PROBLÈME 1

Autour de la fonction sinus cardinal

Objectifs

Dans ce problème, on détermine dans la **Partie I** la valeur de la transformée de Laplace de la fonction sinus cardinal. On utilise ensuite dans la **Partie II** une variante de la formule de Viète pour exprimer la transformée de Laplace de la **Partie I** comme limite d'une suite d'intégrales.

Partie I - Transformée de Laplace de la fonction sinus cardinal

Pour x > 0, on note :

$$F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-tx} dt, \ G(x) = \int_0^{+\infty} e^{-tx} \sin(t) dt \ \text{et} \ H(x) = \int_0^{+\infty} e^{-tx} \cos(t) dt.$$

- **Q1.** Montrer que : $\forall t \in \mathbb{R}^+$, $|\sin(t)| \le t$.
- **Q2.** Montrer que les fonctions F, G et H sont bien définies sur $]0, +\infty[$.
- **Q3.** Montrer que $\lim_{x \to +\infty} F(x) = 0$.
- **Q4.** Montrer que F est de classe C^1 sur $]0, +\infty[$ et exprimer F' à l'aide de la fonction G.
- **Q5.** Trouver une expression simple pour G et pour H. On pourra calculer H(x) + iG(x). En déduire, pour $\alpha \in]0, +\infty[$, la valeur de $\int_0^{+\infty} e^{-tx} \cos(\alpha t) dt$.
- **Q6.** En déduire une expression simple pour F. Que vaut F(1)?

Partie II - Autour de la formule de Viète

Q7. Montrer que pour tout t > 0 et pour tout $n \in \mathbb{N}^*$:

$$\prod_{k=1}^{n} \cos\left(\frac{t}{2^k}\right) = \frac{\sin(t)}{2^n \sin(t/2^n)}.$$

Q8. Montrer que pour tout t > 0 et pour tout $n \in \mathbb{N}^*$:

$$\prod_{k=1}^{n} \cos\left(\frac{t}{2^{k}}\right) = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2k-1}{2^{n}}t\right).$$

On pourra raisonner par récurrence et utiliser l'identité :

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$$

Q9. En déduire que pour tout t > 0:

$$\frac{\sin(t)}{t} = \lim_{n \to +\infty} \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2k-1}{2^n}t\right).$$

Q10. Montrer que pour tout x > 0:

$$F(x) = \lim_{n \to +\infty} \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \int_0^{+\infty} \cos\left(\frac{2k-1}{2^n}t\right) e^{-tx} dt.$$

On pourra introduire, pour tout $n \in \mathbb{N}^*$, la fonction $f_n :]0, +\infty[\to \mathbb{R}$ définie par :

$$\forall t \in]0, +\infty[, f_n(t) = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2k-1}{2^n}t\right) e^{-tx}.$$

Q11. En déduire que :

$$\frac{\pi}{4} = \lim_{n \to +\infty} 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{(2k-1)^2 + 2^{2n}}.$$

L'objet des trois questions suivantes est de redémontrer le résultat précédent de façon plus élémentaire.

Q12. Déterminer :

$$\lim_{n \to +\infty} 2^{n+1} \sum_{k=0}^{2^{n-1}} \frac{1}{4k^2 + 2^{2n}}$$

en écrivant cette quantité à l'aide une somme de Riemann.

Q13. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in [0, 2^{n-1}]$:

$$\left| \frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right| \le \frac{4 \times 2^{n-1} + 1}{1 + 2^{2n}} \times \frac{1}{4k^2 + 2^{2n}}.$$

Q14. En déduire que :

$$\lim_{n \to +\infty} 2^{n+1} \sum_{k=0}^{2^{n-1}} \left(\frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right) = 0$$

et retrouver le résultat de la question Q11.

PROBLÈME 1

Étude d'une famille de séries entières

Dans tout le problème, α désigne un nombre réel. On note \mathcal{D}_{α} l'ensemble des réels x pour lesquels la série entière $\sum_{n\geq 1}\frac{x^n}{n^{\alpha}}$ est convergente et on pose, pour tout $x\in\mathcal{D}_{\alpha}$:

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}.$$

Objectifs

Ce problème est composé de trois parties indépendantes.

Dans la **Partie I**, on étudie quelques propriétés élémentaires des fonctions f_{α} .

L'objectif de la **Partie II** est de construire un logarithme complexe.

Enfin, la **Partie III** permet d'obtenir un équivalent de $f_{\alpha}(x)$ lorsque x tend vers 1, dans le cas $\alpha \in]0, 1[$.

Partie I - Quelques propriétés des fonctions f_{α}

- **Q6.** Déterminer le rayon de convergence R commun aux séries entières définissant les fonctions f_a .
- **Q7.** Déterminer, suivant les valeurs du réel α , le domaine de définition \mathcal{D}_{α} de la fonction f_{α} . On distinguera les $cas \ \alpha \in]-\infty, 0], \ \alpha \in]0, 1]$ et $\alpha \in]1, +\infty[$.
- **Q8.** On suppose dans cette question $\alpha > 0$. Déterminer, pour tout $x \in \mathcal{D}_{\alpha}$, le signe de $f_{\alpha}(x)$.
- **Q9.** Expliciter f_0 , f_{-1} et f_1 .
- **Q10.** Soit $\alpha > 1$. Prouver que f_{α} est continue sur \mathcal{D}_{α} .
- **Q11.** Soit $\alpha \le 1$. Prouver que $\lim_{x \to 1^-} f_{\alpha}(x) = +\infty$. On pourra comparer f_{α} à f_1 .

Partie II - Un logarithme complexe

Q14. Donner sans démonstration le développement en série entière au voisinage de 0 de la fonction qui à $x \in]-1, 1[$ associe $\ln(1+x)$.

Pour tout nombre complexe z, tel que la série $\sum_{n\geq 1} \frac{(-z)^n}{n}$ est convergente, on note : $S(z) = -\sum_{n=1}^{+\infty} \frac{(-z)^n}{n}$.

Q15. Donner le rayon de convergence R de la série entière définissant S. Pour tout x réel élément de]-R, R[, déterminer la valeur de $\exp(S(x))$.

Soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. On considère la série entière de la variable *réelle t* suivante :

$$\sum_{n>1} (-1)^{n-1} \frac{z_0^n}{n} t^n.$$

En cas de convergence, on note g(t) sa somme.

On a donc, pour $t \in \mathbf{R}$ tel que la série est convergente, $g(t) = S(tz_0)$.

- Q16. Déterminer le rayon de convergence de la série entière définissant g.
- **Q17.** Prouver que g est définie et de classe C^{∞} sur [0,1]. Déterminer, pour tout $t \in [0,1]$, g'(t).
- **Q18.** On pose $h = \exp \circ g$. Prouver que pour tout $t \in [0, 1]$:

$$h'(t) = \frac{z_0}{1 + tz_0} h(t).$$

Q19. Résoudre l'équation différentielle de la question précédente et en déduire que :

$$\exp(S(z_0)) = z_0 + 1.$$

Partie III - Un équivalent de $f_{\alpha}(x)$ quand x tend vers 1, dans le cas où $\alpha \in]0,1[$

Dans toute cette partie, on suppose que $\alpha \in]0,1[$. L'objectif est de donner un équivalent de $f_{\alpha}(x)$ quand x tend vers 1.

Pour tout $x \in]0, 1[$, on considère l'intégrale : $I(x) = \int_0^{+\infty} \frac{x^t}{t^{\alpha}} dt$.

- **Q20.** Justifier que, pour tout $x \in]0, 1[$, l'intégrale I(x) est convergente.
- **Q21.** On rappelle que la fonction Γ d'Euler est définie sur \mathbf{R}_+^* par : $\forall s \in \mathbf{R}_+^*, \Gamma(s) = \int_0^{+\infty} t^{s-1} e^{-t} dt$. Pour tout $x \in]0, 1[$, déterminer une expression de I(x) faisant intervenir $\ln(x)$, α et $\Gamma(1 \alpha)$.
- **Q22.** Prouver que, pour tout $x \in]0, 1[$, la fonction $t \mapsto \frac{x^t}{t^{\alpha}}$ définie pour tout $t \in \mathbf{R}_+^*$ est décroissante sur \mathbf{R}_+^* .
- **Q23.** En déduire, pour tout $x \in]0, 1[$, l'encadrement :

$$\int_{1}^{+\infty} \frac{x^{t}}{t^{\alpha}} dt \le f_{\alpha}(x) \le \int_{0}^{+\infty} \frac{x^{t}}{t^{\alpha}} dt.$$

Q24. En déduire un équivalent de $f_{\alpha}(x)$ quand x tend vers 1.