Polynômes

_____(*) ___

Résoudre les équations suivantes d'inconnues $P \in \mathbb{C}[X]$ puis $P, Q, R \in \mathbb{R}[X]$:

(a)
$$(X^2+1)P''-6P=0$$

(a)
$$(X^2 + 1)P'' - 6P = 0$$
 (b) $P(X^2) = (X^2 + 1)P(X)$

$$(\mathbf{c}) \quad P^2 - XQ^2 = XR^2$$

X PC 2009

Soit $k \geq 2$ et $P \in \mathbb{K}_{k-1}[X]$. On note $\omega_1, \ldots, \omega_k$ les racines k-ièmes de l'unité. Montrer que

$$\frac{1}{k} \sum_{j=1}^{k} P(\omega_j) = P(0)$$

3 ______ (**) _____ Mines PC 2011

Déterminer les $P \in \mathbb{R}[X]$ tels que $\int_{r}^{r+1} P(t) dt = n^2 + 1$ pour tout entier $n \in \mathbb{N}$.

Généralités sur les espaces vectoriels

Soit E un espace vectoriel et A, B, C trois sevs de E tels que

$$B \subset C$$
 $A + B = A + C$ et $A \cap B = A \cap C$

Montrer que B = C.

__ (*) _____

Soient E un espace vectoriel et f, g deux projecteurs de E qui commutent. Que peut-on dire de $f \circ g$? Déterminer son noyau

Soit $g \in \mathcal{L}(E)$. On définit alors φ_g de la manière suivante :

$$\varphi_g: \mathcal{L}(E) \longrightarrow \mathcal{L}(E)
f \longmapsto f \circ g - g \circ f$$

- (a). Montrer que φ est un endomorphisme de $\mathcal{L}(E)$.
- (b). Soit $f \in \mathcal{L}(E)$. Calculer $\varphi_g^{\ 2}(f)$ ainsi que $\varphi_g^{\ 3}(f)$. En déduire un expression de $\varphi_g^{\ n}(f)$ pour tout entier n.
- (c). On suppose que g est nilpotent, c'est-à-dire qu'il existe un entier p tel que $g^p = 0$. Montrer que φ_g est lui aussi nilpotent.

7

_____(***) _____

Soient E et F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$.

- (a). On suppose qu'il existe $g \in \mathcal{L}(F, E)$ tel que $f \circ g \circ f = f$ et $g \circ f \circ g = g$. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} g$ et $F = \operatorname{Im} f \oplus \operatorname{Ker} g$.
- (b). Réciproquement, on suppose qu'il existe E_1 , sev de E, et F_1 , sev de F tels que $E = \operatorname{Ker} f \oplus E_1$ et $F = \operatorname{Im} f \oplus F_1$. Montrer qu'il existe un unique élément g de $\mathcal{L}(F, E)$ tel que

$$f \circ g \circ f = f$$
 $g \circ f \circ g = g$ Ker $g = F_1$ Im $g = E_1$

______ (***) ______ X PC 2014

____ (**) _____

Soit E un espace vectoriel et u, v deux endomorphismes de E tels que u et v commutent et u est nilpotent. Montrer que u+vest inversible si et seulement si v est inversible.

Soit $E = \{P \in \mathbb{R}[X], P(0) = P'(0) = 0\}$ et ϕ définie par

$$\begin{array}{ccc} \phi: & E \longrightarrow \mathbb{R}[X] \\ & P \longmapsto P(X+1) - 2P(X) + P(X-1) \end{array}$$

Montrer que ϕ est un isomorphisme.

Matrices

10

____ (*) ____

Montrer que $\mathcal{A}_n(\mathbb{K})$ et $\mathcal{T}_n(\mathbb{K})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{K})$.

11

_____ (**) ___

Soient A, B deux éléments de $\mathcal{M}_n(\mathbb{K})$. Chercher les matrices X telles que $X + \operatorname{Tr}(X)A = B$.

12

Soit $A = (a_{i,j})_{i,j \in [\![1:n]\!]}$ un élément de $\mathcal{M}_n(\mathbb{K})$ à diagonale dominante, c'est-à-dire que

$$\forall i \in [1; n], \quad |a_{i,i}| > \sum_{i \neq i} |a_{i,j}|$$

Montrer que A est inversible.

13

___ (***) _____

Soient A_1, \ldots, A_n des matrices nilpotentes de taille n et commutant 2 à 2. Montrer que le produit $A_1 \cdots A_n$ est nul.

14

Calculer, lorsqu'elle est inversible l'inverse de l'élément de $\mathcal{M}_n(\mathbb{K})$ défini par

$$M_n = \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & (0) & \vdots \\ \vdots & (0) & \ddots & 1 \\ 1 & \cdots & 1 & 2 \end{pmatrix}$$

15

____ (**) _____

Soit M un élément de $\mathcal{M}_n(\mathbb{K})$ de rang r. On suppose que M se décompose par blocs de la manière suivante :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A \in \mathcal{G}\ell_r(\mathbb{K})$

Montrer que $D = CA^{-1}B$.

16

____ (**) _____

- (a). Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et $Y \in \mathcal{M}_{1,n}(\mathbb{R})$ non nuls. Déterminer rg XY et Im XY.
- (b). Soit $M \in \mathcal{M}_n(\mathbb{R})$ de rang r. Prouver l'existence de vecteurs colonnes X_1, \ldots, X_r , éléments de $\mathcal{M}_{n,1}(\mathbb{R})$, et lignes $Y_1, \ldots, Y_r \in \mathcal{M}_{1,n}(\mathbb{R})$ tels que

$$M = X_1 Y_1 + \dots + X_r Y_r$$

17 _

____ (**) ____

Pour quelles valeurs de $x,y\in\mathbb{R}$ a-t-on existence de deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que

$$AB = \begin{pmatrix} 5 & 11 \\ 11 & 25 \end{pmatrix} \qquad \text{et} \qquad BA = \begin{pmatrix} x & 14 \\ 14 & y \end{pmatrix}$$

Déterminants

18

(**)

Résoudre suivant la valeur de $\lambda \in \mathbb{C}$ le système

$$\begin{cases} (1+\lambda^{2})x_{1} + \lambda x_{2} = 0\\ \lambda x_{1} + (1+\lambda^{2})x_{2} + \lambda x_{3} = 0\\ \vdots & \vdots & \vdots = \vdots\\ \lambda x_{n-2} + (1+\lambda^{2})x_{n-1} + \lambda x_{n} = 0\\ \lambda x_{n-1} + (1+\lambda^{2})x_{n} = 0 \end{cases}$$

Calculer le déterminant des matrices suivantes :

$$A = \left(i - j\right)_{i, j \in \llbracket 1; n \rrbracket} \qquad \text{et} \qquad B = \left(\left. |i - j|\right.\right)_{i, j \in \llbracket 1; n \rrbracket}$$

20

Calculer le déterminant d'ordre $n \geq 2$

$$\begin{bmatrix} 2 & 1 & 0 & \cdots & 0 \\ 3 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 3 & 2 \end{bmatrix}$$

21

Calculer
$$D_n = \begin{vmatrix} x & \alpha_1 & \cdots & \alpha_{n-1} & \alpha_n \\ \alpha_1 & x & \ddots & \vdots & \vdots \\ \vdots & \alpha_2 & \ddots & \alpha_{n-1} & \vdots \\ \vdots & \vdots & \ddots & x & \alpha_n \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n & x \end{vmatrix}$$
 où $\alpha_1, \dots, \alpha_n, x$ sont des réels quelconques.

22

Soit P un élément de $\mathcal{M}_n(\mathbb{K})$. Calculer le déterminant de l'application

$$\varphi_P: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})
X \longmapsto PX$$

_____(*) ____

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Déterminer le déterminant des matrices par blocs suivantes, en fonction de det A:

$$M_1 = \begin{pmatrix} A & -A \\ A & A \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} 2A & 3A \\ A & 2A \end{pmatrix}$

24

_____(**) _____

- (a). Soit $P,Q \in \mathcal{M}_n(\mathbb{R})$ telles que $P + iQ \in \mathcal{G}\ell_n(\mathbb{C})$. En considérant l'application $t \longmapsto \det(P + tQ)$, montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $P + \lambda Q \in \mathcal{G}\ell_n(\mathbb{R})$.
- (b). En déduire que si A et B sont deux matrices réelles semblables dans $\mathcal{M}_n(\mathbb{C})$, alors elles le sont dans $\mathcal{M}_n(\mathbb{R})$.

25

____ (**) __

Soit A, B, C, D quatre éléments de $\mathcal{M}_n(\mathbb{K})$ tels que CD = DC et D est inversible.

- (a). Montrer que $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD BC)$.
- (b). Montrer que le résultat reste vrai en supposant seulement que C et D commutent.

_____ (**) _____ Mines PC 2014

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\det(A^2 + I_n) \geq 0$.

27

Soit $n \geq 2$. Déterminer les éléments $A \in \mathcal{M}_n(\mathbb{K})$ telles que

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \quad \det(A+X) = \det A + \det X$$

En déduire que pour tous éléments A, B de $\mathcal{M}_n(\mathbb{K})$, on a

$$[\forall X \in \mathcal{M}_n(\mathbb{K}), \quad \det(A+X) = \det(B+X)] \implies A = B$$

Soit $A \in \mathcal{M}_{2n}(\mathbb{K})$ antisymétrique et J la matrice dont tous les coefficients sont égaux à 1. Justifier que $\det(A + xJ)$ est indépendant du scalaire x.

______ (***) ______ X PC 2014

Soit $n \in \mathbb{N}^*$ et \mathcal{E}_n l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont dans $\{-1,1\}$.

- (a). Déterminer le cardinal de \mathcal{E}_n .
- (b). Si $A \in \mathcal{E}_n$, montrer que det A est un multiple de 2^{n-1} .
- (c). Donner les valeurs de det A lorsque A décrit \mathcal{E}_n pour n=2,3,4.

Dimension finie, théorème du rang

Soit (e_1, \ldots, e_n) une famille de rang r. On extrait de cette famille une famille $(e_{i_1}, \ldots, e_{i_n})$ dont on note q le rang. Montrer que $q \ge r + p - n$.

31

____ (*) _____

Soit E de dimension finie n et f un endomorphisme de rang 1. Montrer qu'il existe un élément de \mathbb{K} tel que $f^2 = af$.

_____(**) _____

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par

$$P_0 = 1$$
 et $\forall n \ge 1$, $P_n = \frac{X(X - n)^{n-1}}{n!}$

- (a). Montrer que pour tout entier n et tout $k \in \{0, \dots, n\}$, $P_n^{(k)}(X) = P_{n-k}(X k)$. En déduire $P_n^{(k)}(k)$.
- (b). Montrer que pour tout $m \in \mathbb{N}$, (P_0, \ldots, P_m) est une base de $\mathbb{R}_m[X]$. Soit Q de degré inférieur ou égal à m. Déterminer les coordonnées de Q dans cette base.

33

_____(**) _____

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Déterminer l'ensemble des endomorphismes f de E tels que

$$\forall g \in \mathcal{L}(E), \quad \operatorname{rg}(f \circ g) = \operatorname{rg}(g \circ f)$$
 (*)

34

____ (**) ____

Soit E un espace vectoriel de dimension finie n. On note $\mathcal{V}(E)$ l'ensemble des sous-espaces vectoriels de E. On considère φ une application de $\mathcal{V}(E)$ dans \mathbb{N} telle que $\varphi(\{0\}) = 0$, $\varphi(E) = n$ et pour tous éléments E_1 et E_2 de $\mathcal{V}(E)$

$$\varphi(E_1 + E_2) + \varphi(E_1 \cap E_2) = \varphi(E_1) + \varphi(E_2)$$

(a). Montrer si E_1, \ldots, E_k sont en sommes directes, alors

$$\varphi\left(\bigoplus_{i=1}^{k} E_{i}\right) = \sum_{i=1}^{k} \varphi\left(E_{i}\right)$$

(b). Soit F un hyperplan de E. Montrer qu'il existe n sous-espaces vectoriels G_1, \ldots, G_n tels que pour tout i, G_i soit de dimension 1, supplémentaire à F dans E, et tels que

$$E = \bigoplus_{i=1}^{n} G_i$$

- (c). En déduire que $\varphi(F) = n 1$ puis que $\varphi(G) = 1$ pour toute droite vectorielle G.
- (d). En utilisant ce qui précède, montrer que $\varphi = \dim$.

35

______ (*) ______ Mines PC 2014

Soient E un espace vectoriel de dimension finie $n, x \in E$ et $u \in \mathcal{L}(E)$. On suppose que $(x, u(x), \dots, u^{n-1}(x))$ est une base de E et on note $C(u) = \{v \in \mathcal{L}(E), u \circ v = v \circ u\}$. Soit $\Phi : v \longmapsto v(x)$.

- (a). Montrer que Φ induit un isomorphisme de C(u) dans E.
- (b). Montrer que $C(u) = \text{Vect } \{I_d, u, \dots, u^{n-1}\}.$

36

_____ (**) _____

- (a) Soient E, F, G trois espaces vectoriels de dimension finie. On se donne $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(E, G)$. Montrer l'équivalence des propriétés suivantes :
 - (i) $\exists h \in \mathcal{L}(F,G), \quad g = h \circ f$
- (b) Soit E un espace vectoriel de dimension finie et f_1, \ldots, f_{p+1} des applications linéaires non nulles de E vers \mathbb{K} . Pour tout $i \in [1; p+1]$, on note $H_i = \operatorname{Ker} f_i$. Montrer l'équivalence des deux propriétés suivantes

(i)
$$H_1 \cap \cdots \cap H_p \subset H_{p+1}$$
 (ii) $\exists a_1, \dots, a_p \in \mathbb{K}, \quad f_{p+1} = \sum_{i=1}^p a_k f_k$

On pourra utiliser l'application

$$\rho: E \longrightarrow \mathbb{K}^p$$
$$x \longmapsto (f_1(x), \dots, f_p(x))$$

37

_____ (***) ______ X PC 2014

(ii) Ker $f \subset \text{Ker } g$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que pour toute matrice N nilpotente, la matrice AN est nilpotente. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_n$.

Exercices supplémentaires non corrigés

38

Soit $P \in \mathbb{R}[X]$ unitaire et de degré $n \geq 1$. Montrer que P est scindé sur \mathbb{R} si et seulement si

$$\forall z \in \mathbb{C}, \qquad |P(z)| \ge |\operatorname{Im}(z)|^n$$

39

Soit $P \in \mathbb{C}[X]$ que l'on note $P = P_1 + i P_2$ avec $P_1, P_2 \in \mathbb{R}[X]$. On suppose que $\mathrm{Im}(z) < 0$ pour toute racine z de P.

- (a). Soit $z \in \mathbb{C}$. Montrer que si $|P(z)| = |P(\overline{z})|$, alors z est réel.
- (b). En déduire que P_1 est scindé sur \mathbb{R} .

40

Soit E un espace vectoriel et f_1, \ldots, f_p des formes linéaires sur E. On note φ l'application définie par :

$$\varphi: E \longrightarrow \mathbb{C}^p$$

 $x \longmapsto (f_1(x), \dots, f_p(x))$

Montrer l'équivalence entre les trois propriétés suivantes :

- (i) La famille (f_1, \ldots, f_p) est libre.
- (ii) L'application φ est surjective.
- (iii) Il existe (x_1, \ldots, x_p) tels que $\det(f_i(x_j))_{i,j \in [1:p]} \neq 0$.

41

On not

$$E = \{ f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R})), \ \forall A \in \mathcal{M}_n(\mathbb{R}), \quad f(A^T) = f(A)^T \}$$

Montrer que E est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et déterminer sa dimension.

42

Soit $n \in \mathbb{N}^*$.

- (a). Déterminer la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ dans lequel tout élément non nul est inversible.
- (b). Le résultat obtenu pour $\mathbb C$ vaut-il encore pour $\mathbb R$? Résoudre la question précédente pour n=2 et $\mathbb R$ à la place de $\mathbb C$.

- 1 Raisonner sur le(s) degré(s) d'une éventuelle solution.
- Noter $P = \sum_{r=0}^{k-1} a_r X^r$ puis utiliser la formule donnant la somme des termes d'une suite géométrique.
- 3 Pour $P \in \mathbb{R}[X]$ quelconque, déterminer un équivalent lorsque n tend vers $+\infty$ de $\int_{n}^{n+1} P(t) dt$ en fonction du degré et du coefficient dominant de P.
- **4** Remarquer que si x est un élément de C, alors il appartient à A+C.
- Justifier que $f \circ g$ est un projecteur, puis que Ker $f \circ g = \text{Ker } f + \text{Ker } g$ et Im $f \circ g = \text{Im } f \cap \text{Im } g$.
- $oxed{6}$ (b) S'inpirer des cas n=2 et n=3 pour conjecturer une formule qui ressemble fortement à un binôme de Newton. Démontrer ensuite cette formule par récurrence.
- 7 (a) Raisonner par analyse-synthèse.
 - (b) Remarquer que f induit un isomorphisme de E_1 sur Im f et construire g à l'aide de la somme directe $F = \text{Im } f \oplus F_1$.
- 8 Pour le sens direct, utiliser le binôme de Newton pour obtenir une égalité de la forme $v \circ w = I_d$ avec w bien choisie. Pour la réciproque, exploiter la factorisation de $1 x^p$, valable dans un anneau quelconque.
- On pourra commencer par étudier l'application $\varphi: P \longmapsto P(X+a) P(X-a)$ avec a > 0 quelconque, et en particulier le degré de $\varphi(P)$ en fonction de celui de P. Puis faire le lien avec ϕ .

 Pour la surjectivité, prendre $Q \in \mathbb{R}[X]$ dont on note n le degré, puis considérer l'endomorphisme induit par ϕ sur $\mathbb{R}_n[X]$.
- On pourra raisonner par analyse-synthèse pour chercher à décomposer de manière unique un élément de $\mathcal{M}_n(\mathbb{R})$ comme somme d'une matrice antisymétrique et d'une matrice triangulaire supérieure.
- 11 On pourra raisonner par analyse-synthèse, et distinguer plusieurs cas suivant la valeur des traces de A et B.
- Raisonner par l'absurde en supposant qu'il existe X non nul tel que AX = 0, et utiliser l'indice i_0 tel que X_{i_0} soit de module maximal.
- Raisonner sur les endomorphismes canoniquement associés à ces matrices en démontrant le lemme suivant : « Si F est un sous-espace vectoriel non réduit à $\{0\}$ et stable par u nilpotent, alors $\dim u(F) < \dim F$. »
- Résoudre le système Y = AX. On pourra remarquer que pour $j \in [2; n-1]$, on peut dans la j-ième équation exprimer x_j en fonction de y_j, x_1 et x_n
- En notant C_1, \ldots, C_n les colonnes de A, que peut-on dire de C_j pour j > r? En déduire que l'on peut écrire B = AQ et D = CQ où $Q \in \mathcal{M}_{r,n-r}(\mathbb{K})$ et conclure.
- $|\mathbf{16}|$ (a) Considérer les vecteurs colonnes de XY.
 - (b) Commencer par le cas où $M = E_{1,1} + \cdots + E_{r,r}$.
- A l'aide de la trace et du déterminant, déterminer les valeurs de x et de y susceptibles de convenir puis établir la réciproque en remarquant que (AB)A = A(BA).
- Pour $\lambda \neq 0$, on pourra exprimer x_2 en fonction de x_1 , puis x_3 en fonction de x_1 , et ainsi de suite. On sera amené à discuter suivant la valeur de $1 + \lambda^2 + \cdots + \lambda^{2n}$.
- 19 Calcul direct par opérations sur les lignes et les colonnes.
- **20** Etablir une formule de récurrence d'ordre 2 vérifiée par D_n .
- 21 Faire un calcul direct (1ère méthode) ou adopter un point de vue polynomial (2ème méthode).
- **22** Déterminer la matrice dans la base canonique \mathcal{B} de $\mathcal{M}_n(\mathbb{K})$ en ordonnant ses éléments de la manière suivante :
 - $\mathcal{B} = \{E_{1,1}, \dots, E_{n,1}, E_{1,2}, \dots, E_{n,2}, \dots, E_{n,1}, \dots, E_{n,n}\}$
- 23 Utiliser des opérations élémentaires sur les lignes et les colonnes de A.
- 24 (a) Utiliser le fait qu'un polynôme de $\mathbb{C}[X]$ n'a qu'un nombre fini de racines.
 - (b) Remarquer que « A est semblable à B » s'écrit également « AP = PB avec P inversible ».
- 25 (a) Multiplier à droite par une matrice par blocs bien choisie et de déterminant 1. Le but est d'obtenir un résultat de la forme

$$\begin{pmatrix} AD - BC & * \\ 0 & I_n \end{pmatrix}$$

(b) Appliquer le (a) avec $D - xI_n$ où x est tel que $D - xI_n$ est inversible, puis faire tendre x vers 0.

- Comparer det M et det \overline{M} pour tout élément M de $\mathcal{M}_n(\mathbb{C})$ et utiliser le caractère multiplicatif du déterminant.
- Commencer par montrer que det A = 0, puis utiliser le fait que si A est de rang r, il existe deux matrices P et Q inversibles telles que $A = PJ_rQ$ où J_r est la matrice

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

- **28** Justifier que $\varphi: x \longmapsto \det(A + xJ)$ est affine et paire.
- **29** (b) Utiliser les opérations élémentaires $L_i \leftarrow L_i L_{i+1}$ pour i allant de i à n-1.
 - (c) Commencer par donner un majorant grossier de $|\det A|$ pour $A \in \mathcal{E}_n$, puis utiliser le (b) pour restreindre au maximum les valeurs possibles de ce déterminant. Pour n = 4, on pourra développer par rapport à une colonne et utiliser les résultats du cas n = 3.
- Sans perdre de généralité, on peut supposer que la famille extraite est (e_1, \ldots, e_p) et que (e_1, \ldots, e_q) est libre. Donner alors une famille génératrice de Vect $\{e_1, \ldots, e_n\}$ ayant n (p q) vecteurs.
- 31 Utiliser un vecteur y non nul appartenant à Im f pour montrer que $f^2(x) = f(x)$ pour tout vecteur x avec a un réel bien choisi indépendant de x.
- $\boxed{\bf 32}$ (a) On peut raisonner par récurrence sur k ou utiliser la formule de Leibnitz.
 - (b) Ecrire Q comme combinaison linéaire de P_0, \ldots, P_m , dériver k fois, puis substituer à X une valeur bien choisie.
- **33** Pour f non nul et non inversible, on pourra construire g tel que $g \circ f = 0$ et $f \circ g \neq 0$.
- $|\mathbf{34}|$ (a) Procéder par récurrence sur k.
 - (b) Introduire une base (e_1, \ldots, e_{n-1}) de F complétée en une base (e_1, \ldots, e_n) de E et prendre pour G_1, \ldots, G_n des droites engendrées par n vecteurs bien choisis à partir de cette base.
 - (c) Appliquer φ aux sommes directes précédentes.
 - (d) Justifier qu'un espace vectoriel de dimension k est la somme directe de k droites vectorielles.
- [35] (a) Noter $\mathcal{B} = \{x, u(x), \dots, u^{n-1}(x)\}$. Pour l'injectivité de ϕ , montrer que si v commute avec u, alors il s'annule sur \mathcal{B} . Pour la surjectivité, décomposer $y \in E$ arbitraire dans la base \mathcal{B} pour lui trouver un antécédent par ϕ .
 - (b) Utiliser le (a) pour trouver la dimension de C(u), puis montrer que $\{I_d, u, \dots, u^{n-1}\}$ est libre.
- 36 (a) Pour construire h, on pourra commencer par compléter une base de Ker f en une base de E.
 - (b) Appliquer le (a) avec $G = \mathbb{R}^p$, $F = \mathbb{R}$, $f = \varphi$ et enfin $g = f_{p+1}$.
- Raisonner par contraposée avec l'endomorphisme u canoniquement associé à A. On pourra utiliser le résultat suivant :

« Si pour tout x, (x, u(x)) est liée, alors u est une homothétie. »