Nature et calcul d'intégrales impropres

1 _______(**) _____

Après avoir justifié la convergence de chacune de ces trois intégrales, établir les égalités

$$\int_0^{\pi/2} \ln(\sin x) \, dx = \int_0^{\pi/2} \ln(\cos x) \, dx = \frac{1}{2} \int_0^{\pi/2} \ln\left(\frac{\sin 2x}{2}\right) \, dx$$

et en déduire leur valeur commune.

2 ______ (*

Justifier la convergence et calculer la valeur de $\int_1^{+\infty} \frac{\mathrm{d}x}{(x+1)\sqrt{x^2-1}}$.

Justifier la convergence et calculer la valeur de $\int_0^{\pi/4} \frac{\cos^3 x}{\sqrt{\cos 2x}} \, \mathrm{d}x$.

4 ______(*)

- (a). A quelle condition sur le réel α l'intégrale $I(\alpha) = \int_1^{+\infty} \frac{\lfloor x \rfloor}{x^{\alpha}} \, \mathrm{d}t$ est-elle convergente?
- (b). Trouver en cas de convergence une relation entre I et $\zeta: s \longmapsto \sum_{n=1}^{\infty} \frac{1}{n^s}$.

5 ______(*)

Justifier la convergence et calculer la valeur de $\int_0^{+\infty} \frac{\operatorname{th}(3x) - \operatorname{th}(2x)}{x} \, \mathrm{d}x$.

Intégrabilité, semi-convergence

6

Etudier la convergence de $\int_0^{\pi/2} \ln(\tan x) \cos^{\alpha} x \, dx$ suivant la valeur de $\alpha \in \mathbb{R}$.

7 _____(**)

Discuter suivant la valeur des réels α et β la convergence de $\int_1^{+\infty} \frac{x^{\beta}}{1 + x^{\alpha} \sin^2 x} dx$

Montrer que l'intégrale $\int_0^{+\infty} \sin x \sin \left(\frac{1}{x}\right) dx$ est convergente, mais pas absolument convergente.

9 ______(*)

L'application $x \longmapsto (1+x)^{1/(1+x)} - x^{1/x}$ est-elle intégrable sur $[1; +\infty[\,?\,]$

______(**)______

Soit f définie sur \mathbb{R}_+ , continue par morceaux, décroissante et de limite nulle en $+\infty$. On note $g: x \longmapsto f(x) \sin x$.

- (a). Montrer que $\int_0^{+\infty} f(t) dt$ est absolument convergente si et seulement si $\int_0^{+\infty} g(t) dt$ l'est.
- (b). Montrer que $\int_0^{+\infty} g(t) dt$ est convergente.

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ continue et intégrable. Montrer l'existence d'une suite de réels positifs $(x_n)_{n \in \mathbb{N}}$ telle que

$$x_n \xrightarrow[n \to +\infty]{} +\infty$$
 et $x_n f(x_n) \xrightarrow[n \to +\infty]{} 0$

_____ X PC 2016

Soit f continue sur \mathbb{R}_+ telle que $f(x) = O(1/x^2)$ lorsque $x \to +\infty$. Soit a > 0. On définit

$$g: \mathbb{R}_+^* \longrightarrow \mathbb{R} \qquad \text{et} \qquad h: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$x \longmapsto f\left(x + \frac{a}{x}\right) \qquad x \longmapsto f\left(\sqrt{4a + x^2}\right)$$

Montrer que g et h sont intégrables et que

$$\int_0^{+\infty} g = \int_0^{+\infty} h$$

13

____ (*) _____

CCP PC 2019

Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 et telle que

$$\forall x > 0, \qquad f(x+1) = xf(x) \qquad \text{et} \qquad f'' > 0$$

- (a). Enoncer le théorème de Rolle.
- (b). (i) Pour tout $n \ge 1$, exprimer f(n) en fonction de n et de f(1).
 - (ii) Montrer qu'il existe $c \in [1; 2[$ tel que f'(c) = 0. En déduire les variations de f.
- (c). (i) Montrer que f' ne peut pas s'annuler en deux points de \mathbb{R}_+^* .
 - (ii) Montrer que f est de signe constant sur \mathbb{R}_+^* .
- (d). (i) Montrer que f(2) > 0 et en déduire la limite de f en $+\infty$.
 - (ii) Déterminer la nature de $I = \int_1^{+\infty} f(t) dt$.
- (e). Nature de $J = \int_0^1 f(t) dt$ et $K = \int_1^{+\infty} \frac{dt}{f(t)}$.

Suites et fonctions définies par une intégrale

14

_____ (**) ____

_____ Mines PC 2009

On définit pour tout entier $n \ge 1$

$$I_n = \int_0^{+\infty} \frac{1}{(1+x^3)^n} \, \mathrm{d}x$$

- (a). Trouver une relation de récurrence satisfaite par $(I_n)_{n\in\mathbb{N}}$.
- (b). Déterminer $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} (I_n)^{1/n}$.

15

_____(**) _____

 $_$ Mines PC 2008

On pose pour tout $n \in \mathbb{N}$

$$I_n = \int_0^{+\infty} \frac{\arctan(n+x)}{\sqrt{x}(n+x)} \, \mathrm{d}x$$

- (a). Montrer que I_n est une intégrale convergente pour tout entier n.
- (b). Déterminer la limite de $(I_n)_{n\in\mathbb{N}}$.
- (c). Calculer $\int_0^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}(n+x)}$ à l'aide d'un changement de variable naturel.
- (d). En déduire un équivalent de I_n .

16

_____ (**) _____

_____ Centrale & Mines PC 2016

Soit F définie par

$$F: x \longmapsto \int_{x}^{+\infty} \frac{\sin t}{t^2} \, \mathrm{d}t$$

- (a). Montrer que F est bien définie sur \mathbb{R}_+^* .
- (b). Donner un équivalent de F en 0^+ . Est-elle intégrable sur \mathbb{R}_+^* ?

Fonctions de carré intégrable

17

____ (*) _____

Soit f de classe \mathcal{C}^1 , intégrable sur \mathbb{R}^+ , à valeurs positives et telle que f'^2 soit intégrable sur \mathbb{R}^+ . Montrer que $f \xrightarrow[+\infty]{} 0$.

_______X PC 2014

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ de classe \mathcal{C}^1 telle que l'intégrale

$$\int_0^{+\infty} \left(f'(t)^2 + t^2 f(t)^2 \right) \, \mathrm{d}t$$

est convergente. Montrer que f^2 est intégrable sur \mathbb{R}_+ et que

$$\int_0^{+\infty} f(t)^2 dt \le 2 \left(\int_0^{+\infty} f'(t)^2 dt \right)^{1/2} \left(\int_0^{+\infty} t^2 f(t)^2 dt \right)^{1/2}$$

Exercices supplémentaires non corrigés

19 ______ Mines PC 2024

Nature de $\int_1^{+\infty} \frac{\ln|1-x|\cos(\ln(x))}{x^{\alpha}(1+x)} dx \qquad \text{et} \qquad \int_0^1 \frac{\ln|1-x|\cos(\ln(x))}{x^{\alpha}(1+x)} dx$

______ (**) ______ Mines PC 2024

Nature de $\int_0^{+\infty} |\sin x|^x dx$?

Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ de classe \mathcal{C}^1 , décroissante et intégrable sur \mathbb{R}_+^* .

- (a). On suppose que $\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} 0$. Montrer que $\frac{f(x)}{\int_{x}^{+\infty} f(t) dt} \xrightarrow[x \to +\infty]{} 0$.
- (b). On suppose que $\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} -\infty$. Que peut-on dire de $\frac{f(x)}{\int_x^{+\infty} f(t) dt} \xrightarrow[x \to +\infty]{} ?$

_______(**) ________Centrale PC 2024

Soit $f:\mathbb{R}_+^*\longrightarrow\mathbb{R}$ une fonction continue de carré intégrable sur]0;1] et ℓ un réel strictement positif. On suppose que

$$f(x)\int_0^x f(t)^2 dt \xrightarrow[x \to +\infty]{} \ell$$

- (a). Si f admet une limite en $+\infty$, quelle est cette limite?
- (b). Trouver toutes les fonctions g telles que $\forall x > 0$, $g(x) \int_0^x g(t)^2 dt = \ell$
- (c). Déterminer un équivalent de f(x) quand x tend vers $+\infty$.

- I Utiliser un changement de variable pour comparer les deux premières. Pour la troisième, comparer $\int_0^{\pi} \ln \sin t$ à la première.
- $\boxed{\mathbf{2}}$ Faire le changement de variable $u = \operatorname{argsh} x$.
- 3 Faire un changement de variable en généralisant les règles de Bioche.
- $\boxed{\mathbf{4}}$ (b) Poser $u_n = \int_n^{n+1} \lfloor x \rfloor / x^{\alpha} \, \mathrm{d}x$ pour $n \geq 1$ puis calculer la somme $\sum_{n=1}^{+\infty} u_n$ par transformée d'Abel.
- $\boxed{\mathbf{5}} \text{ Ecrire } \int_0^A \frac{\th 3x \th 2x}{x} \, \mathrm{d}x \text{ comme l'intégrale sur } [2A; 3A] \, \mathrm{d'une \ certaine \ fonction}.$
- **6** En 0, utiliser le développement limité de tan et les comparaisons par équivalent. En $\pi/2$, utiliser un changement de variable pour se ramener en 0 et raisonner par équivalent et o().
- $\boxed{\textbf{7}} \text{ Dans le cas } \alpha \geq 0, \text{ utiliser la comparaison série-intégrale après avoir calculé } \int_0^\pi \frac{\mathrm{d}t}{1 + a \sin^2 t}.$
- 8 Pour la convergence, utiliser une intégration par parties. Pour la convergence non absolue, montrer que la série $\sum u_n$ diverge où $u_n = \int_{n\pi}^{(n+1)\pi} |\sin x \sin(1/x)| \, dx$.
- 9 On pourra chercher un équivalent de g(x) en $+\infty$.
- $\boxed{\mathbf{10}}$ (a) Utiliser des séries pour le sens \Leftarrow .
 - (b) Utiliser le théorème des séries alternées.
- **11** Justifier par l'absurde que $\forall \epsilon > 0, \quad \forall M > 0, \quad \exists x \geq M, \qquad xf(x) \leq \epsilon$
- Pour justifier l'égalité des intégrales, on pourra commencer par effectuer le changement de variable $v = \sqrt{4a + x^2}$ dans l'intégrale de h sur \mathbb{R}_+ . Pour l'intégrale de g, on pourra étudier l'application $x \longmapsto x + a/x$ et remarquer qu'elle induit deux bijections, l'une croissante et l'autre décroissante, entre des intervalles à déterminer. On pourra alors séparer l'intégrale en deux et utiliser le changement de variable t = x + a/x en faisant bien attention à l'expression de x en fonction de t suivant l'intervalle sur lequel on travaille.
- 15 (b) Pour 5/2, utiliser le théorème de convergence dominée. Les 3/2 peuvent sauter la question et déduire le résultat des questions suivantes.
 - (c) Poser $u = \sqrt{x}$.
 - (d) Deviner l'équivalent à l'aide des proppriétés de arctan et du résultat précédent. Pour le justifier correctement, majorer la différence entre I_n et l'équivalent conjecturé.
- **16** (a) Fixer x > 0 et justifier l'intégrabilité de $t \mapsto \sin(t)/t^2$ sur $[x; +\infty[$.
 - (b) Pour l'équivalent en 0, remarquer que $\sin(t)/t^2 \sim 1/t$ en ce point, et se débrouiller pour intégrer (rigoureusement) cet équivalent. Pour l'intégrabilité sur \mathbb{R}_+^* , déterminer un développement asymptotique de F en $+\infty$. On pourra pour cela procéder à des intégrations par parties.
- 17 Considérer $f'\sqrt{f}$ et $\int_0^x f'(x)\sqrt{f(x)}\,\mathrm{d}x$.
- Pour l'intégrabilité de f, une majoration élémentaire suffit. Pour la suite, commencer par intégrer par parties f^2 sur [0;x] puis passer à la limite quand x tend vers $+\infty$ (en justifiant) pour une première égalité. Conclure à l'aide de l'inégalité de Cauchy-Schwarz.