I Étude d'une suite récurrente On considère une fonction f de classe \mathcal{C}^2 sur [0,1] à valeurs dans [0,1] telles que f' et f'' soient à valeurs

positives. On suppose f(1) = 1, f'(0) < 1 et f''(1) > 0.

On considère de plus la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et, pour tout $n\in\mathbb{N},\ u_{n+1}=f(u_n)$. On pose m = f'(1). I.A -

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, puis qu'elle est convergente. On note l sa limite. I.A.2) Montrer que l'équation f(x) = x admet une plus petite solution. Dans toute la suite, on la notera x_f .

- I.A.3) Montrer que $l = x_f$. I.B -
- On suppose m > 1. Montrer que $x_f \in [0, 1[$. I.C -On suppose maintenant $m\leqslant 1$. Montrer que $x_f=1$ et que pour tout $n\in \mathbb{N}, u_n\neq 1$.
 - Dans cette question, on suppose m=1.
- I.D -
- On pose, pour $n\in\mathbb{N},\, \varepsilon_n=1-u_n.$ Montrer que $\lim_{n\to+\infty}\left(\frac{1}{\varepsilon_{n+1}}-\frac{1}{\varepsilon_n}\right)=\frac{f''(1)}{2}.$ I.D.1) En déduire que, quand n tend vers l'infini, $1-u_n \sim \frac{2}{f''(1)_n}.$ I.D.2)
- On pourra utiliser le lemme de Cesaro admis en préambule.
- I.E -On suppose maintenant m < 1 et on pose encore, pour $n \in \mathbb{N}$, $\varepsilon_n = 1 - u_n$.
- I.E.1) Montrer que la série de terme général ε_n est absolument convergente et en déduire la convergence de celle de terme général $\ln \left(\frac{m^{-(n+1)} \varepsilon_{n+1}}{m^{-n} \varepsilon} \right)$.
- I.E.2) En déduire qu'il existe c > 0 tel que, quand n tend vers l'infini, $1 - u_n \sim cm^n$.