CCP Maths 2 PSI 2007 — Corrigé

Partie I

I.1.1 En appliquant directement les formules on obtient

$$a_{1,1} = \binom{p+0}{p+0} = 1$$

$$a_{1,n-p+1} = \binom{p+1+n-p+1-2}{p+1-1} = \binom{n}{p}$$

$$a_{n-p+1,1} = \binom{p+n-p+1+1-2}{p+n-p+1-1} = \binom{n}{n} = 1$$

$$a_{n-p+1,n-p+1} = \binom{p+n-p+1+n-p+1-2}{p+n-p+1-1} = \binom{2n-p}{n}$$

$$a_{1,1} = 1, \ a_{1,n-p+1} = \binom{n}{p}, \ a_{n-p+1,1} = 1, \ a_{n-p+1,n-p+1} = \binom{2n-p}{n}$$

On peut remarquer dès cette question que la première colonne de la matrice A_p est une colonne de 1. En effet si $1 \le i \le n - p + 1$,

$$a_{i,1} = \begin{pmatrix} p+i-1\\ p+i-1 \end{pmatrix} = 1$$

Soient $n \in \mathbb{N}$ et $p \in [0; n]$. Si on avait voulu être très rigoureux dans les notations de cette partie, il aurait fallu utiliser pour les coefficients de la matrice $A_p \in \mathcal{M}_{n-p+1}(\mathbb{R})$ la notation suivante

$$\mathbf{A}_p = \left(a_{i,j}^p\right)$$

En effet, les coefficients de la matrice changent suivant la taille de la matrice et dépendent à la fois de p et de n contrairement à ce qu'on peut penser à la première lecture du sujet.

I.1.2 Soit $n \ge 2$. Pour p = n, $A_n \in \mathcal{M}_1(\mathbb{R})$ et $A_n = (1)$. Son déterminant vaut

$$d_n = 1$$

Pour p = n - 1, $A_{n-1} \in \mathcal{M}_2(\mathbb{R})$ et, avec les calculs faits précédemment, on obtient

$$\mathbf{A}_{n-1} = \begin{pmatrix} 1 & \binom{n}{n-1} \\ 1 & \binom{n+1}{n} \end{pmatrix} = \begin{pmatrix} 1 & n \\ 1 & n+1 \end{pmatrix}$$

Comme $d_{n-1} = \det(A_{n-1})$, il vient

$$d_{n-1} = 1$$

Pour p = n - 2, $A_{n-2} \in \mathcal{M}_3(\mathbb{R})$ et

$$A_{n-2} = \begin{pmatrix} 1 & \binom{n-1}{n-2} & \binom{n}{n-2} \\ 1 & \binom{n}{n-1} & \binom{n+1}{n-1} \\ 1 & \binom{n+1}{n} & \binom{n+2}{n} \end{pmatrix} = \begin{pmatrix} 1 & n-1 & \frac{n(n-1)}{2} \\ 1 & n & \frac{(n+1)n}{2} \\ 1 & n+1 & \frac{(n+2)(n+1)}{2} \end{pmatrix}$$

Calculons $d_{n-2} = \det(A_{n-2})$. Pour cela, on soustrait la seconde ligne à la troisième $(L_3 \leftarrow L_3 - L_2)$ et on retranche la première ligne à la seconde $(L_2 \leftarrow L_2 - L_1)$. Le déterminant étant une forme 3-linéaire alternée, on en déduit que

$$d_{n-2} = \begin{vmatrix} 1 & n-1 & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 1 & n+1 \end{vmatrix}$$

puis

$$d_{n-2} = \begin{vmatrix} 1 & n \\ 1 & n+1 \end{vmatrix}$$

en développant par rapport à la première colonne. On conclut que

$$d_{n-2} = 1$$

Pour calculer d_{n-2} , on pouvait également utiliser la règle de Sarrus afin de calculer directement le déterminant sans faire des opérations sur les lignes ou les colonnes, ce qui donnerait

$$d_{n-2} = \frac{1}{2} \left(n(n+2)(n+1) + 2(n-1)n(n+1) - n^2(n-1) - (n+1)^2 n - (n-1)(n+1)(n+2) \right)$$

$$= 1$$

Les opérations sur les lignes et les colonnes permettent d'exploiter les caractéristiques de la matrice (symétrie, liens entre les lignes, etc.). Ici, cette méthode provoque moins d'erreurs de calculs. De manière générale, la règle de Sarrus est à éviter dès que les coefficients de la matrices sont un peu compliqués. Elle est en revanche à privilégier lorsqu'ils sont simples comme à la question I.2.1.

I.1.3.1 D'après l'énoncé, on a maintenant $p \leq n-2$ pour que A_p possède au moins deux lignes. Soit $(i,j) \in [2; n-p+1] \times [1; n-p+1]$. Appelons $b_{i,j}$ le coefficient d'indice (i,j) de la nouvelle ligne L_i .

$$b_{i,j} = a_{i,j} - a_{i-1,j} = \binom{p+i+j-2}{p+i-1} - \binom{p+i+j-3}{p+i-2}$$
 Si $j=1$, on remarque que $b_{i,1} = \binom{p+i-1}{p+i-1} - \binom{p+i-2}{p+i-2} = 1-1$. Donc
$$\forall i \in [2; n-p+1] \qquad b_{i,1} = 0$$

Si $j \in [\![\, 2\, ; \, n-p+1\,]\!],$ d'après la formule de Pascal, il vient

$$\boxed{ \forall (i,j) \in \llbracket \, 2 \, ; \, n-p+1 \, \rrbracket \times \llbracket \, 2 \, ; \, n-p+1 \, \rrbracket \qquad b^p_{i,j} = \binom{p+i+j-3}{p+i-1} }$$

Rappelons la formule de Pascal:

$$\forall\,\ell\in\mathbb{N}\quad\forall\,k\geqslant\ell+1\qquad \binom{k}{\ell}+\binom{k}{\ell+1}=\binom{k+1}{\ell+1}$$
 Elle est appliquée ici pour $k=p+i+j-3$ et $\ell=p+i-2.$

 $\lfloor \mathbf{I.1.3.2} \rfloor$ En faisant les opérations ci-dessus, le calcul de d_p donne :

$$d_{p} = \det \left((b_{i,j})_{1 \leq i,j \leq n-p+1} \right) = \begin{vmatrix} 1 & \binom{p+1}{p} & \binom{p+2}{p} & \cdots & \binom{n}{p} \\ 0 & \binom{p+1}{p+1} & \binom{p+2}{p+1} & \cdots & \binom{n}{p+1} \\ 0 & \binom{p+2}{p+2} & \binom{p+3}{p+2} & \cdots & \binom{n+1}{p+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \binom{n}{n} & \binom{n+1}{n} & \cdots & \binom{2n-(p+1)}{n} \end{vmatrix}$$

Développons par rapport à la première colonne. On obtient

$$d_{p} = \begin{vmatrix} \binom{p+1}{p+1} & \binom{p+2}{p+1} & \cdots & \binom{n}{p+1} \\ \binom{p+2}{p+2} & \binom{p+3}{p+2} & \cdots & \binom{n+1}{p+2} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{n}{n} & \binom{n+1}{n} & \cdots & \binom{2n-(p+1)}{n} \end{vmatrix} = \det(A_{p+1})$$

On a donc

$$\forall p \in [0; n-2]$$
 $d_p = d_{p+1}$

De cette relation, on déduit que $d_p = d_{n-2}$ pour tout $p \in \llbracket 0 ; n-2 \rrbracket$. D'où

$$\forall p \in [0; n] \qquad d_p = 1$$

I.2.1 D'après les formules données par l'énoncé, $D_0 = \det(0!)$ et $D_1 = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}$, soit

$$D_0 = 1 \quad et \quad D_1 = 1$$

Calculons $D_2=\begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 6 \\ 2 & 6 & 24 \end{vmatrix}$ avec la règle de Sarrus :

$$D_2 = 2 \times 24 + 2 \times 6 + 2 \times 6 - 2^3 - 6^2 - 24 = 72 - 68 = 4$$

$$D_2 = 4$$

Avec les formules données, Δ_0 est le déterminant de la matrice à une ligne et une colonne (1) et

$$\Delta_1 = \begin{vmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}$$

$$\Delta_0 = 1$$
 et $\Delta_1 = 1$

En outre,

$$\Delta_2 = \begin{vmatrix} 1 & 1 & \binom{2}{0} \\ 1 & 2 & \binom{3}{1} \\ \binom{2}{2} & \binom{3}{2} & \binom{4}{2} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix}$$

Utilisons la règle de Sarrus:

$$\Delta_2 = 2 \times 6 + 3 + 3 - 2 - 3^2 - 6 = 18 - 17 = 1$$

$$\Delta_2 = 1$$

Comme indiqué lors de la remarque de la question 1.1.2, le calcul de D_2 et Δ_2 est ici réalisé plus simplement en utilisant la règle de Sarrus, la forme des matrices étant simple. Il est toutefois possible d'opérer sur les lignes et les colonnes. Voici ci-dessous le calcul de D_2 et Δ_2 avec cette autre méthode.

Pour le calcul de D_2 , on opère sur les colonnes en retranchant $2C_2$ à la troisième colonne $(C_3 \leftarrow C_3 - 2C_2)$ puis en retranchant la première colonne à la deuxième $(C_2 \leftarrow C_2 - C_1)$. On développe enfin suivant la première ligne. Il vient

$$D_2 = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 4 & 12 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 4 & 12 \end{vmatrix} = 12 - 8 = 4$$

Pour le calcul de Δ_2 , on opère sur les colonnes en retranchant la deuxième colonne à la troisième $(C_3 \leftarrow C_3 - C_2)$ puis en retranchant la première colonne à la deuxième $(C_2 \leftarrow C_2 - C_1)$. On développe enfin suivant la première ligne. Il vient

$$\Delta_2 = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1$$

$\boxed{\textbf{I.2.2}}$ Le déterminant Δ_n s'écrit

$$\Delta_{n} = \det\left(\binom{i+j}{i}\right)_{0 \leqslant i,j \leqslant n} = \begin{vmatrix} 1 & \cdots & \frac{(0+j)!}{0!j!} & \cdots & \frac{(0+n)!}{0!n!} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{(i+0)!}{i!0!} & \cdots & \frac{(i+j)!}{i!j!} & \cdots & \frac{(i+n)!}{i!n!} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{(n+0)!}{n!0!} & \cdots & \frac{(n+j)!}{n!j!} & \cdots & \frac{(2n)!}{n!n!} \end{vmatrix}.$$

Soit $j \in [0; n]$. La (j+1)-ième colonne $C_{j+1} \in \mathcal{M}_{n+1,1}(\mathbb{R})$ de ce déterminant est

$$C_{j+1} = \begin{pmatrix} \frac{(0+j)!}{0!j!} \\ \vdots \\ \frac{(i+j)!}{i!j!} \\ \vdots \\ \frac{(n+j)!}{n!j!} \end{pmatrix} = \frac{1}{j!} \begin{pmatrix} \frac{(0+j)!}{0!} \\ \vdots \\ \frac{(i+j)!}{i!} \\ \vdots \\ \frac{(n+j)!}{n!} \end{pmatrix}.$$

Le déterminant étant une forme n-linéaire on en déduit que

$$\Delta_{n} = \frac{1}{\prod_{j=0}^{n} j!} \begin{bmatrix} 1 & \cdots & \frac{(0+j)!}{0!} & \cdots & \frac{(0+n)!}{0!} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{(i+0)!}{i!} & \cdots & \frac{(i+j)!}{i!} & \cdots & \frac{(i+n)!}{i!} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{(n+0)!}{n!} & \cdots & \frac{(n+j)!}{n!} & \cdots & \frac{(2n)!}{n!} \end{bmatrix}$$

Soit $i \in [0; n]$. Examinons la (i+1)-ième ligne de cette nouvelle matrice.

$$L_{i+1} = \left(\frac{(i+0)!}{i!} \dots \frac{(i+j)!}{i!} \dots \frac{(i+n)!}{i!}\right)$$
$$= \frac{1}{i!} \left((i+0)! \dots (i+j)! \dots (i+n)! \right)$$

En utilisant à nouveau la n-linéarité du déterminant, il vient

$$\Delta_{n} = \frac{1}{\prod_{j=0}^{n} j! \prod_{i=0}^{n} i!} \begin{vmatrix} 1 & \cdots & (0+j)! & \cdots & (0+n)! \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (i+0)! & \cdots & (i+j)! & \cdots & (i+n)! \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (n+0)! & \cdots & (n+j)! & \cdots & (n+n)! \end{vmatrix}$$

Et on conclut que

$$\forall n \in \mathbb{N}$$
 $\Delta_n = \frac{1}{\left(\prod_{k=0}^n k!\right)^2} D_n$

Dans les deux calculs précédents, les indices j et i correspondent respectivement à la (j+1)-ième colonne et à la (i+1)-ième ligne des matrices considérées. Le décalage s'explique par le fait que la première colonne et la première ligne des matrices correspondent respectivement à j=0 et i=0.

I.2.3 Soient $n \in \mathbb{N}$ et $(i, j) \in [0; n] \times [0; n]$. Pour p = 0, la matrice A_0 introduite à la question I.1 a pour coefficient à la i + 1-ième ligne et à la j + 1-ième colonne

$$a_{i+1,j+1} = \binom{i+1+j+1-2}{i+1-1} = \binom{i+j}{i}$$

Donc $A_0 = \binom{i+j}{i}_{0 \leqslant i,j \leqslant n}$ et par suite $\Delta_n = \det(A_0)$. Or on connaît le déterminant d_0 de A_0 grâce à la question I.1.3.2. Ainsi,

$$\forall n \in \mathbb{N} \qquad \Delta_n = d_0 = 1$$

D'après la relation établie à la question I.2.2, il vient finalement que

$$\forall n \in \mathbb{N} \qquad \mathbf{D}_n = \left(\prod_{k=0}^n k!\right)^2$$