Continuité, dérivabilité

_____(*) ___

- (a). Calculer $\arctan 2 + \arctan 5 + \arctan 8$.
- (b). Résoudre l'équation d'inconnue $x \in \mathbb{R}$: $\arctan(x-3) + \arctan x + \arctan(x+3) = 5\pi/4$.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue telle que $f(x+1) - f(x) \xrightarrow{+\infty} \ell \in \mathbb{R}$. Montrer que $f(x)/x \xrightarrow{+\infty} \ell$.

On cherche à déterminer les fonctions de classe \mathcal{C}^1 sur \mathbb{R} et telles que

$$\forall x \in \mathbb{R}, \qquad (f \circ f)(x) = 3 + \frac{x}{2}$$
 (*)

(a). Soit α un réel quelconque. Etudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = \alpha$$
 et $\forall n \in \mathbb{N}, \quad u_{n+1} = 3 + u_n/2$

(b). Justifier que si
$$f$$
 satisfait $(*)$, alors $\forall x \in \mathbb{R}, \qquad f\left(3 + \frac{x}{2}\right) = 3 + \frac{f(x)}{2}$

Conclure.

Soit $n \in \mathbb{N}^*$, $\varphi \in \mathbb{R} \setminus \pi \mathbb{Z}$ et $P_n(x)$ la quantité définie par

$$P_n(x) = (x^2 + 1)^n \frac{d^{n-1}}{dx^{n-1}} \left(\frac{x - \cot \alpha \varphi}{x^2 + 1} \right)$$

Montrer que P_n est une application polynomiale de degré n et déterminer ses racines.

Soit I un intervalle inclus dans $]0; +\infty[$, f de classe \mathcal{C}^1 sur I et enfin a, b deux éléments distincts de I. Montrer que si la droite passant par (a, f(a)) et (b, f(b)) passe par l'origine, alors il existe $c \in I$ tel que la tangente à la courbe en (c, f(c)) passe par l'origine.

Soit $f:[0;1] \longrightarrow [0;1]$ continue, non constante et telle que $f \circ f = f$. Soit a < b les deux réels tels que f([0;1]) = [a;b].

- (a). Montrer que f est l'identité sur [a;b].
- (b). Montrer que si f est de plus dérivable sur [0;1], alors f est l'identité sur [0;1].
- (c). Donner un exemple d'application de [0; 1] dans lui-même continue, non constante, distincte de l'identité et telle que $f \circ f = f$.

Soit $f \in \mathcal{C}^1([a; +\infty[], \mathbb{R}))$ telle que f admet f(a) pour limite en $+\infty$. Montrer que $f([a; +\infty[])$ est un segment et en déduire qu'il existe $\alpha \in [a; +\infty[$ tel que $f'(\alpha) = 0$.

Intégrale sur un segment

8

Etablir des formules de récurrence entre les intégrales suivantes

(a)
$$I_n = \int_0^{\pi/4} \tan^n(x) dx$$
 (b) $J_n = \int_0^{\pi/4} \frac{1}{\cos^n(x)} dx$ (c) $K_n = \int_1^e \ln^n(x) dx$

En déduire les valeurs de ces intégrales pour n=3.

Soit $f: x \longmapsto \int_{-\infty}^{x^2} \frac{\mathrm{d}t}{\ln t}$. Justifier l'équivalent $f(x) \underset{x \to +\infty}{\sim} \frac{x^2}{2 \ln x}$.

Soit $f:[a;b] \longrightarrow \mathbb{R}_+^*$ continue. On pose

$$F(x) = \int_a^x f(t) dt$$
 et $I = F(b) = \int_a^b f(t) dt$

- (a). Montrer que I > 0 et qu'il existe m > 0 tel que $f(x) \ge m$ pour tout $x \in [a; b]$.
- (b). Montrer que F admet une réciproque de classe \mathcal{C}^1 .
- (c). Pour tout $n \in \mathbb{N}^*$, justifier l'existence et l'unicité de x_0, \ldots, x_n tels que

$$\forall i \in [0; n-1], \qquad \int_{x_i}^{x_{i+1}} f(t) \, dt = \frac{I}{n}$$

On pose

$$u_n = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

- (d). Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers $J=\frac{1}{I}\int_0^b f(t)^2 dt$.
- (e). On suppose f de classe C^1 . Montrer que $u_n J = O(1/n)$.

_____ (*) _____ Centrale PC 2009

Soit E l'ensemble des applications continues de [0;1] dans lui-même. Déterminer l'ensemble des éléments f de E tels que

$$\int_0^1 f(t) \, dt = \int_0^1 f(t)^2 \, dt$$

12

______(**) _______ ENS PC 2014

Soient a < b deux réels. Déterminer toutes les éléments f de $\mathcal{C}^0([a;b],\mathbb{R})$ telles que

$$\forall c < d \in [a; b], \qquad \frac{1}{d - c} \int_{c}^{d} f(t) dt = \frac{f(c) + f(d)}{2}$$

13

_____ (**) _

_____ X PC 2016

Si $x \in \mathbb{R}$, on note |x| sa partie entière, et $\{x\}$ sa partie décimale (on a donc $x = |x| + \{x\}$).

(a). Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. Montrer que pour tout entier $n \geq 2$

$$\sum_{k=1}^{n-1} f(k) = \int_{1}^{n} f(x) \, \mathrm{d}x + \frac{1}{2} \left(f(1) - f(n) \right) + \int_{1}^{n} \left(\{x\} - \frac{1}{2} \right) f'(x) \, \mathrm{d}x$$

(b). On pose pour $n \in \mathbb{N}^*$,

$$u_n = \frac{1}{n} \sum_{k=1}^n e^{2i\pi \ln(k)}$$

La suite $(u_n)_{n\in\mathbb{N}^*}$ est-elle convergente?

Formules de Taylor et applications

14

_____ (*) _____

Déterminer $\lim_{x \to +\infty} x^2 \left(1 + \frac{1}{x}\right)^x - e x^3 \ln \left(1 + \frac{1}{x}\right)$

______(**) _______ CCP PC 2011

Soit $f: x \longmapsto (e^{x^2} - 1)/x$ prolongée par continuité en 0 par f(0) = 0.

- (a) Montrer que f est dérivable en 0. Préciser f'(0).
- (b) Donner un développement limité à l'ordre 5 en 0 de f, f^3 et f^5 .
- (c) (5/2) Montrer que f est développable en série entière au voisinage de 0 et que f est \mathcal{C}^{∞} et strictement croissante.
- (d) Vérifier que f est bijective de \mathbb{R} sur \mathbb{R} et que f^{-1} est également \mathcal{C}^{∞} et impaire.
- (e) Donner un développement limité à l'ordre 5 en 0 de $x \mapsto f^{-1}(x)$.

Déterminer un développement asymptotique à 2 termes en 1 de $x \mapsto \arcsin x$.

_____ (**) _____

Soit $f \in \mathcal{C}^2([0;1],\mathbb{R})$ telle que f(0) = f'(0) = f'(1) = 0 et f(1) = 1. Montrer qu'il existe $\alpha \in [0;1]$ tel que $|f''(\alpha)| \geq 4$.

18

_____(**) ____

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^{∞} et telle que f(0) = 0 et $\lim_{n \to \infty} f = 0$. Montrer qu'il existe une suite de réels $(x_n)_{n \in \mathbb{N}}$ strictement croissante telle que pour tout entier n, on ait $f^{(n)}(x_n) = 0$.

_____ (**) _____

Soit f de classe C^2 sur \mathbb{R} et x tel que $f''(x) \neq 0$.

(a). Montrer qu'il existe $\eta > 0$ tel que pour tout réel $h \in [-\eta; \eta]$ non nul, on ait un unique $\theta_h \in]0; 1[$ tel que

$$f(x+h) = f(x) + hf'(x + \theta_h h)$$

(b). Montrer en appliquant Taylor-Young à f' et f que l'application $\theta: h \longmapsto \theta_h$ admet $\frac{1}{2}$ pour limite en 0.

_____ (**) ____

_____ Mines PC 2014

Soit $a \in]-1;1[$. Trouver les applications $f:\mathbb{R} \longrightarrow \mathbb{R}$ continues et telles que

$$\forall x \in \mathbb{R}, \qquad f(x) = \int_0^{ax} f(t) \, \mathrm{d}t$$

Exercices supplémentaires non corrigés

_____(?) _____

Déterminer toutes les fonctions continues $f: \mathbb{R} \longrightarrow \mathbb{R}$ telles que $(f \circ f)(x) = x$ pour tout réel x.

_____ (**) _____

Déterminer toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables telles que

$$f^2 + (1 + f')^2 < 1$$

23

_____ (***) ______ ENS PC 2023

Soit $P \in \mathbb{R}[X]$ un polynôme. Pour tout $\epsilon > 0$, on pose

$$M_{\epsilon} = \{ t \in \mathbb{R}, \ |P(t)| \le \epsilon \}$$

Déterminer

$$\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbf{1}_{M_{\epsilon}}(x) \cdot |P'(x)| \, dx$$

où la notation $\mathbf{1}_A$ désigne la fonction caractéristique d'une partie A de \mathbb{R} (c'est-à-dire la fonction qui vaut 1 sur A et 0 en dehors).

______ (?) ______ ENS PC 2024

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 de limite nulle en $+\infty$ et $-\infty$. Pour tout $t \geq 0$, on pose

$$\lambda(t) = \max_{x \in \mathbb{R}} \left(|f(t)| e^{-tx^2} \right)$$

- (a). On suppose $f(0) \neq 0$. Déterminer $\lim_{t \to +\infty} \lambda(t)$.
- (b). On suppose que f(0) = 0 et $f(0) \neq 0$. Déterminer un équivalent de λ en $+\infty$.
- (c). Même question en supposant f de classe \mathcal{C}^{∞} et l'existence d'un entier $k \geq 2$ tel que $f(0) = \cdots = f^{(k-1)}(0)$ et $f^{(k)}(0) \neq 0$.

- 1 (a) Calculer la tangente de cette expression.
 - (b) Utiliser un argument de monotonie.
- 2 On pourra commencer par traiter le cas où $\ell=0$ en adaptant la preuve du lemme de Césaro.
- $\boxed{\bf 3}$ (b) Pour montrer la relation, on pourra s'intéresser à $(f \circ f \circ f)(x)$. Ensuite, à l'aide du (a), montrer que f' est constante.
- Pour prouver que P_n est un polynôme, on pourra raisonner par récurrence sur n. Par la suite, on cherchera une autre expression de P_n à l'aide d'une décomposition en éléments simples sur \mathbb{C} de $(x + \cot \alpha \varphi)/(1 + x^2)$.
- **5** On pourra considérer la fonction $g: x \mapsto f(x)/x$.
- **6** (b) On pourra raisonner par l'absurde en utilisant le fait que si $f([0;1]) \neq [0;1]$, alors a > 0 ou b < 1 et f atteint un de ses extremums dans [0;1[.
- 7 Introduire une bijection φ strictement croissante et de classe \mathcal{C}^1 de [0;1[vers $[a;+\infty[$ et introduire $g=f\circ\varphi.$
- $\boxed{\mathbf{8}}$ (a) Utiliser une formule de trigonométrie pour trouver une expression simple de $I_n + I_{n+2}$ en fonction de n.
 - (b) Même indication qu'au (b) en combinant judicieusement J_n et J_{n+2} .
 - (c) Intégrer par parties.
- 9 Utiliser une intégration par parties.
- 10 (c) Utiliser la relation de Chasles pour exprimer x_i en fonction de F^{-1} .
 - (d) Utiliser les sommes de Riemann puis faire un changement de variable impliquant F^{-1} .
 - (e) Utiliser la formule de Taylor avec reste intégral appliquée à F pour majorer $\int_{x_i}^{x_{i+1}} f(t) dt f(x_i)$.
- 11 Remarquer que $f f^2$ est continue, positive d'intégrale nulle.
- En fixant c et en faisant varier d, justifier que l'application f est nécessairement de classe C^1 , puis qu'il s'agit d'une fonction affine.
- 13 (a) On pourra remarquer que sur tout intervalle de la forme $[k; k-1[, x \mapsto \{x\} \text{ coïncide avec } x \mapsto t-k, \text{ et intégrer par parties}]$

$$\int_{k}^{k+1} \left(x - k - \frac{1}{2} \right) f'(t) \, \mathrm{d}t$$

- (b) Appliquer la formule précédente avec $f: t \longrightarrow e^{2i\pi \ln t}$. La première intégrale se calcule par un changement de variable. Majorer plus ou moins grossièrement les deux autres termes.
- 14 Utiliser un développement limité à l'ordre 3 en 0 de $\ln(1+t)$.
- 15 (d) Pour montrer que f^{-1} est \mathcal{C}^{∞} , on pourra commencer par justifier le caractère \mathcal{C}^{1} puis utiliser l'expression de $(f^{-1})'$.
 - (e) Justifier l'existence d'un DL de la forme $f^{-1}(x) = a_1 x + a_3 x^3 + a_5 x^5 + o(x^5)$ et utiliser l'égalité $f^{-1} \circ f = I_d$.
- **16** Soit $y = \arcsin x$. Poser x = 1 h et $y = \frac{\pi}{2} t$ et revenir à sin (au lieu de arcsin).
- **17** Ecrire deux fois l'inégalité de Taylor-Lagrange sur [0; 1/2] et [1/2; 1].
- Construire la suite $(x_n)_{n\in\mathbb{N}}$ par récurrence. Etant donné x_n vérifiant $f^{(n)}(x_n)=0$, on pourra raisonner par l'absurde puis appliquer une formule de Taylor avec reste intégral à l'ordre n entre $a>x_n$ fixé et $x\geq a$ pour justifier l'existence de x_{n+1} .
- 19 (a) L'existence de θ_h découle du théorème des accroissements finis. Pour son unicité au voisinage de 0, justifier que f' est strictement monotone localement en x.
- Justifier dans un premier temps que f est de classe C^{∞} , et exprimer $f^{(n)}(x)$ en fonction de f, a et x pour tout entier n et tout réel x. Utiliser ensuite la formule de Taylor avec reste-intégral entre 0 et x pour montrer que f est nulle.