I. Stabilité d'un polynôme trigonométrique

1 Vérifions que $\| \|$ définit une norme sur E. On rappelle que toutes les sommes faisant intervenir les coefficients de polynômes trigonométriques, bien que s'étendant de $-\infty$ à $+\infty$, sont en fait finies.

• Si c un polynôme trigonométrique, on a par définition

$$||c|| = \sum_{n=-\infty}^{\infty} |c_n|$$

qui est positif, puisqu'un module l'est.

• Supposons que ||c|| = 0. Une somme de nombres positifs est nulle si, et seulement si, chacun d'eux l'est. Par suite, tous les $(|c_n|)_{n\in\mathbb{Z}}$ sont nuls et c=0.

$$\forall c \in \mathbf{E} \qquad (\|c\| = 0 \Longrightarrow c = 0)$$

ullet Soient c un polynôme trigonométrique et λ un complexe. Alors

$$\|\lambda c\| = \sum_{n=-\infty}^{\infty} |\lambda c_n| = \sum_{n=-\infty}^{\infty} |\lambda| |c_n| = |\lambda| \sum_{n=-\infty}^{\infty} |c_n| = |\lambda| \|c\|$$

On s'est ici servi du fait que |zz'| = |z| |z'| si z et z' sont deux complexes, et de manipulations élémentaires de la notation \sum .

 \bullet Étant donnés deux polynômes trigonométriques c et d,

$$||c+d|| = \sum_{n=-\infty}^{\infty} \underbrace{|c_n + d_n|}_{\leq |c_n| + |d_n|} \leq \sum_{n=-\infty}^{\infty} |c_n| + \sum_{n=-\infty}^{\infty} |d_n| = ||c|| + ||d||$$

ce qui établit l'inégalité triangulaire.

Conclusion:

 $\| \|$ est une norme sur E.

Soit $c \in E$, dont on note N le degré. De sorte que

$$\forall x \in \mathbb{R}$$
 $c(x) = \sum_{n=-N}^{N} c_n e^{inx}$

Étant donné un entier relatif $p \in \{-N, \dots, N\}$,

$$\int_{-\pi}^{\pi} c(x) e^{-ipx} dx = \int_{-\pi}^{\pi} \left(\sum_{n=-N}^{N} c_n e^{i(n-p)x} \right) dx = \sum_{n=-N}^{N} c_n \int_{-\pi}^{\pi} e^{i(n-p)x} dx$$

Or,
$$\forall n \in \mathbb{Z} \quad n \neq p \qquad \int_{-\pi}^{\pi} e^{i(n-p)x} dx = \frac{e^{i(n-p)\pi} - e^{-i(n-p)\pi}}{n-p} = 0$$

d'où
$$\int_{-\pi}^{\pi} c(x) \, \mathrm{e}^{-\mathrm{i} p x} \, \mathrm{d} x = c_p \int_{-\pi}^{\pi} \mathrm{d} x = 2 \pi c_p$$

On a bien
$$\forall p \in \{-N, \dots, N\} \qquad \frac{1}{2\pi} \int_{-\pi}^{\pi} c(x) e^{-ipx} dx = c_p$$

Il est aisé de vérifier que cette formule est également valide pour $|p| \ge N + 1$. Dans ce cas,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} c(x) e^{-ipx} dx = c_p = 0$$

 $\boxed{\bf 3}$ Soit c un polynôme trigonométrique, de degré noté N. On a

$$\forall x \in \mathbb{R} \qquad |c(x)| = \left| \sum_{n=-N}^{N} c_n e^{inx} \right| \leqslant \sum_{n=-N}^{N} |c_n| \underbrace{|e^{inx}|}_{-1} = ||c||$$

donc

$$\sup_{x \in \mathbb{R}} |c(x)| \leqslant ||c||$$

Pour démontrer l'autre inégalité demandée, on utilise le résultat de la question 2:

$$\forall p \in \{-N, \dots, N\}$$
 $c_p = \frac{1}{2\pi} \int_{-\pi}^{\pi} c(x) e^{-ipx} dx$

donc

$$\forall p \in \{-N, \dots, N\}$$
 $|c_p| \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |c(x)| \underbrace{|\mathbf{e}^{-\mathbf{i}px}|}_{} dx$

$$\leqslant \sup_{x \in \mathbb{R}} |c(x)| \times \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} dx}_{=1}$$

Par suite,
$$||c|| = \sum_{p=-\mathcal{N}}^{\mathcal{N}} |c_p| \leqslant \sum_{p=-\mathcal{N}}^{\mathcal{N}} \sup_{x \in \mathbb{R}} |c(x)| = (2\mathcal{N}+1) \sup_{x \in \mathbb{R}} |c(x)|$$

4 Supposons qu'il existe $x_0 \in \mathbb{R}$, tel que $|c(x_0)| > 1$. Alors, étant donné un entier k,

$$\sup_{x \in \mathbb{R}} |c(x)^k| \ge |c(x_0)^k| = |c(x_0)|^k$$

d'où l'on déduit

$$||c^k|| \geqslant |c(x_0)|^k$$

En effet, c^k est un polynôme trigonométrique, ce qui autorise l'utilisation d'une des inégalités établies à la question 3. Or, $|c(x_0)| > 1$ donc

$$\lim_{k \to \infty} |c(x_0)|^k = +\infty \qquad \text{et} \qquad \lim_{k \to \infty} ||c^k|| = +\infty$$

Ceci exclut que la suite $\left(\|c^k\|\right)_{k\in\mathbb{N}}$ soit bornée.

S'il existe $x_0 \in \mathbb{R}$ tel que $|c(x_0)| > 1$, alors c n'est pas stable.

II. UN POLYNÔME TRIGONOMÉTRIQUE PARTICULIER

5 Soit $x \in \mathbb{R}$. En utilisant les relations trigonométriques

$$\cos x = 1 - 2\sin^2\frac{x}{2} \qquad \text{et} \qquad \sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

on a
$$a(x) = [1 - \alpha^2(1 - \cos x)] + i\alpha \sin x = (1 - 2\alpha^2 \sin^2 \frac{x}{2}) + 2i\alpha \sin \frac{x}{2} \cos \frac{x}{2}$$

d'où
$$|a(x)|^2 = \left(1 - 2\alpha^2 \sin^2 \frac{x}{2}\right)^2 + 4\alpha^2 \sin^2 \frac{x}{2} \cos^2 \frac{x}{2}$$
$$= 1 - 4\alpha^2 \sin^2 \frac{x}{2} + 4\alpha^4 \sin^4 \frac{x}{2} + 4\alpha^2 \sin^2 \frac{x}{2} \cos^2 \frac{x}{2}$$

Or,
$$\sin^2 \frac{x}{2} \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = \sin^2 \frac{x}{2} \underbrace{\left(\cos^2 \frac{x}{2} - 1\right)}_{=-\sin^2 x/2} = -\sin^4 \frac{x}{2}$$

Finalement,

$$a(x)|^2 = 1 - 4(\alpha^2 - \alpha^4)\sin^4\frac{x}{2}$$

Dans la mesure où $\alpha \in]0;1[$, on a $\alpha^4 < \alpha^2$ donc $(\alpha^2 - \alpha^4)\sin^4\frac{x}{2}$ est strictement positif si $x \in]0;\pi[$. Ainsi,

$$\forall x \in]0;\pi] \qquad |a(x)|^2 < 1$$

Enfin, il est immédiat que

$$a(0) = 1$$

6 On utilise le calcul effectué à la question 5, ainsi que les développements limités connus des fonctions $x \longmapsto \ln(1+x)$ et $x \longmapsto \sin x$ au voisinage de 0 à l'ordre 1:

$$\sin x = x + o(x) \qquad \text{et} \qquad \ln(1+x) = x + o(x)$$

Ainsi,
$$|a(x)|^2 = 1 - 4(\alpha^2 - \alpha^4)\sin^4\frac{x}{2} = 1 - 4(\alpha^2 - \alpha^4)\frac{x^4}{16} + o(x^4)$$

d'où
$$\ln|a(x)^2| = \ln\left(1 - \frac{\alpha^2 - \alpha^4}{4} \, x^4 + \mathrm{o}(x^4)\right) = -\frac{\alpha^2 - \alpha^4}{4} \, x^4 + \mathrm{o}(x^4)$$

$$g(x) = -\frac{\alpha^2 - \alpha^4}{4} x^4 + o(x^4)$$

Passons au calcul du développement limité à l'ordre 4 de h en 0. On a

$$h(x) = -\arctan\left(\frac{\alpha \sin x}{1 - \alpha^2(1 - \cos x)}\right)$$

Remarquons que h admet un développement limité à l'ordre 4 en 0 d'après le théorème de Taylor-Young : elle est en effet de classe \mathscr{C}^4 au voisinage de 0 d'après les théorèmes généraux sur la continuité et la dérivabilité et parce que $x \longmapsto 1 - \alpha^2(1 - \cos x)$ ne s'annule pas en 0.

Comme h est impaire, son développement limité à l'ordre 4 n'a pas de terme de degré pair; il est en fait identique au développement à l'ordre 3, au « petit o » correctif près. Donc il suffit de développer h à l'ordre 3, ce qui rend plus simples les calculs. On a

$$1 - \alpha^2 (1 - \cos x) = 1 - \frac{\alpha^2 x^2}{2} + o(x^3)$$
d'où
$$\frac{1}{1 - \alpha^2 (1 - \cos x)} = \frac{1}{1 - \alpha^2 x^2 / 2 + o(x^3)} = 1 + \frac{\alpha^2 x^2}{2} + o(x^3)$$
On rappelle que
$$\sin x = x - \frac{x^3}{6} + o(x^3)$$
donc
$$\frac{\sin x}{1 - \alpha^2 (1 - \cos x)} = \left(x - \frac{x^3}{6}\right) \left(1 + \frac{\alpha^2 x^2}{2}\right) + o(x^3)$$

$$= x + \left(\frac{\alpha^2}{2} - \frac{1}{6}\right) x^3 + o(x^3)$$

Encore un rappel:

$$Arctan x = x - \frac{x^3}{3} + o(x^3)$$

donc

$$-h(x) = \arctan\left(\frac{\alpha \sin x}{1 - \alpha^2 (1 - \cos x)}\right)$$
$$= \alpha x + \left(\frac{\alpha^3}{2} - \frac{\alpha}{6}\right) x^3 - \frac{\alpha^3 x^3}{3} + o(x^3)$$
$$-h(x) = \alpha x + \frac{\alpha^3 - \alpha}{6} x^3 + o(x^3)$$

Et, d'après les considérations de parité expliquées plus haut,

$$h(x) = -\alpha x + \frac{\alpha - \alpha^3}{6} x^3 + o(x^4)$$

7 Dans la mesure où $\Re(a(0)) = 1$ et parce que $x \mapsto \Re(a(x))$ est continue en 0, on sait qu'au voisinage de 0, on peut assurer que $\Re(a(x)) > 0$. Donc, au voisinage de 0,

$$\begin{split} a(x) &= |a(x)| \exp\Bigl(\mathrm{i} \arctan \, \frac{\Im \, (a(x))}{\Re \, (a(x))}\Bigr) = \exp\Bigl(\frac{1}{2} \ln |a(x)|^2 + \mathrm{i} \arctan \, \frac{\Im \, (a(x))}{\Re \, (a(x))}\Bigr) \\ &= \exp\Bigl(\frac{g(x)}{2} + \mathrm{i} h(x)\Bigr) \end{split}$$

On se sert des développements limités de g et h obtenus à la question 6:

$$a(x) = \exp\left(-i\alpha x + i\frac{\alpha - \alpha^3}{6}x^3 - \frac{\alpha^2 - \alpha^4}{8}x^4 + o(x^4)\right)$$

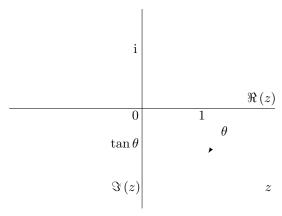
On s'est servi du fait que, si z est un nombre complexe dont la partie réelle est strictement positive, une détermination de l'argument de z est Arctan ($\Im(z)/\Re(z)$). En effet, le fait que z soit dans le demi-plan droit implique que son argument admet une détermination $\theta \in]-\pi/2;\pi/2[$. Or,

$$\Re(z) = |z| \cos \theta$$
 et $\Im(z) = |z| \sin \theta$

donc

$$\frac{\Im\left(z\right)}{\Re\left(z\right)} = \tan\theta$$

Comme Arctan $(\Im(z)/\Re(z))$ est l'unique élément de $]-\pi/2;\pi/2[$ dont la tangente vaut $\Im(z)/\Re(z)$ ce nombre vaut θ , ce qui fournit la formule annoncée. Le dessin suivant illustre géométriquement cette relation :



III. MAJORATION DES COEFFICIENTS DE a^k

8 Dans la mesure où $|f'(t)| \ge K > 0$ sur [r; s], f' ne s'annule pas sur cet intervalle. La fonction $t \longmapsto -1/f'(t)$ y est donc de classe \mathscr{C}^1 et sa dérivée est $t \longmapsto f''(t)/f'(t)^2$. Par suite,

$$\int_{r}^{s} \frac{f''(t)}{f'(t)^{2}} dt = -\frac{1}{f'(s)} + \frac{1}{f'(r)}$$

puis

$$\left| \left| \int_{r}^{s} \frac{f''(t)}{f'(t)^{2}} \, \mathrm{d}t \right| \leqslant \frac{1}{|f'(s)|} + \frac{1}{|f'(r)|} \leqslant \frac{2}{\mathrm{K}} \right|$$

9 On a justifié à la question 8 le fait que $t \mapsto 1/f'(t)$ est de classe \mathscr{C}^1 sur [r;s]; la fonction $t \mapsto f'(t)\cos f(t)$ est continue sur cet intervalle et admet $t \mapsto \sin f(t)$ pour primitive. On peut donc procéder à une intégration par parties, comme le suggère l'énoncé:

$$\int_{r}^{s} \cos f(t) dt = \int_{r}^{s} \underbrace{\frac{1}{f'(t)}}_{\text{on dérive}} \underbrace{\frac{f'(t)\cos f(t)}{\cos f(t)}}_{\text{on primitive}} dt = \left[\frac{\sin f(t)}{f'(t)}\right]_{r}^{s} + \int_{r}^{s} \frac{f''(t)}{f'(t)^{2}} \sin f(t) dt$$

Dans la mesure où $f''(t)/f'(t)^2$ est positif sur [r;s], il vient

$$\left| \int_r^s \frac{f''(t)}{f'(t)^2} \sin f(t) dt \right| \leqslant \int_r^s \frac{f''(t)}{f'(t)^2} \underbrace{\left| \sin t \right|}_{\leqslant 1} dt \leqslant \int_r^s \frac{f''(t)}{f'(t)^2} dt \leqslant \frac{2}{K}$$

en utilisant le résultat de la question 8. On reprend le résultat de l'intégration par parties effectuée en début de question. À l'aide de l'inégalité triangulaire et de la majoration juste établie,

$$\left| \int_{r}^{s} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{2}{K} + \frac{|\sin f(s)|}{|f'(s)|} + \frac{|\sin f(r)|}{|f'(r)|} \leqslant \frac{2}{K} + \frac{1}{K} + \frac{1}{K}$$

Ainsi,

$$\left| \left| \int_{r}^{s} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{4}{K} \right|$$

10 Soit $t \in [u; v]$. Puisque f'' est continue sur [u; t] et est la dérivée de f',

$$f'(t) - f'(u) = \int_u^t f''(s) \, \mathrm{d}s$$

Et comme $f'' \geqslant M$ sur [u;t], la positivité de l'intégrale assure que

$$f'(t) - f'(u) \geqslant M \int_u^t ds = M(t - u)$$

Mais $f'(u) \ge 0$ donc

$$f'(t) \geqslant M(t-u)$$

Enfin, si l'on suppose que $t \in [u + 2M^{-1/2}; v]$, de sorte que $t - u \ge 2M^{-1/2}$, il vient

$$\forall t \in \left[u + \frac{2}{\sqrt{M}}; v \right] \qquad f'(t) \geqslant \frac{2M}{\sqrt{M}} = 2\sqrt{M}$$

Bien entendu, pour que ce raisonnement soit valable, il est nécessaire que $u+2\mathcal{M}^{-1/2}\leqslant v.$

11 On a établi, à la question 10, que

$$\forall t \in \left[u + 2M^{-1/2}; v \right], |f'(t)| \geqslant 2\sqrt{M} > 0$$

En outre, $f''(t) \ge 0$ sur cet intervalle. D'après le résultat de la question 9,

$$\left| \int_{u+2M^{-1/2}}^{v} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{4}{2\sqrt{M}} = \frac{2}{\sqrt{M}}$$

De plus,
$$\left| \int_{u}^{u+2\mathcal{M}^{-1/2}} \cos f(t) \, \mathrm{d}t \right| \leqslant \int_{u}^{u+2\mathcal{M}^{-1/2}} |\cos f(t)| \, \mathrm{d}t \leqslant \frac{2}{\sqrt{\mathcal{M}}}$$

Par suite,
$$\left| \int_{u}^{v} \cos f(t) \, \mathrm{d}t \right| \leqslant \left| \int_{u}^{u+2\mathcal{M}^{-1/2}} \cos f(t) \, \mathrm{d}t \right| + \left| \int_{u+2\mathcal{M}^{-1/2}}^{v} \cos f(t) \, \mathrm{d}t \right|$$
$$\leqslant \frac{2}{\sqrt{\mathcal{M}}} + \frac{2}{\sqrt{\mathcal{M}}}$$

d'où
$$\left| \int_u^v \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{4}{\sqrt{\mathrm{M}}}$$

Il convient de se demander si l'on peut s'en sortir si $u + 2M^{-1/2} > v$. C'est le cas et les choses sont même très simples :

$$\left| \int_{u}^{v} \cos f(t) \, \mathrm{d}t \right| \leqslant \int_{u}^{v} |\cos f(t)| \, \mathrm{d}t \leqslant v - u < \frac{2}{\sqrt{\mathrm{M}}} < \frac{4}{\sqrt{\mathrm{M}}}$$

L'énoncé admet que l'estimation reste valable si l'on suppose $f'(v) \leq 0$, au lieu de $f'(u) \geq 0$. La démonstration est très proche de celle qui vient d'être faite: on commence par établir que

$$\forall t \in \left[u; v - \frac{2}{\sqrt{\mathbf{M}}}\right] \qquad -f'(t) = |f'(t)| \geqslant 2\sqrt{\mathbf{M}}$$

C'est ici que sert l'hypothèse $f'(v) \leq 0$. On en déduit alors, à l'aide de la question 9, que

$$\left| \int_{u}^{v-2M^{-1/2}} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{2}{\sqrt{M}}$$

On majore alors l'intégrale de $\cos f(t)$ sur [u; v] en la coupant à $v - 2M^{-1/2}$.

12 On suppose que f'(u)f'(v) < 0. Comme f' est continue sur [u;v], elle s'annule au moins une fois dans cet intervalle d'après le théorème des valeurs intermédiaires.

De plus, f'' est strictement positive sur [u;v] donc f' est strictement croissante: en particulier, f' est injective. Par suite, elle s'annule au plus une fois sur [u;v]. Évidemment, f' ne peut s'annuler en u ou v puisque f'(u)f'(v) < 0.

Il existe un unique
$$w \in]u; v[$$
 tel que $f'(w) = 0$.

L'inégalité $f''(t) \ge M > 0$ est satisfaite sur l'intervalle [u; w] et l'on a $f'(w) \le 0$. D'après le résultat admis par l'énoncé à l'issue de la question 11, on sait que

$$\left| \int_{u}^{w} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{4}{\sqrt{\mathrm{M}}}$$

De la même manière, $f''(t) \ge M > 0$ pour tout $t \in [w; v]$ et $f'(w) \ge 0$. D'après ce qui a été établi à la question 11,

$$\left| \int_{w}^{v} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{4}{\sqrt{\mathrm{M}}}$$

Finalement

$$\left| \int_{u}^{v} \cos f(t) \, \mathrm{d}t \right| \leq \left| \int_{u}^{w} \cos f(t) \, \mathrm{d}t \right| + \left| \int_{w}^{v} \cos f(t) \, \mathrm{d}t \right|$$

 $\left| \left| \int_{u}^{v} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{8}{\sqrt{\mathrm{M}}} \right|$

et

Les questions 8 à 12 détaillent la démonstration d'une version faible du lemme de Van der Corput. Il s'agit d'un lemme fondamental en analyse harmonique, très utile pour l'étude d'intégrales oscillantes du type $\int_u^v \mathrm{e}^{\mathrm{i} f(t)} \, \mathrm{d}t$, sous certaines hypothèses sur la fonction f.

Il convient, pour que la suite du corrigé soit plus claire, de résumer ce qui a été établi jusqu'à présent. Les questions 8, 9 et 10 n'étaient que des intermédiaires. Les questions 11 et 12 constituent le résultat proprement dit : si $f'' \geqslant M$ sur $[u\,;v]$ et sous l'une quelconque des hypothèses suivantes :

$$f'(u) \geqslant 0$$
 ou $f'(v) \leqslant 0$ ou $f'(u)f'(v) < 0$

on peut assurer que $\left| \int_{u}^{v} \cos f(t) \, dt \right| \leqslant \frac{8}{\sqrt{M}}$

Mais ces conditions recouvrent tous les cas possibles: la négation de « $f'(u) \ge 0$ ou $f'(v) \le 0$ » est « f'(u) < 0 et f'(v) > 0 », ce qui tombe sous la coupe de la condition « f'(u)f'(v) < 0 ». Donc, au final, quoi que fasse f' en u et v, on a

$$\left| \int_{u}^{v} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{8}{\sqrt{\mathrm{M}}}$$

13 Notons

$$\forall t \in [0; \pi]$$
 $f(t) = \zeta t + k\beta t^3$

La fonction f est deux fois dérivable et

$$\forall t \in [0; \pi]$$
 $f'(t) = \zeta + 3k\beta t^2$ $f''(t) = 6k\beta t$

Rappelons que

$$\beta = \frac{\alpha - \alpha^3}{6} > 0$$
 car $\alpha \in]0;1[$

Dans la mesure où k et β sont strictement positifs, f'' est strictement croissante. En particulier,

$$\forall t \in [k^{-1/3}; \pi]$$
 $f''(t) \ge f''(k^{-1/3}) = 6k^{2/3}\beta > 0$

On fixe $x \in [k^{-1/3}; \pi]$ et on applique les résultats des questions 11 et 12, qui ont été résumés en remarque, sur l'intervalle $[k^{-1/3}; x]$:

$$\left| \int_{k^{-1/3}}^{x} \cos f(t) \, \mathrm{d}t \right| \leqslant \frac{8}{\sqrt{6k^{2/3}\beta}} = \frac{8k^{-1/3}}{\sqrt{6\beta}}$$

$$\left| \left| \int_{k^{-1/3}}^{x} \cos(\zeta t + k\beta t^{3}) \, \mathrm{d}t \right| \leqslant \frac{8k^{-1/3}}{\sqrt{6\beta}} \right|$$

14 Soit $x \in [0; \pi]$.

• Si $x < k^{-1/3}$, on majore brutalement l'intégrale définissant $\mathrm{J}_{k,\zeta}(x)$:

$$|\mathbf{J}_{k,\zeta}(x)| = \left| \int_0^x \cos(\zeta t + k\beta t^3) \, \mathrm{d}t \right| \leqslant \int_0^x |\cos(\zeta t + k\beta t^3)| \, \mathrm{d}t \leqslant x \leqslant k^{-1/3}$$

• Si $x \in [k^{-1/3}; \pi]$, on coupe l'intégrale définissant $J_{k,\zeta}(x)$ en $k^{-1/3}$ à l'aide de la relation de Chasles:

$$|\mathbf{J}_{k,\zeta}| \leqslant \left| \int_0^{k^{-1/3}} \cos(\zeta t + k\beta t^3) \, \mathrm{d}t \right| + \left| \int_{k^{-1/3}}^x \cos(\zeta t + k\beta t^3) \, \mathrm{d}t \right|$$

La première intégrale se majore comme dans le premier point par $k^{-1/3}$. Pour la deuxième, on utilise la question 13. D'où

$$|\mathbf{J}_{k,\zeta}(x)| \leqslant \left(1 + \frac{8}{\sqrt{6\beta}}\right)k^{-1/3}$$

Conclusion:

$$\forall x \in [0; \pi]$$
 $|J_{k,\zeta}(x)| \leq C_1 k^{-1/3}$ avec $C_1 = 1 + \frac{8}{\sqrt{6\beta}}$

Observons, car cela sera utile pour répondre à la question 17, que $J_{k,\zeta}$ est une fonction impaire, ce qui rend l'estimation précédente valide sur $[-\pi;\pi]$. En effet, par un changement de variable $-t \leftarrow t$ et parce que le cosinus est pair,

$$\forall x \in [-\pi; \pi] \qquad J_{k,\zeta}(-x) = \int_0^{-x} \cos(\zeta t + k\beta t^3) dt$$
$$= -\int_0^x \cos(-\zeta t - \beta t^3) dt$$
$$= -J_{k,\zeta}(x)$$

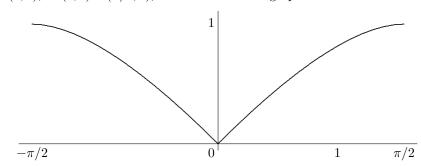
Observons enfin que l'énoncé admet à nouveau un résultat, probablement pour ne pas perdre trop de temps à refaire la même chose: en effet, la majoration proposée se démontre en reprenant les questions 9 à 14, mais en les adaptant à la présence d'un sinus à la place d'un cosinus. Tout fonctionne bien, c'est promis.

15 Rappelons que
$$\forall x \in [-\pi; \pi]$$
 $|b(x)|^2 = |a(x)|^2 = 1 - 4(\alpha^2 - \alpha^4) \sin^4 \frac{x}{2}$

On sait que
$$\forall x \in [-$$

$$\forall x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \qquad |\sin x| \geqslant \frac{2}{\pi} |x|$$

Cette minoration classique du sinus exprime simplement la concavité de $x \mapsto |\sin x|$ sur chacun des intervalles $[-\pi/2;0]$ et $[0;\pi/2]$: la courbe se trouve au-dessus de chacune des cordes reliant les points d'abscisses $(-\pi/2,1)$ à (0,0), et (0,0) à $(\pi/2,1)$, comme l'illustre le graphe ci-dessous.



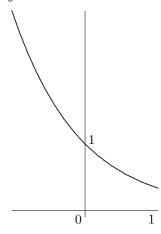
$$\forall x \in [-\pi; \pi] \qquad \sin^4 \frac{x}{2} \geqslant \frac{x^4}{\pi^4}$$

et
$$\forall x \in [-\pi; \pi]$$
 $|b(x)|^2 \le 1 - 2\lambda x^4$ avec $\lambda = \frac{2}{\pi^4} (\alpha^2 - \alpha^4)$

Observons au passage que $\lambda > 0$, puisque $\alpha \in]0;1[$. Ensuite, on sait que

$$\forall x \in \mathbb{R}$$
 $1 - x \leq e^{-x}$

Il s'agit à nouveau d'une inégalité classique. Elle peut être démontrée immédiatement à l'aide de la convexité de $x \longmapsto e^{-x}$ sur \mathbb{R} : la courbe représentative de cette fonction se trouve au-dessus de sa tangente en 0, dont une équation cartésienne est y = 1 - x. Ce fait est illustré par le dessin



D'où l'on déduit

$$\forall x \in [-\pi; \pi]$$
 $|b(x)|^2 \leqslant e^{-2\lambda x}$

Enfin,

$$\forall x \in [-\pi; \pi] \qquad |b(x)|^2 \leqslant e^{-2\lambda x^4}$$

$$\forall x \in [-\pi; \pi] \qquad |b(x)| \leqslant e^{-\lambda x^4}$$

16 La fonction b est dérivable sur $[-\pi;\pi]$ car $x \mapsto -\gamma x^4(1+\varepsilon(x))$ l'est et l'exponentielle (complexe) d'une fonction à valeurs complexes dérivable est dérivable; le caractère \mathscr{C}^1 de ε a, quant à lui, été admis par l'énoncé. De plus, après utilisation des formules de dérivation usuelles:

$$\forall x \in [\, -\pi\, ; \pi\,] \qquad b'(x) = -\gamma x^3 \big(4(1+\varepsilon(x)) + x\varepsilon'(x) \big)\, b(x)$$

La fonction $x \mapsto -\gamma (4(1+\varepsilon(x)) + x\varepsilon'(x)) b(x)$ est continue sur le segment $[-\pi;\pi]$ donc bornée et il existe $C_3 > 0$ tel que

$$\forall x \in [-\pi; \pi]$$
 $|\gamma(4(1+\varepsilon(x)) + x\varepsilon'(x))b(x)| \leq C_3$

D'où:

$$\forall x \in [-\pi; \pi]$$
 $|b'(x)| \leqslant C_3|x|^3$

17 Il semblerait que le résultat demandé par l'énoncé ici ne soit pas suffisant pour répondre aux questions suivantes. Plus précisément, pour répondre à la question 18, on aura besoin de la majoration

$$\forall k \in \mathbb{N}^* \quad \forall n \in \mathbb{Z} \qquad \left| \int_{-\pi}^{\pi} J'_{k,-(\alpha k+n)}(x) \, b(x)^k \, \mathrm{d}x \right| \leqslant C_4 k^{-1/3}$$

De manière à tout couvrir, on montrera plutôt dans le corrigé qu'il existe $C_4 > 0$ tel que pour tous $\zeta \in \mathbb{R}$ et $k \in \mathbb{N}^*$,

$$\left| \int_{-\pi}^{\pi} J'_{k,\zeta}(x) b(x)^k dx \right| \leqslant C_4 k^{-1/3}$$

Ce résultat implique évidemment celui que demande l'énoncé (prendre $\zeta = \alpha k + n$) ainsi que celui requis pour répondre à la question 18 (prendre $\zeta = -\alpha k - n$). En outre, la démonstration ne demande pas plus d'effort.

On fixe $\zeta \in \mathbb{R}$ et $k \in \mathbb{N}^*$. Les fonctions $J_{k,\zeta}$ et b^k sont toutes deux de classe \mathscr{C}^1 sur $[-\pi;\pi]$. On peut donc appliquer le théorème d'intégration par parties:

$$\int_{-\pi}^{\pi} \underbrace{\mathbf{J}_{k,\zeta}'(x)}_{\text{on intègre}} \underbrace{\frac{(b(x))^k}{\text{on dérive}}} \, \mathrm{d}x = \left[\mathbf{J}_{k,\zeta}(x)(b(x))^k \right]_{-\pi}^{\pi} \\ -k \int_{-\pi}^{\pi} \mathbf{J}_{k,\zeta}(x) \, (b(x))^{k-1} b'(x) \, \mathrm{d}x$$

On majore maintenant chacun des termes du membre de droite, à commencer par le terme entre crochets:

$$\left| \left[\mathbf{J}_{k,\zeta}(x)(b(x))^k \right]_{-\pi}^{\pi} \right| \leq \left| \mathbf{J}_{k,\zeta}(\pi)b(\pi)^k \right| + \left| \mathbf{J}_{k,\zeta}(-\pi)b(-\pi)^k \right|$$

On sait que b se majore par 1 sur $[-\pi;\pi]$, d'après la question 15 tandis que $J_{k,\zeta}$ est majorée par $C_1k^{-1/3}$ sur $[-\pi;\pi]$, comme expliqué en remarque à l'issue de la question 14. Par suite,

$$\left| \left[J_{k,\zeta}(x)(b(x))^k \right]_{-\pi}^{\pi} \right| \leqslant 2C_1 k^{-1/3}$$

Gardons cette estimation de côté et passons à l'intégrale. À l'aide des questions 14, 15 et 16, il vient

$$\left| \int_{-\pi}^{\pi} J_{k,\zeta}(x)b(x)^{k-1}b'(x) \, dx \right| \leqslant \int_{-\pi}^{\pi} \left| J_{k,\zeta}(x)b(x)^{k-1}b'(x) \right| \, dx$$

$$\leqslant C_{1}k^{-1/3} \int_{-\pi}^{\pi} |x|^{3} \exp\left(-(k-1)\lambda x^{4}\right) \, dx$$

$$\left| \int_{-\pi}^{\pi} J_{k,\zeta}(x)b(x)^{k-1}b'(x) \, dx \right| \leqslant C_{1} \exp\left(\lambda \pi^{4}\right) k^{-1/3} \int_{-\pi}^{\pi} |x|^{3} \exp\left(-k\lambda x^{4}\right) \, dx$$

La fonction $x \longmapsto |x|^3 \exp(-k\lambda x^4)$ est paire sur $[-\pi; \pi]$ donc

$$\int_{-\pi}^{\pi} |x|^3 \exp(-k\lambda x^4) \, \mathrm{d}x = 2 \int_0^{\pi} x^3 \exp(-k\lambda x^4) \, \mathrm{d}x$$
$$= \left[-\frac{\exp(-k\lambda x^4)}{2k\lambda} \right]_0^{\pi}$$
$$= \frac{1 - \exp(-k\lambda \pi^4)}{2k\lambda}$$

$$\int_{-\pi}^{\pi} |x|^3 \exp\left(-k\lambda x^4\right) \mathrm{d}x \leqslant \frac{1}{2k\lambda}$$

Au final, on a montré que

$$\left| \int_{-\pi}^{\pi} J_{k,\zeta}(x)b(x)^{k-1}b'(x) dx \right| \leqslant \frac{C_1 \exp\left(\lambda \pi^4\right) k^{-1/3}}{2k\lambda}$$

D'où

$$\left| \int_{-\pi}^{\pi} J'_{k,\zeta}(x) \, b(x)^k \, dx \right| \leq 2C_1 k^{-1/3} + k \, \frac{C_1 \exp(\lambda \pi^4) \, k^{-1/3}}{2k\lambda}$$
$$\leq C_1 \left(2 + \frac{\exp(\lambda \pi^4)}{2\lambda} \right) k^{-1/3}$$

En posant alors

$$C_4 = \left(2 + \frac{\exp\left(\lambda \pi^4\right)}{2\lambda}\right) C_1$$

on a

Toujours pour répondre à la question 18, on aura besoin d'un résultat supplémentaire :

$$\forall k \in \mathbb{N}^* \quad \forall \zeta \in \mathbb{R} \qquad \left| \int_{-\pi}^{\pi} \sin(\zeta x + k\beta x^3) \, b(x)^k \, \mathrm{d}x \right| \leqslant C_4 k^{-1/3}$$

La preuve est quasiment la même que le corrigé de cette question 17; il convient simplement de remplacer chaque occurrence de $J_{k,\zeta}$ par la fonction

$$I_{k,\zeta}: [-\pi;\pi] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_0^x \sin(\zeta t + k\beta t^3) dt$$

et d'utiliser le résultat admis à l'issue de la question 14 par l'énoncé.

Il est probable que l'énoncé voulait que le candidat admette cette inégalité, mais a oublié de le mentionner. Il est en effet exclu que les candidats aient à le démontrer quand ils en ont besoin au cours de la question 18: cela prendrait trop de temps et serait une complète redite de la réponse à la question 17.

18 Soient $k \in \mathbb{N}^*$. On rappelle que

$$\forall x \in \mathbb{R}$$
 $a(x)^k = \sum_{n=-\infty}^{\infty} a_{k,n} e^{inx}$

On a vu au cours de la question 2 que

$$\forall n \in \mathbb{Z}$$
 $a_{k,n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} a(x)^k e^{-inx} dx$

On fixe un entier relatif $n \in \{-k, \dots, k\}$. Par définition des fonctions b et d, on a

$$\forall x \in [-\pi; \pi] \qquad a(x)^k = d(x)^k b(x)^k = \exp\left(\mathrm{i}(-\alpha kx + k\beta x^3)\right) b(x)^k$$

donc
$$\forall x \in [-\pi; \pi]$$
 $a(x)^k e^{-inx} = \exp(i(-(\alpha k + n)x + k\beta x^3))b(x)^k$

Posons, pour alléger les notations, $\zeta = -\alpha k - n$. De sorte que

$$\forall x \in [-\pi; \pi] \qquad a(x)^k e^{-inx} = \exp\left(i(\zeta x + k\beta x^3)\right) b(x)^k$$
$$= \cos(\zeta x + k\beta x^3) b(x)^k + i\sin(\zeta x + k\beta x^3) b(x)^k$$

Par suite,
$$a_{k,n} = \int_{-\pi}^{\pi} \cos(\zeta x + k\beta x^3) b(x)^k dx + i \int_{-\pi}^{\pi} \sin(\zeta x + k\beta x^3) b(x)^k dx$$

À l'aide de l'inégalité triangulaire et des résultats établis à la question 17 (incluant ceux se trouvant en remarque hors corrigé), il vient

$$|a_{k,n}| \leq 2C_4 k^{-1/3}$$

Il suffit de poser $C_5 = 2C_4$ pour avoir

$$\forall k \in \mathbb{N}^{\star} \quad \forall n \in \{-k, \dots, k\} \qquad |a_{k,n}| \leqslant C_5 k^{-1/3}$$

L'énoncé demande d'admettre l'existence de $C_6>0$ tel que

$$\forall k \in \mathbb{N}^*$$

$$\int_{-\pi}^{\pi} |a(x)|^{2k} \, \mathrm{d}x \geqslant C_6 \, k^{-1/4}$$

On en propose ici une démonstration. En posant $\omega = 4(\alpha^2 - \alpha^4)$, qui est strictement positif car $\alpha \in]0;1[$, on sait que

$$\forall x \in [-\pi; \pi]$$
 $|a(x)|^2 = 1 - \omega \sin^4 \frac{x}{2}$ (*)

Intuitivement, lorsque x est proche de 0, $|a(x)|^2$ est proche de 1 à l'ordre 4; mais si l'on s'éloigne suffisamment de 0, $|a(x)|^2$ devient franchement inférieur à 1. Et en élevant à une puissance k élevée un tel nombre, on obtient quelque chose d'assez petit, qui ne contribuera somme toute que très peu à l'intégrale de $|a(x)|^{2k}$. Ainsi, dans l'intégrale de $|a|^{2k}$, la contribution principale est apportée par $|a(x)|^{2k}$ au voisinage de 0.

Il nous faut maintenant rendre les choses précises. Soit k un entier; on note I_k l'intégrale à estimer. On fixe un $\eta_k > 0$, qu'on précisera plus tard en fonction de k. La seule chose qu'on lui impose pour l'instant, c'est d'être inférieur à $\pi/2$ et de tendre vers 0 lorsque k tend vers ∞ . La fonction $|a|^{2k}$ étant positive, on a

$$I_k = \int_{-\pi}^{\pi} |a(x)|^{2k} dx \geqslant \int_{0}^{2\eta_k} |a(x)|^{2k} dx = \int_{0}^{2\eta_k} \left(1 - \omega \sin^4 \frac{x}{2}\right)^k dx$$

Puisque $x \mapsto 1 - \omega \sin^4 x/2$ est décroissante sur $[0; 2\eta_k]$, on a

$$I_k \geqslant \int_0^{2\eta_k} (1 - \omega \sin^4 \eta_k)^k dx = 2\eta_k (1 - \omega \sin^4 \eta_k)^k$$

Ensuite,
$$(1 - \omega \sin^4 \eta_k)^k = \exp\left(k \ln(1 - \omega \sin^4 \eta_k)\right)$$
$$= \exp\left(k \ln(1 - \omega \eta_k^4 + o(\eta_k^4))\right)$$
$$(1 - \omega \sin^4 \eta_k)^k = \exp\left(-k\omega \eta_k^4 + o(k\eta_k^4)\right)$$

C'est là que le choix de η_k est évident: en s'assurant que $k\eta_k^4$ ne tend pas vers l'infini, le terme $(1-\omega\sin^4\eta_k)^k$ n'est pas trop petit. Il est donc presque imposé de poser $\eta_k=k^{-1/4}$ de sorte que $k\eta_k^4=1$. On a alors

$$(1 - \omega \sin^4 \eta_k)^k = \exp(-\omega + o(1))$$

soit
$$\lim_{k \to \infty} (1 - \omega \sin^4 \eta_k)^k = \exp(-\omega) \neq 0$$

La suite $((1 - \omega \sin^4 \eta_k)^k)_{k \in \mathbb{N}}$ est à valeurs strictement positives, converge vers une limite non nulle. Donc il existe $C_6 > 0$ tel que

$$\forall k \in \mathbb{N}^* \qquad (1 - \omega \sin^4 \eta_k)^k \geqslant \frac{C_6}{2}$$

d'où

$$\forall k \in \mathbb{N}^*$$
 $I_k \geqslant 2\eta_k \times \frac{C_6}{2} = C_6 k^{-1/4}$

19 Pour comprendre à quoi sert l'inégalité

$$\int_{-\pi}^{\pi} |a(x)|^{2k} \, \mathrm{d}x \geqslant C_6 \, k^{-1/4}$$

dans l'estimation de $||a^k||$, il convient de voir la relation entre cette intégrale et les coefficients $(a_{k,n})_{n\in\mathbb{Z}}$ du polynôme a^k . La question 2 établit que ces derniers sont les coefficients de Fourier de la fonction continue 2π -périodique a^k . D'après le théorème de Parseval,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |a(x)|^{2k} dx = \sum_{n=-\infty}^{\infty} |a_{k,n}|^2$$

On sait donc que

$$\sum_{n=-\infty}^{\infty} |a_{k,n}|^2 \geqslant \frac{C_6 k^{-1/4}}{2\pi}$$

Mais on a

$$||a^k|| = \sum_{n=-\infty}^{\infty} |a_{k,n}|$$

Si $n \in \{-k, ..., k\}$ est tel que $|a_{k,n}| \neq 0$, on obtient en utilisant l'estimation de la question 18:

$$|a_{k,n}| = \frac{|a_{k,n}|^2}{|a_{k,n}|} \geqslant \frac{k^{1/3}}{C_5} |a_{k,n}|^2$$
 (1)

tandis que si $|a_{k,n}| = 0$, cette inégalité est trivialement valable. Il convient aussi de remarquer que $|a_{n,k}| = 0$ dès que $|n| \ge k + 1$.

Le fait que le degré de a^k est k aurait peut-être dû faire l'objet d'une question intermédiaire. En fait, l'énoncé semble l'admettre d'emblée en donnant l'expression de a^k au début de la deuxième partie. Une manière simple de le voir consiste à déterminer la décomposition de a comme polynôme trigonométrique à l'aide des formules d'Euler:

$$\forall x \in \mathbb{R} \qquad a(x) = 1 - \alpha^2 + \alpha^2 \frac{e^{ix} + e^{-ix}}{2} + i\alpha \frac{e^{ix} - e^{-ix}}{2i}$$
$$= \frac{\alpha^2 - \alpha}{2} e^{-ix} + (1 - \alpha^2) + \frac{\alpha^2 + \alpha}{2} e^{ix}$$

On peut alors essayer de se convaincre que le développement de a^k ne fera intervenir que les exponentielles e^{-ikx}, \dots, e^{ikx} . Par exemple, en posant

$$P = \frac{\alpha^2 - \alpha}{2} + (1 - \alpha^2)X + \frac{\alpha^2 + \alpha}{2}X^2 \in \mathbb{R}[X]$$

on a
$$\forall x \in \mathbb{R} \qquad a(x) = \mathrm{e}^{-\mathrm{i}x} \times \mathrm{P}(\mathrm{e}^{\mathrm{i}x})$$
 donc
$$\forall x \in \mathbb{R} \qquad a(x)^k = \mathrm{e}^{-\mathrm{i}kx} \times \mathrm{P}(\mathrm{e}^{\mathrm{i}x})^k$$

Le polynôme \mathbf{P}^k est de degré 2k donc est de la forme $\mathbf{P}^k = \sum\limits_{n=0}^{2k} \alpha_n \mathbf{X}^n.$ D'où

$$\forall x \in \mathbb{R} \qquad a(x)^k = e^{-ikx} \sum_{n=0}^{2k} \alpha_n e^{inx} = \sum_{n=0}^{2k} \alpha_n e^{i(n-k)x} = \sum_{n=-k}^k \alpha_{n+k} e^{inx}$$

Ce qui garantit que a^k est de degré k.

L'inégalité (1) est donc valable, en fait, pour tout entier n. Ainsi,

$$||a^k|| \ge \frac{k^{1/3}}{C_5} \sum_{n=-\infty}^{\infty} |a_{k,n}|^2 \ge \frac{C_6}{2\pi C_5} k^{1/3} \times k^{-1/4}$$

et il suffit de poser $C_7 = \frac{C_6}{2\pi\,C_5}$ pour avoir

$$\forall k \in \mathbb{N}^{\star} \qquad \|a^k\| \geqslant C_7 k^{1/12}$$