Filière PC

MATHÉMATIQUES II

Nota: les trois parties du problème peuvent être abordées indépendamment.

Partie I - Propriétés de la transformée de Legendre

Dans toute la partie I - , I désigne un intervalle de IR et f une fonction à valeurs réelles, définie sur I. On note J(f) l'ensemble des réels p tels que la fonction définie sur I par $x \mapsto (px - f(x))$ soit majorée ; si $J(f) \neq \emptyset$, on définit la fonction g sur J(f) par :

$$\forall p \in J(f), \ g(p) = \sup_{x \in I} (px - f(x))$$

La fonction g est appelée la transformée de Legendre de f; on note $g = \mathcal{L}(f)$.

I.A - Exemples

Calculer la transformée de Legendre $g=\mathcal{L}(f)$ (en précisant l'ensemble J(f)) et tracer le graphe de g , dans les cas suivants :

- I.A.1) $f(x) = kx^2 \ (k \in \mathbb{R}_+^*) \ ; I = \mathbb{R}.$
- I.A.2) $f(x) = e^x$; I = IR.
- I.A.3) $f(x) = \arctan(x)$; $I = \mathbb{R}$.

I.B - Etude générale

Soit f une fonction réelle définie sur un intervalle I. On suppose que J(f) est non vide.

- I.B.1) Montrer que J(f) est un intervalle : on montrera que, si a et b sont dans J(f), alors pour tout $t \in [0, 1]$, ta + (1-t)b appartient à J(f).
- I.B.2) Montrer que $g = \mathcal{L}(f)$ est convexe sur J(f), c'est-à-dire : $\forall (a,b) \in J(f) \times J(f)$, $\forall t \in [0,1]$, $g(ta+(1-t)b) \leq tg(a)+(1-t)g(b)$.
- I.B.3) Que peut-on dire de la monotonie de $g = \mathcal{L}(f)$ dans les cas suivants :
- a) $I \subset \mathbb{R}^+$
- b) $I \subset \mathbb{R}^{\bar{}}$.

I.C - Étude d'un cas particulier

Soit f une fonction de classe C^2 sur l'intervalle I, telle que : $\forall x \in I, f''(x) > 0$.

Filière PC

On sait que f'(I) est un intervalle ; on note α et β ses extrémités et l'on suppose $\alpha < \beta$ (on peut avoir $\alpha = -\infty$ ou $\beta = +\infty$).

- I.C.1) Montrer que J(f) contient l'intervalle ouvert $]\alpha,\beta[$ et donner l'expression de g sur $]\alpha,\beta[$ en fonction de f et $f^{[-1]}$ (fonction réciproque de la fonction f'). Pour $p\in]\alpha,\beta[$, on note x(p) l'unique point de I tel que : g(p)=px(p)-f(x(p)).
- I.C.2) Pour $p \in]\alpha, \beta[$, calculer g'(p) au moyen de x(p).
- I.C.3) Montrer que, $\forall p \in]\alpha, \beta[$, la droite D_p d'équation y = px g(p) est tangente au graphe de la fonction f.
- I.C.4) Soit $\mathcal{H} = \{h \in C^2(\mathbb{R}, \mathbb{R})/(\forall x \in \mathbb{R} \ h''(x) > 0) \ \text{et} \ h'(\mathbb{R}) = \mathbb{R} \}$. Montrer que:
- a) $\mathcal{L}(\mathcal{H}) \subset \mathcal{H}$.
- b) $\forall h \in \mathcal{H}$, $\mathcal{L}(\mathcal{L}(h)) = h$.
- c) \mathscr{L} est une bijection de \mathscr{H} sur \mathscr{H} .