1 Produit d'espaces vectoriels, sommes de sous-espaces vectoriels

Rappels sur les bases

Dans tous ces rappels, E est un espace vectoriel de dimension finie n. Par ailleurs, la lettre \mathbb{K} désigne soit \mathbb{R} , soit \mathbb{C} (les résultats sont valables dans les deux cas).

- \bullet Toute famille libre (resp. génératrice) de n vecteurs de E est une base de E.
- Toute famille de cardinal supérieur ou égal à n+1 est liée.
- Si (e_1, \ldots, e_p) est une famille libre de E et \mathcal{F} une famille génératrice quelconque, il existe des vecteurs e_{p+1}, \ldots, e_n dans \mathcal{F} tels que (e_1, \ldots, e_n) soit une base de E.
- \bullet Pour tous sevs F et G de E, on a la formule de Grassman :

$$\dim(F+G) + \dim(F \cap G) = \dim F + \dim G$$

1.1 Produit d'espaces vectoriels

$\{$ Définition $1\}$

Soient E et F deux \mathbb{K} -espaces vectoriels. On note $E \times F$ l'ensemble des couples d'éléments de E et F. Cet ensemble est naturellement muni d'une structure de \mathbb{K} -espace vectoriel en posant

$$\forall x_1, x_2 \in E, \quad \forall y_1, y_2 \in F, \qquad (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

et $\forall x \in E, \quad \forall y \in F, \quad \forall \lambda \in \mathbb{K}, \qquad \lambda(x,y) = (\lambda x, \lambda y)$

Proposition 1

Si E et F sont deux K-espaces vectoriels de dimension finie, alors $E \times F$ est de dimension finie également et

$$\dim(E \times F) = \dim E + \dim F$$

Remarque 1

La définition et la proposition précédente se généralisent immédiatement au produit d'un nombre fini d'espaces vectoriels et notamment, si E_1, \ldots, E_p sont des \mathbb{K} -espaces vectoriels de dimension finie, alors

$$\dim(E_1 \times \cdots \times E_p) = \sum_{i=1}^p \dim E_i$$

Exemple 1

Soit E un sous-espace vectoriel et F et G deux sous-espaces vectoriels de E. Considérons l'application

$$\phi: F \times G \longrightarrow E$$
$$(x,y) \longmapsto x + y$$

Alors ϕ est linéaire, Im $\phi = F + G$ et Ker ϕ est isomorphe à $F \cap G$ ce qui permet de retrouver la formule de Grassman lorsque F et G sont de dimension finie.

1.2 Sommes de sous-espaces vectoriels

Rappels sur les supplémentaires

Deux sous-espaces vectoriels F, G sont dits supplémentaires dans E s'ils vérifient au choix :

(i)
$$E = F + G \quad \text{et} \quad F \cap G = \{0\}$$

- (ii) Tout élément de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G.
- (iii) Lorsque E est de dimension finie, dim $E = \dim F + \dim G$ puis au choix, E = F + G ou $F \cap G = \{0\}$

Exemple 2

Les ensembles suivants sont des sous-espaces vectoriels supplémentaires :

- L'ensembles des fonctions paires et l'ensembles des fonctions impaires dans $\mathbb{R}^{\mathbb{R}}$.
- L'ensemble des matrices symétriques et celui des matrices antisymétriques dans $\mathcal{M}_n(\mathbb{K})$.
- Un hyperplan H et $\text{Vect}\{a\}$ où a n'est pas un élément de H. Par exemple, l'ensemble des matrices de trace nulle et Vect $\{I_n\}$ dans $\mathcal{M}_n(\mathbb{K})$.
- Soit P un élément de $\mathbb{K}[X]$ de degré n+1. En notant $P \cdot \mathbb{K}[X]$ l'ensemble des polynômes multiples de P, et comme de coutume $\mathbb{K}_n[X]$ les polynômes de degré au plus n, alors

$$\mathbb{K}[X] = \mathbb{K}_n[X] \bigoplus P \cdot \mathbb{K}[X]$$

Exercice 1 (Mines 2014)

Soit E un espace vectoriel de dimension finie et p,q deux endomorphismes de E vérifiant

$$p + q = I_d$$
 et $\operatorname{rg} p + \operatorname{rg} q \le \dim E$

Montrer que p et q sont deux projecteurs.

Définition 2

Soient E_1, \ldots, E_p des sous-espaces vectoriels de E. On appelle somme de E_1, \ldots, E_p l'ensemble

$$F = \{x_1 + \dots + x_p, (x_1, \dots, x_p) \in E_1 \times \dots \times E_p\}$$

L'ensemble F est un sous-espace vectoriel de E noté $E_1 + \cdots + E_p$ ou encore $\sum_{k=1}^{p} E_k$.

La somme F est dite directe si l'écriture de tout élément x de F comme somme de p éléments de respectivement

$$E_1, \ldots, E_p$$
 est unique. On note alors $F = \bigoplus_{k=1}^p E_k$.

Proposition 2

 $\overline{\text{Si }E_1,\ldots,E_p}$ sont des sous-espaces vectoriels de E de somme F, on a équivalence des trois propriétés suivantes :

$$(\mathbf{i}) \ F = \bigoplus_{k=1}^{p} E_k$$

(i)
$$F = \bigoplus_{k=1}^{p} E_k$$

(ii) $\forall (x_1, \dots, x_p) \in E_1 \times \dots \times E_p$, $x_1 + \dots + x_p = 0 \implies x_1 = \dots = x_p = 0$
(iii) $\forall i \in [1; p], \qquad E_i \cap \sum E_i = \{0\}$

(iii)
$$\forall i \in \llbracket 1; p \rrbracket$$
, $E_i \cap \sum_{j \neq i} E_j = \{0\}$

Exemple 3

Dans E de dimension n, on note (e_1, \ldots, e_n) une base quelconque puis $F_i = \text{Vect}\{e_i\}$ pour tout entier $i \in [1; n]$. Tout élément x de E peut s'écrire de manière unique

$$x = \underbrace{\lambda_1 e_1}_{\in F_1} + \dots + \underbrace{\lambda_n e_n}_{\in F_n}$$

Par suite,
$$E = \bigoplus_{k=1}^{n} F_k$$
.

Soit \mathcal{B} une base de E qui est la réunion de p familles $\mathcal{B}_1, \ldots, \mathcal{B}_p$. Si l'on note E_i le sous-espace engendré par \mathcal{B}_i , alors $E = E_1 \bigoplus \cdots \bigoplus E_p$.

Exercice 2

On conserve les notations de l'exemple précédent et on note :

$$G_i = \operatorname{Vect}(e_k)_{k \neq i}$$
 et $H_i = \{ f \in \mathcal{L}(E), \ G_i \subset \operatorname{Ker} f \}$

Montrer que la somme $\sum_{i=1}^{n} H_i$ est directe.

Remarque 2

Attention !!!!! Pour montrer que $F = E_1 \bigoplus \cdots \bigoplus E_p$, il ne suffit pas de montrer

- $F = E_1 + \cdots + E_p$
- $\forall i \neq j$, $E_i \cap E_j = \{0\}$

Par exemple, dans \mathbb{R}^2 , on pose

$$F_1 = \operatorname{Vect}\left\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right\} \qquad F_2 = \operatorname{Vect}\left\{\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\} \qquad \text{et enfin} \qquad F_3 = \operatorname{Vect}\left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}$$

Alors $\mathbb{R}^2 = F_1 + F_2 + F_3$ mais la somme n'est pas directe bien que les intersections deux à deux soient systématiquement réduites à 0.

Proposition 4

Soit E un espace vectoriel tel que $E = E_1 \bigoplus \cdots \bigoplus E_p$. Si pour tout $1 \le i \le p$, on dispose d'une base \mathcal{B}_i de E_i , alors la réunion $(\mathcal{B}_1, \ldots, \mathcal{B}_p)$ de ces bases est une base de E, dite adaptée à la somme directe.

Proposition 5

Si E est de dimension finie et si E_1, \ldots, E_p sont p sevs de E alors

$$\dim\left(\sum_{i=1}^{p} E_i\right) \le \sum_{k=1}^{p} \dim E_k$$

avec égalité si et seulement si la somme est directe.

2 Trace

Rappels sur les changements de bases

• Si E et F sont deux espaces vectoriels de dimension finies n et p, munis de deux bases $\mathcal{B}_E = (e_1, \ldots, e_n)$ et $\mathcal{B}_F = (f_1, \ldots, f_p)$, et si u est une application linéaire de E dans F, la matrice de u respective aux bases \mathcal{B}_E et \mathcal{B}_F est l'élément de $\mathcal{M}_{p,n}$ dont les colonnes contiennent les coordonnées des vecteurs $(u(e_1), \ldots, u_{e_n})$ dans \mathcal{B}' :

$$\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}(u) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \quad \text{où} \quad \forall i \in [1;n], \quad u(e_{i}) = \sum_{k=1}^{p} a_{k,i} f_{k}$$

La matrice de passage $P_{\mathcal{B},\mathcal{B}'}$ entre deux bases \mathcal{B} et \mathcal{B}' d'un même espace vectoriel est par définition $\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(I_d)$.

- « Réciproquement » pour tout élément A de $\mathcal{M}_n(\mathbb{K})$, il existe un unique endomophisme u de \mathbb{K}^n dont la matrice respectivement à la base canonique est A.
- Si G est un troisième espace vectoriel de dimension finie muni d'une base \mathcal{B}_3 , alors pour toute application linéaire $v: F \longrightarrow G$,

$$\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{G}}(v \circ u) = \operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{G}}(v) \cdot \operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{E}}(u)$$

En particulier, la matrice $P_{\mathcal{B},\mathcal{B}'}$ a pour inverse la matrice $P_{\mathcal{B}',\mathcal{B}}$.

• Si \mathcal{B}'_E et \mathcal{B}'_F sont deux nouvelles bases de E et F, alors

$$\operatorname{Mat}_{\mathcal{B}'_{E},\mathcal{B}'_{E}}(u) = P_{\mathcal{B}'_{E},\mathcal{B}_{E}} \cdot \operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{E}}(u) \cdot P_{\mathcal{B}_{E},\mathcal{B}'_{E}}$$

• Deux matrices sont semblables si ce sont les matrices dans deux bases différentes d'un même endomorphisme de \mathbb{K}^n .

Exemple 4

- \bullet Endomorphisme nilpotent d'ordre n : construire la matrice réduite habituelle.
- Matrice circulante : calcul des puissances.

Exercice 3 (Matrices équivalentes $\heartsuit \heartsuit \circlearrowleft$)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ de rang $r \in [0; n]$. Justifier qu'il existe deux matrices P et Q inversibles telles que

$$A = PJ_rQ$$
 ou $J_r = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$

Exercice 4 (Mines, Centrale)

- Déterminer le cardinal maximal d'une partie de $\mathcal{M}_n(\mathbb{R})$ contenant uniquement des matrices de carré nul et ne contenant aucune matrices semblables et distinctes.
- A quelle condition sur i, j, k, l les matrices $E_{i,j}$ et $E_{k,l}$ sont elles semblables?

Rappels sur le déterminant

Le déterminant sur $\mathcal{M}_n(\mathbb{K})$ est l'unique application de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K} qui soit

- linéaire par rapport à chacun des vecteurs colonnes de la matrice;
- alterné et antisymétrique par rapport aux colonnes;
- qui envoie I_n sur 1.

De cette définition, il découle les propriétés suivantes du déterminant :

- formule de développement par rapport à une ligne ou par rapport à une colonne (en particulier, le déterminant est une somme de produits de coefficients de la matrice);
- le déterminant est invariant par transposition;
- le déterminant d'un produit est égal au produit des déterminants.
- le déterminant d'une matrice triangulaire supérieure ou inférieure est égal au produit de ses coefficients diagonaux.

Exemple 5

Les exemples suivants de calculs de déterminants sont classiques et à connaître absolument :

- Matrice de Jacobi
- Déterminants tri-diagonaux

Exercice 5 (Mines 2014)

Soient z_1, \ldots, z_n les racines complexes du polynôme $X^n - X - 1$ comptées avec multiplicités. Calculer le déterminant de la matrice dont les coefficients diagonaux valent $1 + z_1, 1 + z_2, \ldots, 1 + z_n$ et tous les autres valent 1.

Exercice 6 (X 2014)

Soient A et B dans $\mathcal{M}_3(\mathbb{R})$. On suppose que

$$\det A = \det B = \det(A + B) = \det(A - B) = 0$$

Montrer que pour tous réels x, y, on a det(xA + yB) = 0.

Exercice 7 (Matrice pgcd)

Pour tout entier $n \in \mathbb{N}^*$, on note $\varphi(n)$ le nombre d'entiers k dans [1; n] tels que $\operatorname{pgcd}(k, n) = 1$.

- Montrer que $n = \sum_{d|n} \varphi(d)$.
- ullet Notons $H,\,T$ et Δ les matrices dont les coefficients sont donnés pour tout (i,j) par
 - $\circ T_{i,j} = 1 \text{ si } i \text{ divise } j \text{ et } 0 \text{ sinon };$
 - $\circ \Delta_{i,j} = \operatorname{pgcd}(i,j);$
 - Enfin, $H_{i,j} = \varphi(i)$ si i = j et $H_{i,j} = 0$ sinon.

Calculer tTHT et en déduire le déterminant de Δ .

Définition 3

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle trace de A et on note Tr A le scalaire défini par

$$Tr A = \sum_{k=1}^{n} A_{i,i}$$

Proposition 6

La trace est une application linéaire de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K} satisfaisant pour toutes matrices A et B

$$\operatorname{Tr}(A^T) = \operatorname{Tr} A$$
 et $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$

Corollaire 1

Deux matrices semblables ont mêmes traces (et mêmes déterminants).

(Définition 4)

Soit E un espace vectoriel et u un endomorphisme de E. On appelle trace de f la trace de sa matrice dans une base quelconque de E.

Proposition 7

La trace d'un projecteur est égale à son rang.

Exercice 8

Soient p_1, \ldots, p_k une famille de projecteurs sur un espace vectoriel E de dimension finie. On suppose que $p_1 + \cdots + p_k = I_d$. Montrer que $E = \bigoplus_{i=1}^k \operatorname{Im} p_i$ et que p_i est le projecteur sur $\operatorname{Im} p_i$ parrallèlement à la somme des images des $(p_j)_{j \neq i}$.

3 Matrices par blocs et sous-espaces stables

Matrices par blocs

Proposition 8

Soient A, B deux éléments de $\mathcal{M}_n(\mathbb{K})$ et $p \in [1; n-1]$. On décompose A et B sous la forme

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$$

avec $A_1, B_1 \in \mathcal{M}_p(\mathbb{K})$. Alors, pour tout scalaire λ ,

$$\lambda A + B = \begin{pmatrix} \lambda A_1 + B_1 & \lambda A_2 + B_2 \\ \lambda A_3 + B_3 & \lambda A_4 + B_4 \end{pmatrix} \quad \text{et} \quad A^T = \begin{pmatrix} A_1^T & A_3^T \\ A_2^T & A_4^T \end{pmatrix}$$

Enfin, la matrice AB se décompose sous la forme

$$AB = \begin{pmatrix} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\ A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4 \end{pmatrix}$$

Corollaire 2

On suppose que $A_2=A_3=0$ et que A_1 et A_4 sont inversibles. Alors, A est inversible d'inverse

$$A^{-1} = \begin{pmatrix} {A_1}^{-1} & 0 \\ 0 & {A_4}^{-1} \end{pmatrix}$$

et de plus, avec les notations précédentes

$$A^{-1}BA = \begin{pmatrix} A_1^{-1}B_1A_1 & \star \\ \star & A_4^{-1}B_4A_4 \end{pmatrix}$$

Remarque 3

Les résultats se généralisent avec une décomposition en un nombre quelconque de blocs, du moment que les tailles des matrices sont compatibles avec le produit matriciel.

Exercice 9 (Centrale 2014)

- Soit D une matrice diagonale de taille n dont les éléments diagonaux d_1, \ldots, d_n sont deux à deux distincts. On pose $\phi: M \longmapsto MD DM$. Déterminer le noyau et l'image de ϕ .
- Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ de trace nulle est semblable à une matrice de diagonale nulle.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$ de trace nulle. Montrer qu'il existe X et Y dans $\mathcal{M}_n(\mathbb{K})$ telles que A = XY YX.

Proposition 9 (Déterminant d'une matrice triangulaire supérieure par bloc)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que A admet une décomposition par blocs de la forme

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix}$$

Alors,

$$\det A = \det A_1 \cdot \det A_4$$

Sous-espaces stables

- Définition 5

Un sous-espace vectoriel F d'un espace vectoriel E est dit stable par $u \in \mathcal{L}(E)$ si $u(F) \subset F$. Dans ce cas, on appelle endomorphisme induit par u sur F l'application

$$u_1: F \longrightarrow F$$

 $x \longmapsto u(x)$

Remarque 4

Attention à ne pas confondre l'endomorphisme induit, élément de $\mathcal{L}(F)$, et une restriction, élément de $\mathcal{L}(F, E)$ (qui peut être définie même si F n'est pas stable).

Exemple 6

- \bullet {0} et E sont des sous-espaces vectoriels stables de E (quel que soit u).
- $\mathbb{R}_n[X]$ est un sous-espace vectoriel stable par l'endomorphisme $D: P \longmapsto P'$ de $\mathbb{R}[X]$.

Proposition 10

Si u et v sont deux endomorphismes qui commutent, alors Ker u et Im u sont stables par v.

Proposition 11

Soit E un espace vectoriel de dimension finie n et F un sous-espace vectoriel de E de dimension finie p. Soit $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E adaptée à F (c-est-à-dire telle que $\mathcal{B}' = (e_1, \ldots, e_p)$ est une base de F). Alors, F est stable par $u \in \mathcal{L}(E)$ si et seulement si sa matrice dans la base \mathcal{B} est de la forme

$$\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \quad \text{avec} \quad A \in \mathcal{M}_p(\mathbb{K})$$

Dans ce cas, A est la matrice de l'endomorphisme u_1 induit par u sur F respectivement à la base \mathcal{B}' .

Remarque 5

Avec les mêmes notations, le sous-espace vectoriel $\text{Vect}(e_{p+1},\ldots,e_n)$ est stable par u si et seulement si B=0.

Proposition 12

Si E est de dimension finie et (E_1, \ldots, E_p) une famille de sous-espaces vectoriels tels que $E = \bigoplus_{1 \leq i \leq p} E_i$. Alors u laisse stable chaque E_i si et seulement si sa matrice dans une base adaptée à cette somme est diagonale par blocs de la forme

$$\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_n \end{pmatrix}$$

avec pour tout $1 \leq i \leq p$, $A_i \in \mathcal{M}_{n_i}(\mathbb{K})$ où n_i est la dimension de E_i . Dans ce cas, la matrice A_i est celle de l'endomorphisme induit par u sur E_i .

Exercice 10 (Mines)

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Déterminer les endomorphismes u de E nilpotents et tels que tout sous-espace vectoriel stable par u admette un supplémentaire stable par u.

4 Polynômes d'endomorphismes et de matrices carrées

4.1 Généralités

Définition 6

Soit $u \in \mathcal{L}(E)$ et $P = \sum_{k=0}^{+\infty} a_k X^k$ un élément de $\mathbb{K}[X]$. On note P(u) l'endomorphisme défini par

$$P(u) = \sum_{k=0}^{+\infty} a_k u^k = a_0 I_d + a_1 u + a_2 u^2 + \dots + a_k u^k + \dots$$

la suite $(a_n)_{n\in\mathbb{N}}$ étant nulle à partir d'un certain rang. On définit de même P(A) pour tout $A\in\mathcal{M}_n(\mathbb{K})$.

Si $A \in \mathcal{M}_n(\mathbb{K})$ est une matrice diagonale (resp. triangulaire sup/inf), d'éléments diagonaux $a_{1,1}, \ldots, a_{n,n}$, alors P(A) est également diagonale (resp. triangulaire sup/inf), d'éléments diagonaux $P(a_{1,1}), \ldots, P(a_{n,n})$.

Proposition 13

Soit $u \in \mathcal{L}(E)$.

- L'application $P \longmapsto P(u)$ est linéaire et l'image du polynôme 1 est I_d .

• Pour tous
$$P, Q \in \mathbb{K}[X]$$
, $P(u) \circ Q(u) = (P \times Q)(u)$

Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, l'application $P \longmapsto P(A)$ vérifie les mêmes propriétés.

(Corollaire 3)

Pour tous $P,Q \in \mathbb{K}[X]$ et tout $u \in \mathcal{L}(E)$, les endomorphismes P(u) et Q(u) commutent. Il en est de même pour P(A) et Q(A) pour toute matrice A.

Remarque 7
Les propriétés précédentes signifie que l'application

$$\varphi_u: \mathbb{K}[X] \longrightarrow \mathcal{L}(E)$$

$$P \longmapsto P(u)$$

est ce qu'on appelle un morphisme d'algèbre.

Proposition 14

 $\overline{\text{Soit } S \in \mathcal{G}\ell_n(\mathbb{K})}$. Alors pour tout $P \in \mathbb{K}[X]$ et tout $A \in \mathcal{M}_n(\mathbb{K})$, on a

$$P(S^{-1}AS) = S^{-1}P(A)S$$

Remarque 8

On rappelle au passage que l'application

$$\varphi_S: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})
A \longmapsto S^{-1}AS$$

est un automorphisme d'inverse $\varphi_{S^{-1}}$ et qui vérifie $\varphi_S(A) \cdot \varphi_S(B) = \varphi_S(AB)$ pour tous éléments A, B.

Proposition 15

Pour tout $P \in \mathbb{K}[X]$, les sous-espaces Ker P(u) et Im P(u) sont stables par u.

Polynômes annulateurs

Définition 7

Soit $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. On dit que P est un polynôme annulateur de u si P(u) = 0. On a une définition similaire pour $A \in \mathcal{M}_n(\mathbb{K})$.

Exemple 7

Projecteurs, symétries, homothetie, endomorphismes nilpotent.

Proposition 16

Soit E un espace vectoriel de dimension finie. Tout endomorphisme de E admet au moins un polynôme annulateur non nul.

Remarque 9

La preuve précédente assure l'existence d'un polynôme annulateur pour tout $u \in \mathcal{L}(E)$ (resp $A \in \mathcal{M}_n(\mathbb{K})$) de degré au plus (dim E)² (resp. n^2). Le théorème de Cayley Hamilton permettra de ramener ce majorant à dim E (resp. n).

4.3 Applications aux calcul de l'inverse et des puissances

Exercice 11

On pose

$$A = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ -3 & -3 & -4 \end{pmatrix}$$

- \bullet Calculer A^2 et en déduire un polynôme annulateur P de A de degré 2.
- En déduire sans calculs la matrice A^{-1} .
- \bullet Déterminer le reste de la division euclidienne de X^n par P.
- En déduire l'expression de A^n pour tout entier n.

Remarque 10

La méthode se généralise de la manière suivante. Soit $A \in \mathcal{M}_p(\mathbb{K})$ qui est annulée par le polynôme $P = \sum_{k=0}^d a_k X^k$.

- Si $a_0 \neq 0$, alors A est inversible et $A^{-1} = -\frac{1}{a_0} \sum_{k=1}^d a_k A^{k-1}$
- Pour tout entier n, si l'on note R_n le reste de la division euclidienne de X^n par P, alors $A^n = R_n(A)$.

5 Interpolation de Lagrange

Rappels

- Toute famille de polynômes échelonnée en degré est libre dans $\mathbb{K}[X]$.
- Soit $n \in \mathbb{N}$. Les familles suivantes forment des bases de $K_n[X]$:
 - $\{1, X \alpha, \dots, (X \alpha)^n\}$ où α est un scalaire quelconque;
 - o $\{P, P', P'', \dots, P^{(n)}\}$ où P est un polynôme quel
conque de degré n;

Définition 8 (Base de polynômes interpolateurs de Lagrange)

Soient $\{\alpha_1, \ldots, \alpha_n\}$ des scalaires deux à deux distincts. Pour tout $k \in [1; n]$, on pose

$$P_k = \prod_{i \neq k} \frac{X - \alpha_i}{\alpha_k - \alpha_i}$$

Alors, la famille $\{P_1, \ldots, P_n\}$ est une base de $\mathbb{K}_{n-1}[X]$ appelée base des polynômes interpolateurs de Lagrange en $\{\alpha_1, \ldots, \alpha_n\}$. De plus, pour tout $P \in \mathbb{K}_{n-1}[X]$,

$$P = \sum_{i=1}^{n} P(\alpha_k) P_k$$

Remarque 11

Avec les notations de la définition précédente, on a

$$\sum_{i=1}^{n} P_k = 1$$

Exercice 12 (Application à la décomposition en éléments simple)

Soit $\alpha_1, \ldots, \alpha_n$ des complexes deux à deux distincts et P un polynôme de degré inférieur ou égal à n-1. Justifier l'existence et l'unicité de complexes β_1, \ldots, β_n tels que pour tout $z \in \mathbb{C} \setminus \{\alpha_1, \ldots, \alpha_n\}$,

$$\frac{P(z)}{(z-\alpha_1)\cdots(z-\alpha_n)} = \frac{\beta_1}{z-\alpha_1} + \cdots + \frac{\beta_n}{z-\alpha_n}$$

En déduire une primitive de $x \mapsto x/(x^3-1)$ sur $]1;+\infty[$.

Définition 9 (Matrice de Vandermonde)

Soit $n \in \mathbb{N}^*$. On appelle matrice de Vandermonde une matrice de la forme

$$V = \begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{n-1} \end{pmatrix}$$

où $\alpha_1, \ldots, \alpha_n$ sont des scalaires quelconques.

Remarque 12

• Pour tous scalaires $\alpha_1, \dots, \alpha_n$, la matrice V précédente est la matrice de l'application linéaire

$$u: \mathbb{K}_{n-1}[X] \longrightarrow \mathbb{R}^n$$

 $P \longmapsto (P(\alpha_1), \dots, P(\alpha_n))$

respectivement aux bases canoniques de ces espaces.

• Si P est un polynôme de degré d scindé à racines simples $\alpha_1, \ldots, \alpha_d$ et que l'on note $R_n = \sum_{k=0}^{d-1} r_{n,k} X^k$ le reste de la division euclidienne du polynôme X^n par P, alors

$$\begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{d-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{d-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_d & \cdots & \alpha_d^{d-1} \end{pmatrix} \begin{pmatrix} r_{n,0} \\ r_{n,1} \\ \vdots \\ r_{n,d-1} \end{pmatrix} = \begin{pmatrix} \alpha_1^n \\ \alpha_2^n \\ \vdots \\ \alpha_{d-1}^n \end{pmatrix}$$

Proposition 17 (Déterminant de Vandermonde)

Avec les notations précédentes, $\det V = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)$

En particulier, V est inversible si et seulement si les scalaires $\alpha_1, \ldots, \alpha_n$ sont deux à deux distincts.

Remarque 13

Lorsque $\alpha_1, \ldots, \alpha_n$ sont deux à deux distincts, pour tout $i \in [1; n]$, le *i*-ième vecteur colonne de V^{-1} est composé des coefficients du polynôme P_i de la famille des polynômes interpolateurs de Lagrange aux points $\{\alpha_1, \ldots, \alpha_n\}$.