

$$\Phi < A + B\sqrt{\Phi}$$

Pour en déduire que Φ est bornée, on utilise les mises sous forme canonique et inégalités suivantes :

$$\Phi - A\sqrt{\Phi} \leq B \qquad \text{d'où} \qquad \left(\sqrt{\Phi} - \frac{A}{2}\right)^2 - \frac{A^4}{4} \leq B \qquad \text{puis} \qquad \left|\sqrt{\Phi} - \frac{A}{2}\right| \leq \sqrt{B + \frac{A^2}{4}}$$

et finalement

$$\sqrt{\Phi} \leq \frac{A}{2} + \sqrt{B + \frac{A^2}{4}} \qquad \text{donc} \qquad \Phi \leq \left(\frac{A}{2} + \sqrt{B + \frac{A^2}{4}}\right)^2$$

La fonction Φ est donc bornée, ce qui prouve bien que l'intégrale $\int_1^{+\infty} f(t)^2/t^2 dt$ converge. En d'autres termes,

La fonction $t \longmapsto f(t)^2/t^2$ est intégrable sur $[1; +\infty[$.

17 ______(**

Posons $f(x) = \int_0^{\pi/2} (\sin t)^x dt \quad \text{et} \quad \forall x > 0, \quad g(x) = x f(x) f(x-1)$

- (a). Déterminer le domaine de définition de f.
- (b). Montrer que g est 1-périodique.
- (c). Montrer que g admet une limite en $+\infty$. En déduire la valeur de g(x) pour tout x>0.
- (d). Etablir l'équivalent $f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2r}}$.

(a) Pour tout $x \in \mathbb{R}$, l'application $h: t \longmapsto \sin(t)^x$ est définie et continue sur $]0; \pi/2]$. Lorsque t tend vers 0, on a l'équivalent $h(t) \sim t^x$, donc h est intégrable au voisinage de 0 si et seulement si x > -1. Par conséquent,

La fonction
$$f$$
 est définie sur $]-1;+\infty[$.

(b) Soit x > 0. Effectuons une intégration par parties dans l'expression de f(x+1), en intégrant $\sin t$ et en dérivant $(\sin t)^x$. On vérifie immédiatement que $\cos t(\sin t)^x$ a une limite nulle en 0, et ainsi

$$\int_0^{\pi/2} (\sin t)^{x+1} dt = [-(\sin t)^x \cos t]_0^{\pi/2} + \int_{\epsilon}^{\pi/2} x (\sin t)^{x-1} \cos^2 t dt$$
$$= [-(\sin t)^x \cos t]_0^{\pi/2} + \int_0^{\pi/2} x (\sin t)^{x-1} (1 - \sin^2 t) dt$$

d'où

$$f(x+1) = x (f(x-1) - f(x))$$
 soit $(x+1)f(x+1) = xf(x-1)$

En multipliant par f(x), on obtient g(x+1) = g(x), et ainsi

La fonction g est 1-périodique.

(c) Il est clair que f est une fonction décroissante et positive. Ainsi, pour tout x > 2, en notant |x| sa partie entière,

$$xf(\lfloor x\rfloor+1)f(\lfloor x\rfloor) \leq g(x) \leq xf(\lfloor x\rfloor)f(\lfloor x\rfloor-1) \qquad \text{soit} \qquad \frac{x}{\lfloor x\rfloor+1}g(\lfloor x\rfloor+1) \leq g(x) \leq \frac{x}{\lfloor x\rfloor}g(\lfloor x\rfloor)$$

Mais en vertu de la 1-périodicité de g, la quantité $g(\lfloor x \rfloor)$ est une constante, égale à g(1) soit $\pi/2$. Sachant que $\lfloor x \rfloor \sim x$ en $+\infty$, l'encadrement prouve donc que

La fonction g converge vers $\pi/2$.

Une fonction périodique qui admet une limite en $+\infty$ est nécessairement constante. Par conséquent, g est constante et plus précisément,

La fonction g est constante égale à $\pi/2$.

(d) En utilisant à nouveau la décroissance de f, il vient pour tout x > 0,

$$f(x+1) \le f(x) \le f(x-1)$$
 puis $f(x+1)f(x) \le f(x)^2 \le f(x)f(x-1)$

Sachant que g est constante égale à $\pi/2$ d'après la question (c), l'encadrement devient

$$\frac{\pi}{2(x+1)} \le f(x)^2 \le \frac{\pi}{2x}$$

et donc

$$f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$$

18

(**

Donner le domaine de définition, puis étudier la continuité et la dérivabilité de $f: x \longmapsto \int_0^x \sin(1/t) dt$.

L'application $t \mapsto \sin(1/t)$ est continue sur \mathbb{R}^* et est un O(1) au voisinage de 0. On en déduit son intégrabilité sur tout intervalle de la forme [0;x] avec x>0 ou de la forme [x;0[avec x<0. En revanche, f n'est pas définie en 0 car l'intégrale définissant f(0) ne peut ni être définie comme intégrale impropre, ni comme intégrale sur un segment. Ainsi,

La fonction f est définie sur \mathbb{R}^* .

Sur \mathbb{R}^* , f est une primitive de $t \mapsto \sin(1/t)$. Elle est donc de classe \mathcal{C}^{∞} sur \mathbb{R}^* . Etudions l'existence de limite et la dérivabilité en 0.

• Pour tout x non nul, on a $|f(x)| \le \left| \int_0^x |\sin(1/t)| \, dt \right| \le \left| \int_0^x 1 \, dt \right| = |x|$

On en déduit aussitôt que f est prolongeable par continuité en 0 avec f(0) = 0.

• Pour étudier la dérivabilité en 0, on effectue une intégration par partie. Pour tout x > 0 et tout $\epsilon \in]0; x[$,

$$\int_{\epsilon}^{x} \sin(1/t) dt = \int_{\epsilon}^{x} \frac{\sin(1/t)}{t^{2}} \cdot t^{2} dt = \left[t^{2} \cos(1/t)\right]_{\epsilon}^{x} - 2 \int_{0}^{t} t \cos(1/t)$$

d'où en faisant tendre ϵ vers 0,

$$f(x) = x^2 \cos(1/x) - 2 \int_0^x t \cos(1/t) dt$$

Un travail similaire donne l'égalité pour x < 0. Une majoration grossière montre alors que $|f(x)| \le 2x^2$, ce qui assure que f(x)/x tend vers 0 en 0. Ainsi, f est dérivable en 0 avec f'(0) = 0.

Pour conclure,

La fonction f est définie et \mathcal{C}^{∞} sur \mathbb{R}^* . Elle est de plus prolongeable par continuité en 0, et le prolongement est dérivable en 0.

19

Soit f définie par

$$f(x) = e^{x^2} \int_x^{+\infty} e^{-t^2} dt$$

Justifier que f est définie pour tout réel x, puis donner un développement asymptotique à tout ordre en $+\infty$ de f.

L'application $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} et dominée par $1/t^2$ en $+\infty$. Elle est donc intégrable sur tout intervalle de la forme $[x; +\infty[$ avec $x \in \mathbb{R}$ et par conséquent,

La fonction f est définie sur \mathbb{R} .

Dans toute la suite, on fixe x > 0. Par intégration par parties, sachant que te^{-t^2} est de limite nulle en $+\infty$ par croissances comparées,

$$\int_{x}^{+\infty} e^{-t^{2}} dt = \int_{x}^{+\infty} \frac{1}{t} \cdot t e^{-t^{2}} dt = \left[-\frac{e^{-t^{2}}}{2t} \right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{e^{-t^{2}}}{2t^{2}} dt$$

puis

$$\int_{x}^{+\infty} e^{-t^{2}} dt = \frac{1}{2} \frac{e^{-x^{2}}}{x} - \frac{1}{2} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2}} dt$$

De la même manière, en écrivant $e^{-t^2}/t^2 = (te^{-t^2})/t^3$, une nouvelle intégration par parties donne

$$\int_{x}^{+\infty} e^{-t^{2}} dt = \frac{1}{2} \frac{e^{-x^{2}}}{x} - \frac{1}{4} \frac{e^{-x^{2}}}{x^{3}} + \frac{3}{4} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{4}} dt$$

puis à nouveau par IPP

$$\int_{x}^{+\infty} e^{-t^{2}} dt = \frac{1}{2} \frac{e^{-x^{2}}}{x} - \frac{1}{4} \frac{e^{-x^{2}}}{x^{3}} + \frac{3}{8} \frac{e^{-x^{2}}}{x^{5}} - \frac{3 \cdot 5}{8} \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{6}} dt$$

Pour tout entier $p \in \mathbb{N}$, on note donc

$$\alpha_0 = \frac{1}{2} \qquad \text{et} \qquad \forall p \ge 1, \quad \alpha_p = (-1)^p \frac{1 \cdot 3 \cdots (2p-1)}{2^{p+1}} = \frac{(-1)^p (2p)!}{2^p \cdot p! \cdot 2^{p+1}} = \frac{(-1)^p (2p)!}{2^{2p+1} p!}$$

Au passage, cette dernière expression reste vraie pour p = 0. On généralise maintenant par récurrence immédiate sur p l'égalité

$$\forall p \in \mathbb{N}, \qquad \int_{x}^{+\infty} e^{-t^2} dt = \sum_{k=0}^{p} \alpha_k \frac{e^{-x^2}}{x^{2k+1}} + 2\alpha_{p+1} \int_{x}^{+\infty} \frac{e^{-t^2}}{t^{2p+2}} dt$$

Remarquons ensuite que

$$0 \le \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2p+2}} \, \mathrm{d}t \le e^{-x^{2}} \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^{2p+2}} = \frac{e^{-x^{2}}}{(2p+1)x^{2p+1}} = O\left(\frac{e^{-x^{2}}}{x^{2p+1}}\right)$$

En réinjectant cette domination dans l'égalité précédente, puis en multipliant par e^{x^2} , on obtient le développement asymptotique à tout ordre

$$\forall p \in \mathbb{N}^*, \qquad f(x) \underset{x \to +\infty}{=} \sum_{k=0}^{p-1} \frac{(-1)^k (2k)!}{2^{2k+1} k!} \frac{1}{x^{2k+1}} + O\left(\frac{1}{x^{2p+1}}\right)$$

20

_ (**)

Soit φ définie par

$$\varphi(x) = \int_{x}^{x^{4}} \frac{\arccos t}{\arcsin t} \, \mathrm{d}t$$

- (a). Donner le domaine de définition de φ .
- (b). Déterminer un équivalent simple de $\varphi(x)$ en 0.
- (a) La fonction $t \mapsto \arccos(t)/\arcsin(t)$ est définie sur $\mathcal{D} = [-1;0[\,\cup\,]0;1]$. La quantité $\varphi(x)$ est définie seulement si $]x;x^4[$ est inclus dans \mathcal{D} . Cette condition impose $x \in [0;1]$. Réciproquement, si $x \in]0;1]$, la quantité $\varphi(x)$ est bien définie comme intégrale d'une fonction continue sur un segment. Pour x = 0, elle n'est définie ni comme intégrale sur un segment (puisque 0 n'est pas dans \mathcal{D}), ni comme intégrale impropre (car]0;0[est vide). Ainsi,

La fonction φ est définie sur]0;1].

(b) Lorsque t tend vers 0, on a $\frac{1}{\sqrt{1-t^2}} = 1 + O(t^2)$ d'où

$$\arccos t = \frac{\pi}{2} - t + O(t^3)$$
 et $\arcsin t = t + O(t^3)$ puis $\frac{\arccos t}{\arcsin t} = \frac{\pi}{2t} + O(t)$

Il existe donc $\delta \in [0;1[$ et $A \in \mathbb{R}_+$ tels que

$$\forall t \in]0; \delta[, \qquad \left| \frac{\arccos t}{\arcsin t} - \frac{\pi}{2t} \right| \le At$$

En intégrant cette inégalité entre x et x^4 pour $0 < x < \delta$ (ce qui implique $0 < x^4 < \delta$, il vient

$$\left| \int_x^{x^4} \frac{\arccos t}{\arcsin t} \, \mathrm{d}t - \int_x^{x^4} \frac{\pi}{2t} \, \mathrm{d}t \right| \le A \left| \int_x^{x^4} t \, \mathrm{d}t \right| \qquad \text{soit} \qquad \left| \varphi(x) - \frac{3\pi \ln x}{2} \right| \le A(x^2 - x^8) = O(x^2)$$

Pour conclure,

$$\varphi(x) \underset{x \to 0}{\sim} \frac{3\pi}{2} \ln x$$

21

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue et 1-périodique.

- (a). Montrer que pour tout $\lambda > 0$, l'intégrale $\int_0^{+\infty} e^{-\lambda t} f(t) dt$ converge.
- (b). Déterminer $\lim_{\lambda \to 0^+} \lambda \int_0^{+\infty} e^{-\lambda t} f(t) dt$.
- (a) La fonction f étant continue et 1-périodique, elle est bornée sur \mathbb{R} . Par suite, pour tout $\lambda > 0$ et tout $t \in \mathbb{R}_+$, on a $|e^{-\lambda t}f(t)| \leq e^{-\lambda t}||f||_{\infty}$. Cette domination suffit pour prouver que

Pour tout
$$\lambda > 0$$
, l'intégrale $\int_0^{+\infty} e^{-\lambda t} f(t) dt$ converge.

(b) Soit $\lambda > 0$. Effectuons le changement de variable t = u - 1 dans l'intégrale. Il vient par périodicité de f,

$$\int_0^{+\infty} e^{-\lambda t} f(t) dt = \int_1^{+\infty} e^{-\lambda(u-1)} f(u-1) du = e^{\lambda} \int_1^{+\infty} e^{-\lambda u} f(u) du$$

d'où

$$(1 - e^{-\lambda}) \int_0^{+\infty} e^{-\lambda t} f(t) dt = \int_0^1 e^{-\lambda t} f(t) dt$$

Notons que $1 - e^{-\lambda} \sim \lambda$ lorsque λ tend vers $+\infty$. Il ne reste donc qu'à déterminer la limite du terme de droite ci-dessus. Appliquons pour cela l'intégalité des accroissements finis à la fonction $h: u \longmapsto e^{-u}$ entre 0 et λt , avec $\lambda > 0$ et $t \in [0; 1]$. Alors,

$$\left| e^{-\lambda t} - 1 \right| \le \left| \lambda t \right| \sup_{u \in [0;\lambda t]} \left| h'(u) \right| = \lambda t$$

$$\left| \int_{0}^{1} e^{-\lambda t} f(t) \, dt - \int_{0}^{1} f(t) \, dt \right| \leq \int_{0}^{1} \left| e^{-\lambda t} - 1 \right| |f(t)| \, dt \leq \lambda K$$

avec
$$K = \int_0^1 t |f(t)| dt$$
, indépendant de λ . Par conséquent, $\int_0^1 e^{-\lambda t} f(t) dt \xrightarrow[\lambda \to 0]{} \int_0^1 f(t) dt$ et

$$\lim_{\lambda \to 0} \lambda \int_0^{+\infty} e^{-\lambda t} f(t) dt = \int_0^1 f(t) dt$$

Remarque : On aurait aussi pu utiliser la caractérisation séquentielle de la limite et le TCD pour trouver la limite de la quantité $\int_0^1 e^{-\lambda t} f(t) dt$ lorsque λ tend vers 0.