I. Préliminaires

1.a L'ensemble $\{x \in \mathbb{R} \mid f(x) \leqslant f(0)\}$ est l'image réciproque par f de l'intervalle fermé $]-\infty$; f(0). La fonction f étant continue, on en déduit que l'ensemble

$$\{x \in \mathbb{R} \mid f(x) \leqslant f(0)\}$$

est un fermé de \mathbb{R} . Il contient 0 et est donc également non vide.

Puisque la fonction f tend vers $+\infty$ en $\pm \infty$, il existe deux réels R_1 et R_2 tels que

$$\forall x \in]-\infty; \mathbf{R}_1[\cup]\mathbf{R}_2; +\infty[\qquad f(x) > f(0)$$

Ainsi, l'ensemble $\{x \in \mathbb{R} \mid f(x) \leq f(0)\}$ est inclus dans l'intervalle $[R_1; R_2]$. Il est en particulier borné. En résumé,

L'ensemble $\{x \in \mathbb{R} \mid f(x) \leq f(0)\}$ est un fermé borné non vide de \mathbb{R} .

1.b Le théorème des bornes atteintes appliqué à la fonction continue f et à l'ensemble fermé borné non vide $\{x \in \mathbb{R} \mid f(x) \leqslant f(0)\}$ affirme que f y atteint ses bornes. Il existe par conséquent un réel x_* tel que

$$f(x_*) = \min \{ f(x) \mid x \in \mathbb{R} \text{ et } f(x) \leqslant f(0) \}$$

En remarquant que inf $\{f(x) \mid x \in \mathbb{R}\} \leq f(0)$, on trouve que

$$\inf \{ f(x) \mid x \in \mathbb{R} \} = \inf \{ f(x) \mid x \in \mathbb{R} \text{ et } f(x) \leqslant f(0) \} = f(x_*)$$

Ainsi, $f(x_*)$ est un minimum global de f sur \mathbb{R} et par conséquent

$$f(x_*) = \min \{ f(x) \mid x \in \mathbb{R} \}$$

Une fonction f qui tend vers $+\infty$ en $\pm\infty$ est dite coercive. Cette hypothèse permet de se ramener à minimiser la fonction sur un ensemble fermé et borné sur lequel il est possible d'appliquer le seul théorème général d'existence de minimiseur, le bien nommé théorème des bornes atteintes.

2.a Soient $x, y \in \mathbb{R}$. Puisque f' est L-lipschitzienne

$$|f'(x) - f'(y)|^2 = |f'(x) - f'(y)||f'(x) - f'(y)| \le L|x - y||f'(x) - f'(y)|$$

La fonction f est de classe \mathscr{C}^1 et convexe sur \mathbb{R} et sa dérivée f' est donc croissante. Cela implique que f'(x) - f'(y) est du même signe que x - y et par suite que

$$(x-y)(f'(x)-f'(y))\geqslant 0$$

On en déduit que

$$|x - y||f'(x) - f'(y)| = |(x - y)(f'(x) - f'(y))| = (x - y)(f'(x) - f'(y))$$

Finalement,
$$\forall x, y \in \mathbb{R}$$
 $|f'(x) - f'(y)|^2 \leq L(x - y)(f'(x) - f'(y))$

2.b On trouve en développant le carré que

$$|\widetilde{x} - \widetilde{y}|^2 = \left(x - y - \tau (f'(x) - f'(y))\right)^2$$

= $(x - y)^2 + \tau^2 (f'(x) - f'(y))^2 - 2\tau (x - y) (f'(x) - f'(y))$

L'inégalité de la question précédente donne alors

$$\begin{split} |\widetilde{x}-\widetilde{y}|^2 &\leqslant (x-y)^2 + \tau^2 \mathcal{L}(x-y) \big(f'(x)-f'(y)\big) - 2\tau(x-y) \big(f'(x)-f'(y)\big) \\ \text{d'où} \quad \overline{\big|\widetilde{x}-\widetilde{y}\big|^2 \leqslant (x-y)^2 - \tau(2-\tau\mathcal{L})(x-y) \big(f'(x)-f'(y)\big)} \end{split}$$

2.c La fonction f étant de classe \mathscr{C}^1 sur l'ouvert \mathbb{R} et le point x_* étant un minimiseur de f, ce dernier est également un point critique de f, c'est-à-dire $f'(x_*) = 0$. Soit $n \in \mathbb{N}$. Posons $x = x_n$ et $y = x_*$, on a alors

$$\widetilde{x} = x_n - \tau f'(x_n) = x_{n+1}$$
 et $\widetilde{y} = x_* - \tau f'(x_*) = x_* = y$

La question précédente donne

$$|x_{n+1} - x_*|^2 \le |x_n - x_*|^2 - \tau(2 - \tau L)(x_n - x_*) (f'(x_n) - f'(x_*))$$

L'hypothèse sur τ donne $\tau(2-\tau L) \ge 0$ et, d'après la question 2.a,

$$\forall x, y \in \mathbb{R}$$
 $(x-y)(f'(x) - f'(y)) \ge 0$

On en déduit que

$$\tau(2-\tau L)(x_n-x_*)\big(f'(x_n)-f'(x_*)\big)\geqslant 0$$

ce qui implique $|x_{n+1}-x_*|^2 \leq |x_n-x_*|^2$, d'où $|x_{n+1}-x_*| \leq |x_n-x_*|$ par croissance de la racine carrée sur les réels positifs. Autrement dit,

La suite
$$(|x_n - x_*|)_{n \in \mathbb{N}}$$
 est décroissante.

II. Convergence rapide, sous des hypothèses fortes

3.a Soit $x \in \mathbb{R}$. La fonction f est de classe \mathscr{C}^1 et sa dérivée en x est f'(x) = Lx. La formule de récurrence déterminant $(x_n)_{n\in\mathbb{N}}$ donne ainsi, pour tout entier naturel n,

$$x_{n+1} = x_n - \tau f'(x_n) = x_n - \tau L x_n = (1 - \tau L) x_n$$

En reconnaissant une suite géométrique de raison $(1 - \tau L)$, il vient $x_n = (1 - \tau L)^n x_0$ pour tout entier naturel n. Par conséquent,

$$\forall n \in \mathbb{N}$$
 $x_{n+1} = (1 - \tau L)x_n$ et $x_n = (1 - \tau L)^n x_0$

Il est également possible de démontrer l'expression de x_n pour tout $n \in \mathbb{N}$ par récurrence, mais il est plus élégant et efficace de reconnaître une suite géométrique.

3.b Une suite géométrique dont le premier terme est non nul converge vers 0 si et seulement si sa raison est strictement inférieure à 1 en valeur absolue. La suite $(x_n)_{n\in\mathbb{N}}$ étant géométrique de raison $(1-\tau L)$ et x_0 étant non nul, cette dernière tend vers 0 si et seulement si $|1-\tau L|<1$. Or

$$\begin{aligned} |1 - \tau \mathbf{L}| < 1 &\iff -1 < 1 - \tau \mathbf{L} < 1 \\ &\iff -2 < -\tau \mathbf{L} < 0 \end{aligned}$$
$$|1 - \tau \mathbf{L}| < 1 &\iff 0 < \tau < \frac{2}{\mathbf{L}}$$
 car $\mathbf{L} > 0$

Ainsi, La suite $(x_n)_{n\in\mathbb{N}}$ converge vers 0 si et seulement si $0 < \tau < 2/L$.

4 La fonction g est de classe \mathscr{C}^1 sur \mathbb{R} car f et $x\mapsto \alpha x^2/2$ le sont. Puisque g est convexe par hypothèse de l'énoncé, la dérivée de g est par conséquent croissante, autrement dit

La fonction
$$x \mapsto f'(x) - \alpha x$$
 est croissante sur \mathbb{R} .

Le caractère lipschitzien de f' appliqué aux points 1 et 0 donne $|f'(1)-f'(0)| \leq L$ et la croissance de g' conduit à

$$0 \leqslant g'(1) - g'(0) = f'(1) - \alpha - f'(0)$$
$$\alpha \leqslant f'(1) - f'(0) \leqslant |f'(1) - f'(0)| \leqslant L$$

donc

Finalement,

5 Soient $0 \le y \le x$. La croissance de $x \mapsto f'(x) - \alpha x$ implique $f'(0) \le f'(y) - \alpha y$. En intégrant cette relation entre 0 et x, on obtient par croissance de l'intégrale

$$\int_0^x f'(0) \, \mathrm{d}y \leqslant \int_0^x \left(f'(y) - \alpha y \right) \, \mathrm{d}y \qquad \text{d'où} \qquad x f'(0) \leqslant f(x) - f(0) - \frac{1}{2} \alpha x^2$$

Soient $x \leq y \leq 0$. La croissance de $x \mapsto f'(x) - \alpha x$ implique ici que $f'(0) \geq f'(y) - \alpha y$. En intégrant cette relation entre x et 0, on obtient

$$\int_{x}^{0} f'(0) \, \mathrm{d}y \geqslant \int_{x}^{0} \left(f'(y) - \alpha y \right) \, \mathrm{d}y \qquad \text{d'où} \qquad -xf'(0) \geqslant f(0) - f(x) + \frac{1}{2}\alpha x^{2}$$

En réorganisant les inégalités, il vient

$$\forall x \in \mathbb{R} \qquad f(x) \geqslant f(0) + f'(0)x + \frac{1}{2}\alpha x^2$$

Une fonction convexe dérivable est au-dessus de toutes ses tangentes comme on le verra à la question 12.a. Le caractère α -convexe de f nous dit que celleci est en plus au-dessus d'une parabole dont la partie linéaire est la tangente de f en 0.

Puisque $\alpha > 0$, l'inégalité précédente implique que

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{ et } \quad \lim_{x \to +\infty} f(x) = +\infty$$

La fonction f étant continue, la question 1 permet alors de conclure que

La fonction f admet un minimiseur sur \mathbb{R} .

6 Soient $y \leq x$ deux réels. Par croissance de $x \mapsto f'(x) - \alpha x$, démontrée à la question 4, on a

$$f'(y) - \alpha y \leqslant f'(x) - \alpha x$$
 donc
$$\alpha(x-y) \leqslant f'(x) - f'(y)$$
 puis
$$\alpha(x-y)^2 \leqslant \big(f'(x) - f'(y)\big)(x-y) \qquad \text{car } x-y \geqslant 0$$
 d'où
$$\alpha|x-y|^2 \leqslant \big(f'(x) - f'(y)\big)(x-y)$$

En remarquant que (f'(x) - f'(y))(x - y) = (f'(y) - f'(x))(y - x), on constate que les rôles de x et y sont symétriques et on en déduit le résultat pour $x \leq y$.

$$\forall x, y \in \mathbb{R}$$
 $\alpha |x - y|^2 \leq (f'(x) - f'(y))(x - y)$

The paramètre α étant strictement positif, la fonction $x \mapsto \alpha x$ est croissante et la fonction f' l'est également en tant que somme des fonctions croissantes $x \mapsto f'(x) - \alpha x$ et $x \mapsto \alpha x$. En particulier, la fonction f étant de classe \mathscr{C}^1 elle est de plus convexe et on peut lui appliquer les résultats de la question 2. Soient $x, y \in \mathbb{R}$. La question 2.b et la question précédente conduisent à

$$|\widetilde{x} - \widetilde{y}|^2 \leqslant |x - y|^2 - \tau (2 - \tau L)(x - y) (f'(x) - f'(y))$$

$$\leqslant |x - y|^2 - \tau (2 - \tau L)\alpha |x - y|^2 \quad \text{car } 0 < \tau \leqslant 2/L$$

$$\forall x, y \in \mathbb{R} \qquad |\widetilde{x} - \widetilde{y}|^2 \leqslant |x - y|^2 (1 - \alpha \tau (2 - \tau L))$$

8 Soit $n \in \mathbb{N}$. Puisque $x_{n+1} = \widetilde{x}_n$ par définition et que $x_* = \widetilde{x}_*$ car $f'(x_*) = 0$, la question précédente permet d'obtenir l'inégalité

$$|x_{n+1} - x_*|^2 \le |x_n - x_*|^2 (1 - \alpha \tau (2 - L\tau))$$

Vérifions que $0 \le 1-\alpha\tau(2-L\tau)<1$. L'inégalité $0<\alpha\le L$ obtenue à la question 4 et l'hypothèse $0<\tau<2/L$ impliquent

$$\begin{aligned} 0 < 2 - \tau L < 2 \quad \text{et} \quad 0 < \alpha \tau \leqslant L \tau \\ \text{donc} \quad 0 < \alpha \tau (2 - \tau L) \leqslant \tau L (2 - \tau L) \\ \text{d'où} \quad 1 - \tau L (2 - \tau L) \leqslant 1 - \alpha \tau (2 - \tau L) < 1 \\ \text{or} \quad 1 - \tau L (2 - \tau L) = 1 - 2\tau L + (\tau L)^2 = (1 - \tau L)^2 \geqslant 0 \end{aligned}$$

ce qui permet de conclure que $\rho=\sqrt{1-\alpha\tau(2-L\tau)}$ est bien défini et est dans [0;1 [par stricte croissance de la racine carrée sur \mathbb{R}^+ . On a alors

$$|x_{n+1} - x_*| \leqslant \rho |x_n - x_*|$$

Une récurrence immédiate donne ainsi

$$\forall n \in \mathbb{N}$$
 $|x_n - x_*| \le \rho^n |x_0 - x_*|$ avec $\rho \in [0; 1[$

Il est également possible d'étudier la fonction $\tau \mapsto \tau(2-\tau L)$ pour obtenir un encadrement de $(1-\alpha\tau(2-L\tau))$ et donc de ρ .

III. CONVERGENCE LENTE, SOUS DES HYPOTHÈSES FAIBLES

9 La fonction f est \mathscr{C}^{∞} sur $\mathbb{R} \setminus \{0\}$ car constante sur les réels strictement négatifs et polynomiale sur les réels strictement positifs. Elle est continue en 0 et elle est par conséquent également continue sur \mathbb{R} . Sa dérivée définie sur $\mathbb{R} \setminus \{0\}$ vérifie

$$f'(x) = \begin{cases} 0 & \text{si } x < 0 \\ x^2 & \text{si } x > 0 \end{cases}$$

La dérivée vérifie que les limites à gauche et à droite en 0 existent et valent toutes deux 0. Le théorème de la limite de la dérivée permet de déduire que f est dérivable en 0, de dérivée nulle et que f' est continue en 0. Ainsi,

La fonction
$$f$$
 est de classe \mathscr{C}^1 sur \mathbb{R} .

Il est clair que f est positive sur $\mathbb R$ et qu'elle ne s'annule que sur $]-\infty;0].$ En conclusion,

L'ensemble des minimiseurs de
$$f$$
 est $]-\infty;0]$.

10.a Montrons par récurrence que la propriété

$$\mathscr{P}(n): \quad x_{n+1} = x_n(1 - \tau x_n) \quad \text{et} \quad 0 < x_n < \frac{1}{\tau}$$

est vraie pour tout $n \geqslant 0$.

• $\mathscr{P}(0)$: L'inégalité $0 < x_0 < 1/\tau$ est vraie par hypothèse. L'expression pour la dérivée de f pour les réels strictement positifs donne

$$x_1 = x_0 - \tau x_0^2$$
 soit $x_1 = x_0(1 - \tau x_0)$

• $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: Supposons que la propriété est vraie au rang n et montrons qu'elle est vraie au rang n+1. L'hypothèse de récurrence $x_n>0$ et l'expression pour la dérivée de f pour les réels strictement positifs donnent

$$x_{n+1} = x_n - \tau x_n^2$$
 d'où $x_{n+1} = x_n(1 - \tau x_n)$

L'inégalité $0 < x_n < 1/\tau$ de l'hypothèse de récurrence implique alors que

$$0 < 1 - \tau x_n < 1$$
 et donc que $0 < x_{n+1} < 1/\tau$

On conclut que $\mathcal{P}(n+1)$ est vraie.

• Conclusion: $\forall n \ge 0$ $x_{n+1} = x_n(1 - \tau x_n)$ et $0 < x_n < 1/\tau$

On trouve ainsi pour tout entier naturel k que $x_{k+1} \leq x_k$ car $0 < x_k < 1/\tau$ et $x_{k+1} = x_k(1 - \tau x_k)$. En conclusion,

La suite
$$(x_n)_{n\in\mathbb{N}}$$
 est décroissante, strictement positive et satisfait $x_{n+1} = x_n(1-\tau x_n)$ pour tout entier naturel n .

10.b La suite $(x_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0 d'après la question précédente. Elle converge donc vers un réel $\ell \geqslant 0$. En passant à la limite dans la formule de récurrence, il vient $\ell = \ell (1 - \tau \ell)$, soit $-\tau \ell^2 = 0$, puis $\ell = 0$ car $\tau > 0$. Ainsi,

$$x_n \xrightarrow[n \to +\infty]{} 0$$

10.c Soit $n \in \mathbb{N}$. En ramenant au même dénominateur, on trouve

$$\frac{1}{x_n} + \frac{\tau}{1 - \tau x_n} = \frac{1 - \tau x_n + \tau x_n}{x_n (1 - \tau x_n)} = \frac{1}{x_n (1 - \tau x_n)}$$

et la formule de récurrence $x_{n+1} = x_n(1-\tau x_n)$ de la question 10.a implique ainsi que

$$\boxed{\forall n \in \mathbb{N} \qquad \frac{1}{x_n} + \frac{\tau}{1 - \tau x_n} = \frac{1}{x_{n+1}}}$$

Montrons par récurrence que la propriété

$$\mathscr{P}(n): \quad x_n \leqslant \frac{x_0}{(1+n\tau x_0)}$$

est vraie pour tout $n \ge 0$.

• $\mathcal{P}(0)$: L'inégalité est vraie car

$$x_0 \leqslant x_0 = \frac{x_0}{1 + 0 \cdot x_0}$$

• $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: Supposons que la propriété est vraie au rang n et montrons qu'elle est vraie au rang n+1. L'inégalité $0 < x_n < 1/\tau$ de la question 10.a implique que $1-\tau x_n \leqslant 1$ et donc que $\tau/(1-\tau x_n) \geqslant \tau$. L'expression de $1/x_{n+1}$ et l'hypothèse de récurrence $x_n \leqslant x_0/(1+n\tau x_0)$ donnent

$$\frac{1}{x_{n+1}} = \frac{1}{x_n} + \frac{\tau}{1 - \tau x_n} \geqslant \frac{1 + n\tau x_0}{x_0} + \tau \geqslant \frac{1 + (n+1)\tau x_0}{x_0}$$

d'où

$$x_{n+1} \leqslant \frac{x_0}{\left(1 + (n+1)\tau x_0\right)}$$

donc $\mathcal{P}(n+1)$ est vraie.

On a utilisé ici notre connaissance de l'égalité $1/x_k + \tau/(1 - \tau x_k) = 1/x_{k+1}$ pour la démontrer. Une autre manière de procéder aurait été de décomposer en éléments simples la fraction rationnelle $1/(X(1 - \tau X))$. Celle-ci a deux pôles simples 0 et $1/\tau$ et on cherche donc deux réels α et β tel que

$$\frac{1}{X(1-\tau X)} = \frac{\alpha}{X} + \frac{\beta}{X-1/\tau} = \frac{\alpha(X-1/\tau) + \beta X}{X(X-1/\tau)} = -\tau \frac{(\alpha+\beta)X - \alpha/\tau}{X(1-\tau X)}$$

On constate que $\alpha=1$ et $\beta=-\alpha=-1$ conviennent et la formule de l'énoncé s'obtient en remplaçant X par x_n . On insiste sur le fait qu'il faut bien maîtriser la décomposition en éléments simples, car si le sujet a fourni ici la formule attendue, ce n'est pas toujours le cas et il faut donc pouvoir rapidement trouver une décomposition.

11 Soit $x_0 \in \mathbb{R}$. Le cas $x_0 \in]0; 1/\tau[$ a déjà été traité puisque d'après la question 10.b, la suite $(x_n)_{n\in\mathbb{N}}$ tend alors vers 0 qui est un minimiseur de f comme vu à la question 9.

Supposons que $x_0 \leq 0$. On trouve alors que $x_1 = x_0$ car $f'(x_0) = 0$ au vu de l'expression de f' pour les réels négatifs. Une récurrence immédiate permet de déduire que la suite $(x_n)_{n\in\mathbb{N}}$ est stationnaire égale à x_0 . Elle converge donc vers x_0 et ce dernier appartient à l'ensemble $]-\infty;0]$ des minimiseurs de f déterminé à la question 9.

Supposons finalement que $x_0 \ge 1/\tau$. Le terme x_1 vaut alors $x_0 - \tau x_0^2$ qui est négatif. En effet,

$$x_0 - x_0^2 \tau \leqslant x_0 - x_0 \left(\tau \cdot \frac{1}{\tau}\right) = 0$$

On est donc dans le cas du paragraphe précédent et la suite $(x_n)_{n\in\mathbb{N}}$ stationne dès son deuxième terme x_1 . Elle converge par conséquent vers celui-ci, qui est un minimiseur de f car x_1 est négatif. En résumé,

La suite $(x_n)_{n\in\mathbb{N}}$ converge vers un minimiseur de f pour tout x_0 réel.

12.a Soient $x, y \in \mathbb{R}$ et $t \in [0; 1]$. La convexité de f conduit à

$$f((1-t)x + ty) \leqslant (1-t)f(x) + tf(y)$$

c'est-à-dire

$$f(x + t(y - x)) \le f(x) + t(f(y) - f(x))$$

Un développement limité de f en x, licite car f est de classe \mathscr{C}^1 , donne

$$f(x) + tf'(x)(y - x) + \underset{t \to 0}{\text{o}}(t) \leqslant f(x) + t(f(y) - f(x))$$

d'où

$$tf'(x)(y-x) \leqslant t(f(y)-f(x)+\underset{t\to 0}{\text{o}}(1))$$

En divisant par t > 0 et en passant à la limite $t \to 0^+$, il vient

$$f'(x)(y-x) \leqslant f(y) - f(x)$$

donc

$$\forall x, y \in \mathbb{R}$$
 $f(y) \geqslant f(x) + f'(x)(y - x)$

On vient de démontrer le résultat classique qu'une fonction convexe dérivable est au-dessus de toutes ses tangentes.

12.b Soient $x, y \in \mathbb{R}$. On trouve en intégrant la dérivée de f que

$$f(y) - f(x) - f'(x)(y - x) = \int_{x}^{y} (f'(t) - f'(x)) dt$$

donc

$$|f(y) - f(x) - f'(x)(y - x)| \le \left| \int_x^y (f'(t) - f'(x)) dt \right|$$

Or, si $x \ge y$, on a grâce à la L-lipschitzianité de f' que

$$\left| \int_{x}^{y} \left(f'(t) - f'(x) \right) dt \right| \leqslant \int_{y}^{x} |f'(t) - f'(x)| dt \leqslant L \int_{y}^{x} |t - x| dt$$

or, si $t \in [y; x]$, alors |t - x| = x - t et donc

$$\int_{y}^{x} |t - x| \, \mathrm{d}t = \int_{y}^{x} (x - t) \, \mathrm{d}t = \left[-\frac{(x - t)^{2}}{2} \right]_{t = y}^{t = x} = \frac{(x - y)^{2}}{2} - 0 = \frac{(x - y)^{2}}{2}$$

d'où

$$\left| \int_{x}^{y} \left(f'(t) - f'(x) \right) dt \right| \leqslant L \frac{(x-y)^{2}}{2}$$

Si $x \leq y$, on obtient de manière similaire que

$$\left| \int_{x}^{y} f'(t) - f'(x) \, dt \right| \le \int_{x}^{y} |f'(t) - f'(x)| \le L \int_{x}^{y} |t - x| \, dt \le L \frac{(x - y)^{2}}{2}$$

La disjonction de cas entre $x\leqslant y$ et $y\leqslant x$ est nécessaire car l'inégalité

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leqslant \int_a^b |f(t)| \, \mathrm{d}t \qquad \text{ où } \qquad f \in \mathscr{C}([\,a\,;b\,])$$

n'est valide que si les bornes sont dans le bon ordre, autrement dit si $a \leq b$. Dans le cas contraire, il faut inverser les bornes dans le membre de droite de l'inégalité.

On a ainsi dans tous les cas

$$f(y) - f(x) - f'(x)(y - x) \leqslant |f(y) - f(x) - f'(x)(y - x)| \leqslant \frac{L}{2}(y - x)^2$$

$$\forall x, y \in \mathbb{R} \qquad f(y) \leqslant f(x) + f'(x)(y - x) + \frac{L}{2}(y - x)^2$$

d'où

12.c Soit $n \in \mathbb{N}$. En appliquant le résultat de la question précédente à $y = x_{n+1}$ et $x = x_n$, il vient

$$f(x_{n+1}) \leq f(x_n) + f'(x_n)(x_{n+1} - x_n) + \frac{L}{2}(x_{n+1} - x_n)^2$$

d'où l'on tire, via la formule de récurrence pour x_{n+1} , que

$$f(x_{n+1}) \leqslant f(x_n) + f'(x_n) \left(-\tau f'(x_n) \right) + \frac{L}{2} \left(\tau f'(x_n) \right)^2$$

$$\leqslant f(x_n) + f'(x_n)^2 \left(\tau^2 \frac{L}{2} - \tau \right)$$

$$f(x_{n+1}) \leqslant f(x_n) - \frac{\tau}{2} (2 - \tau L) |f'(x_n)|^2$$

Puisque $0 < \tau < 2/L$, il est clair que $\tau/2 \cdot (2-\tau L) |f'(x_n)|^2 \ge 0$ et par conséquent que $f(x_{n+1}) \le f(x_n)$. Ainsi,

La suite
$$(f(x_n))_{n\in\mathbb{N}}$$
 est décroissante.

13 Soit $x \in \mathbb{R}$. L'inégalité de la question 12.a appliqué à $y = x_*$ donne

$$f(x_*) \ge f(x) + f'(x)(x_* - x)$$
 d'où $f(x) - f(x_*) \le f'(x)(x - x_*)$

Puisque $f(x_*)$ est le minimum de f,

$$0 \leqslant f(x) - f(x_*) \leqslant (x - x_*)f'(x) \leqslant |(x - x_*)f'(x)|$$

et par suite

$$\forall x \in \mathbb{R}$$
 $0 \leqslant f(x) - f(x_*) \leqslant |x - x_*| |f'(x)|$

14 Soit $n \in \mathbb{N}$ et supposons que $x_0 \neq x_*$. La question 12.c donne

$$f(x_{n+1}) \le f(x_n) - \frac{\tau}{2} (2 - \tau L) |f'(x_n)|^2$$

Remarquons maintenant que f est convexe, de classe \mathscr{C}^1 , f' est L-lipschitzienne, admet un minimiseur x_* et que $0 < \tau < 2/\mathrm{L}$. On peut donc appliquer la question 2.c qui donne que la suite $(|x_n - x_*|)_{n \in \mathbb{N}}$ est décroissante. La question 13 appliquée à x_n conduit ainsi à

$$|f(x_n) - f(x_*)| \le |x_n - x_*||f'(x_n)| \le |x_0 - x_*||f'(x_n)||$$

La condition sur τ donne comme précédemment que $\tau/2 \cdot (2-\tau L) \ge 0$. En combinant le tout et en remarquant que $|x_0 - x_*| \ne 0$ car $x_0 \ne x_*$, on obtient

$$\forall n \in \mathbb{N} \quad \forall x_0 \neq x_* \qquad f(x_{n+1}) \leqslant f(x_n) - \frac{\tau}{2} (2 - \tau L) \frac{|f(x_n) - f(x_*)|^2}{|x_0 - x_*|^2}$$

15 Montrons par récurrence que la propriété

$$\mathscr{P}(n): \quad a_n \leqslant \frac{a_0}{1 + nca_0}$$

est vraie pour tout $n \ge 0$.

• $\mathscr{P}(0)$: L'inégalité est vraie car

$$a_0 \leqslant a_0 = \frac{a_0}{1 + 0 \cdot a_0}$$

• $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: Supposons que la propriété est vraie au rang n et montrons qu'elle est vraie au rang n+1. Si $a_n=0$ ou $ca_n=1$ alors $a_{n+1}=0$ et l'inégalité

$$a_{n+1} \leqslant \frac{a_0}{1 + nca_0}$$

est trivialement vérifiée. Supposons maintenant que $a_n \neq 0$ et $ca_n \neq 1$, il vient alors que $a_{n+1} \neq 0$ ce qui nous garantit que les fractions qui suivent sont bien définies. On a

$$\frac{1}{a_n} + \frac{c}{1 - ca_n} = \frac{1 - ca_n + ca_n}{a_n(1 - ca_n)} = \frac{1}{a_n(1 - ca_n)}$$

Remarquons que la positivité de a_n donne

$$1 - ca_n \leqslant 1$$
 d'où $\frac{c}{1 - ca_n} \geqslant c$

Utilisons maintenant l'hypothèse de récurrence

$$\frac{1}{a_{n+1}} \geqslant \frac{1}{a_n(1-ca_n)} = \frac{1}{a_n} + \frac{c}{1-ca_n} \geqslant \frac{1+nca_0}{a_0} + c = \frac{1+(n+1)ca_0}{a_0}$$
d'où
$$a_{n+1} \leqslant \frac{a_0}{1+(n+1)ca_0}$$

Ainsi, $\mathcal{P}(n+1)$ est vraie.

• Conclusion: $\forall n \geqslant 0 \qquad a_n \leqslant \frac{a_0}{1 + nca_0}$

16 Évacuons dans un premier temps le cas $x_0 = x_*$. Si tel est le cas, la suite $(x_n)_{n \in \mathbb{N}}$ est stationnaire, égale à x_0 , et la suite $(f(x_n))_{n \in \mathbb{N}}$ est également stationnaire égale à $f(x_*)$, elle converge donc vers $f(x_*)$.

Supposons à présent que $x_0 \neq x_*$. Soit $n \in \mathbb{N}$. Il a été montré à la question 14 que

$$f(x_{n+1}) \leqslant f(x_n) - \frac{\tau}{2} (2 - \tau L) \frac{|f(x_n) - f(x_*)|^2}{|x_0 - x_*|^2}$$
$$c = \frac{\tau}{2|x_0 - x_*|^2} (2 - \tau L)$$

Notons

On obtient alors avec les notations de l'énoncé

$$f(x_{n+1}) - f(x_*) \le f(x_n) - f(x_*) - c |f(x_n) - f(x_*)|^2$$

$$a_{n+1} \le a_n - ca_n^2$$

d'où

On a c > 0 par hypothèse sur τ . La suite $(a_n)_{n \in \mathbb{N}}$ est positive car $f(x_*)$ est un minimum de f et on peut donc utiliser la question 15. Par suite, on a pour tout entier naturel k

$$0 \leqslant a_k \leqslant \frac{a_0}{1 + cka_0} \xrightarrow[k \to +\infty]{} 0$$

Le théorème d'encadrement permet de conclure que $(a_n)_{n\in\mathbb{N}}$ converge vers 0. Ainsi,

$$f(x_n) \xrightarrow[n \to +\infty]{} f(x_*)$$

17 Soit $n \in \mathbb{N}^*$. Rappelons que l'inégalité de la question 12.c donne pour tout $i \in \mathbb{N}$

$$f(x_{i+1}) \le f(x_i) - \frac{\tau}{2} (2 - \tau L) |f'(x_i)|^2$$

d'où

$$\frac{\tau}{2}(2 - \tau L) |f'(x_i)|^2 \le f(x_i) - f(x_{i+1})$$

En sommant ces inégalités pour i variant entre 0 et n-1, il vient

$$\sum_{i=0}^{n-1} \frac{\tau}{2} (2 - \tau L) |f'(x_i)|^2 \le \sum_{i=0}^{n-1} (f(x_i) - f(x_{i+1}))$$

En reconnaissant une suite télescopique, on a alors

$$\forall n \in \mathbb{N}^*$$
 $\frac{\tau}{2} (2 - \tau L) \sum_{i=0}^{n-1} |f'(x_i)|^2 \leqslant f(x_0) - f(x_n)$

On a de plus que $f(x_*) \leq f(x_n)$ par définition du minimum. Par conséquent

$$\sum_{i=0}^{n-1} |f'(x_i)|^2 \leqslant \frac{2}{\tau(2-\tau L)} (f(x_0) - f(x_*))$$

Les sommes partielles de la série à termes positifs $\sum |f'(x_k)|^2$ sont ainsi majorées par une constante indépendante de n, si bien que la série converge. Son terme général converge donc vers 0, autrement dit

$$f'(x_k) \xrightarrow[k \to +\infty]{} 0$$

18.a On réutilise la question 2.c qui stipule que la suite $(|x_n - x_*|)_{n \in \mathbb{N}}$ est décroissante. Soit $n \in \mathbb{N}$. On a alors que

$$|x_n| = |x_n - x_* + x_*| \le |x_n - x_*| + |x_*| \le |x_0 - x_*| + |x_*|$$

et la suite $(x_n)_{n\in\mathbb{N}}$ est par conséquent bornée. Le théorème de Bolzano-Weierstrass permet de conclure que

La suite $(x_n)_{n\in\mathbb{N}}$ admet une sous-suite convergente.

18.b Il a été vu aux deux questions précédentes que $f'(x_n)$ tend vers 0 et $x_{\varphi(n)}$ tend vers x_{**} . La suite $(f'(x_{\varphi(n)}))_{n\in\mathbb{N}}$ est donc une suite extraite de $(f'(x_n))_{n\in\mathbb{N}}$ de sorte qu'elle converge également vers 0. La continuité de f' implique quant à elle que cette suite converge vers $f'(x_{**})$ puisque $x_{\varphi(n)}$ tend vers x_{**} . Par unicité de la limite,

$$f'(x_{**}) = 0$$

18.c Appliquons la question 13 à x_{**} . Comme on vient de montrer que $f'(x_{**}) = 0$,

$$0 \leqslant f(x_{**}) - f(x_*) \leqslant |x_{**} - x_*||f'(x_{**})| = 0$$

par conséquent $f(x_{**}) = f(x_*)$ est un minimum de f et

Le réel
$$x_{**}$$
 est un minimiseur de f .

D'après la question 2.c appliquée à la suite $(x_n)_{n\in\mathbb{N}}$ et au minimiseur x_{**} , on obtient que la suite $(|x_n-x_{**}|)_{n\in\mathbb{N}}$ est décroissante et positive. Elle admet donc une limite ℓ positive. Or la sous-suite $(|x_{\varphi(n)}-x_{**}|)_{n\in\mathbb{N}}$ converge vers 0 puisque $x_{\varphi(n)}$ tend vers x_{**} et la limite ℓ est par conséquent nulle. Ainsi,

$$|x_n - x_{**}| \xrightarrow[n \to +\infty]{} 0$$

IV. Descente de gradient proximale

19 La fonction F_{x_0} vérifie pour tout x réel que

$$F_{x_0}(x) \geqslant \frac{1}{2}|x - x_0|^2 + \tau f(x_*)$$

et tend ainsi vers $+\infty$ en $-\infty$ et $+\infty$. Elle est de plus continue comme somme de deux fonctions continues. La question 1.b nous garantit donc l'existence d'un minimiseur pour F_{x_0} sur \mathbb{R} .

Montrons la remarque de l'énoncé. Soient x_1 et x_2 deux réels distincts et notons $a = x_1 - x_0$ et $b = x_2 - x_0$. On a

$$\left| \frac{1}{2}(x_1 + x_2) - x_0 \right|^2 = \frac{1}{4}(a+b)^2 = \frac{1}{4}a^2 + \frac{1}{4}b^2 + \frac{1}{2}ab$$

On a 0 < $(a-b)^2=a^2+b^2-2ab$ car a et b sont distincts. On trouve ainsi que $2ab < a^2+b^2$, d'où

$$\left|\frac{1}{2}(x_1+x_2)-x_0\right|^2<\frac{1}{2}a^2+\frac{1}{2}b^2$$

Autrement di
$$2 \left| \frac{1}{2}(x_1 + x_2) - x_0 \right|^2 < \frac{1}{2}|x_1 - x_0|^2 + \frac{1}{2}|x_2 - x_0|^2$$

Soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ deux minimiseurs de F_{x_0} . Supposons que $x_1 \neq x_2$. La convexité de f et la remarque de l'énoncé conduisent à

$$F_{x_0}\left(\frac{1}{2}(x_1+x_2)\right) = \frac{1}{2}\left|\frac{1}{2}(x_1+x_2) - x_0\right|^2 + \tau f\left(\frac{1}{2}(x_1+x_2)\right)$$

$$\leq \frac{1}{2}\left|\frac{1}{2}(x_1+x_2) - x_0\right|^2 + \frac{\tau}{2}\left(f(x_1) + f(x_2)\right)$$

$$< \frac{1}{4}|x_1 - x_0|^2 + \frac{1}{4}|x_1 - x_0|^2 + \frac{\tau}{2}\left(f(x_1) + f(x_2)\right)$$

$$< \frac{1}{2}\left(F_{x_0}(x_1) + F_{x_0}(x_2)\right)$$

$$F_{x_0}\left(\frac{1}{2}(x_1+x_2)\right) < F_{x_0}(x_1)$$

ce qui est absurde car x_1 est un minimiseur de \mathbf{F}_{x_0} . On en conclut que $x_1=x_2$ et finalement que

La fonction \mathcal{F}_{x_0} admet un unique minimiseur sur \mathbb{R} .

La propriété garantissant l'unicité du minimiseur est la stricte convexité de la fonction convexe $x\mapsto |x-x_0|^2/2$. Soit $g\in\mathscr{C}(\mathbb{R})$ une fonction continue. Cette fonction est strictement convexe si elle est convexe et que

$$\forall x \neq y \in \mathbb{R} \quad \forall t \in]0;1[\qquad q((1-t)x+ty) < (1-t)q(x)+tq(y)$$

La fonction f n'est pas nécessairement strictement convexe mais la fonction \mathcal{F}_{x_0} l'est car la somme d'une fonction convexe et d'une fonction strictement convexe est strictement convexe.

20 Supposons que x_0 est un minimiseur de f. On a pour tout $x \in \mathbb{R}$ que

$$F_{x_0}(x) = \frac{1}{2}|x - x_0|^2 + \tau f(x) \ge \tau f(x) \ge \tau f(x_0)$$

or $F_{x_0}(x_0) = \tau f(x_0)$ et x_0 est par conséquent un minimiseur de F_{x_0} . L'unicité du minimiseur de F_{x_0} , démontrée à la question précédente, permet de conclure que $x_0 = p_f(x_0)$.

Supposons que $x_0 = p_f(x_0)$. Soit $t \in]0;1]$. Puisque x_0 est un minimiseur de F_{x_0} , on obtient

$$\tau f(x_0) = \mathcal{F}_{x_0}(x_0)
\leqslant \mathcal{F}_{x_0}((1-t)x_0 + tx_*)
\tau f(x_0) \leqslant \frac{1}{2} |(1-t)x_0 + tx_* - x_0|^2 + \tau f((1-t)x_0 + tx_*)$$

La convexité de f et l'égalité $(1-t)x_0 + tx_* - x_0 = t(x_* - x_0)$ impliquent alors que

$$\tau f(x_0) \leqslant \frac{t^2}{2} |x_* - x_0|^2 + \tau \left((1 - t) f(x_0) + t f(x_*) \right)$$
$$0 \leqslant t \tau \left(f(x_*) - f(x_0) + \frac{t}{2\tau} |x_* - x_0|^2 \right)$$

Par suite

en réorganisant les termes. On divise par $\tau t > 0$ pour obtenir

$$0\leqslant f(x_*)-f(x_0)+\frac{t}{2\tau}|x_*-x_0|^2$$
c'est-à-dire
$$f(x_0)\leqslant f(x_*)+\frac{t}{2\tau}|x_*-x_0|^2$$
d'où
$$f(x_0)\leqslant f(x_*)$$
en prenant $t\to 0^+$

On en déduit que $f(x_0) = f(x_*)$ car $f(x_*)$ est un minimum de f. Par conséquent, x_0 est un minimiseur de f. En résumé,

Le réel x_0 est un minimiseur de f si et seulement si $p_f(x_0) = x_0$.

21 La fonction F_{x_0} est de classe \mathscr{C}^1 car f l'est et $x \mapsto |x - x_0|^2/2$ est de classe \mathscr{C}^{∞} sur \mathbb{R} . Puisque x_1 est un minimiseur de F_{x_0} d'après la question 19, il vérifie

$$F_{x_0}'(x_1) = 0$$
 c'est-à-dire $0 = (x_1 - x_0) + \tau f'(x_1)$

Par conséquent,

$$x_1 = x_0 - \tau f'(x_1)$$

22.a Soient $x_0, x \in \mathbb{R}$. On a

$$F_{-x_0}(-x) = \frac{1}{2}|-x + x_0|^2 + \tau|-x| = \frac{1}{2}|x - x_0|^2 + \tau|x| = F_{x_0}(x)$$

d'où
$$\mathbf{F}_{-x_0} \left(- p_f(x_0) \right) = \mathbf{F}_{x_0} \left(p_f(x_0) \right) \leqslant \mathbf{F}_{x_0} (-x) = \mathbf{F}_{-x_0} (x)$$

Par unicité du minimiseur $p_f(-x_0)$ démontrée à la question 19, on obtient que

$$\forall x_0 \in \mathbb{R} \qquad p_f(-x_0) = -p_f(x_0)$$

Il suffit donc de traiter le cas $x_0 \ge 0$. La fonction F_{x_0} est décroissante sur $]-\infty;0]$ comme somme de deux fonctions décroissantes $x \mapsto |x-x_0|^2/2$ et $x \mapsto \tau |x|$. Puisque ces deux fonctions sont croissantes sur $[x_0; +\infty[$, la fonction F_{x_0} est croissante sur cet intervalle. On en déduit que son minimiseur $p_f(x_0)$ est compris entre 0 et x_0 . Cela implique en particulier que $p_f(0) = 0$.

Supposons par conséquent que $x_0 > 0$. La fonction valeur absolue est dérivable sur l'ouvert $]0; +\infty[$ et la fonction F_{x_0} l'est donc également et on trouve

$$\forall x \in]0; +\infty[$$
 $F_{x_0}'(x) = x - x_0 + \tau = x - (x_0 - \tau)$

Distinguons maintenant deux cas:

1. Si $x_0 \leq \tau$, alors $F_{x_0}'(x)$ est positif pour tout $x \in]0$; $+\infty$ [. La fonction F_{x_0} est donc croissante sur]0; $+\infty$ [. En résumé, F_{x_0} est décroissante sur $]-\infty$; 0] et croissante sur [0; $+\infty$ [et son minimiseur est donc 0. On obtient $p_f(x_0) = 0$.

x	$-\infty$		()		$+\infty$		
$F_{x_0}'(x)$		_			+			
	$+\infty$					$+\infty$		
$F_{x_0}(x)$		\searrow			7			
		$F_{x_0}(0)$						

2. Si $x_0 > \tau$, alors $F'_{x_0}(x)$ est négatif pour tout $x \in]0$; $x_0 - \tau[$, s'annule en $x_0 - \tau$ et est positif pour tout $x \in [x_0 - \tau; +\infty[$. On en déduit que F_{x_0} est décroissante sur $]-\infty; x_0 - \tau]$ et croissante sur $[x_0 - \tau; +\infty[$ et son minimiseur est donc $x_0 - \tau$. On obtient donc $p_f(x_0) = x_0 - \tau$.

x	$-\infty$		0	$x_0 - \tau$		$+\infty$
$F_{x_0}'(x)$		_	-	0	+	
	$+\infty$					$+\infty$
$F_{x_0}(x)$		\	\nearrow		\nearrow	
				$F_{x_0}(x_0-\tau)$		

Il n'y a pas de saut en 0 pour la fonction F_{x_0} car celle-ci est continue en tant que somme de deux fonctions continues. Par imparité de p_f , on a si $x_0 \in [-\tau;\tau]$ que $p_f(x_0) = 0$ et si $x \leqslant -\tau$ que

$$p_f(x_0) = -p_f(-x_0) = -(-x_0 - \tau) = x_0 + \tau$$

En résumé,

$$\forall x \in \mathbb{R} \qquad p_f(x) = \begin{cases} x - \tau & \text{si } x \geqslant \tau \\ x + \tau & \text{si } x \leqslant -\tau \\ 0 & \text{sinon} \end{cases}$$

22.b Soit $\tau > 0$. Montrons par récurrence que la propriété

$$\mathscr{P}(n): \quad \text{si } x_0 \in \left[\, -(n+1)\tau \, ; -n\tau \, \right] \cup \left[\, n\tau \, ; (n+1)\tau \, \right] \text{ alors } x_{n+1} = 0$$

est vraie pour tout $n \ge 0$.

- $\underline{\mathscr{P}(0)}$: On a $[-(0+1)\tau; -0\cdot\tau] \cup [0\cdot\tau; (0+1)\tau] = [-\tau;\tau]$. On déduit alors de la question précédente que $x_1 = p_f(x_0) = 0$.
- $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: Supposons que la propriété est vraie au rang n et montrons qu'elle est vraie au rang n+1. Si $x_0 \in [-(n+2)\tau; -(n+1)\tau]$, alors on a $x_0 \leqslant -\tau$ et donc $p_f(x_0) = x_0 + \tau$. Ainsi $p_f(x_0) \in [-(n+1)\tau; -n\tau]$ et l'hypothèse de récurrence appliquée à $p_f(x_0)$ permet de conclure qu'après n+1 itérations la suite partant de $p_f(x_0)$ atteint 0. Puisque $p_f(x_0) = x_1$, la suite partant de x_0 atteint 0 après n+2 itérations, autrement dit $x_{n+2} = 0$. Le cas où $x_0 \in [(n+1)\tau; (n+2)\tau]$, pour lequel on a $x_0 \geqslant \tau$ et donc $p_f(x_0) = x_0 \tau$, se traite de manière similaire. Ainsi, $\mathscr{P}(n+1)$ est vraie.
- Conclusion $\forall n \ge 0 \quad x_0 \in [-(n+1)\tau; -n\tau] \cup [n\tau; (n+1)\tau] \Longrightarrow x_{n+1} = 0$

Supposons que $x_0 \ge 0$. Notons $k = \lfloor x_0/\tau \rfloor$ de sorte que $x_0 \in [k\tau; (k+1)\tau]$. La propriété montrée précédemment implique que $x_{k+1} = 0$ et donc que $x_n = 0$ pour tout $n \ge k+1$ puisque $p_f(0) = 0$. La suite $(x_n)_{n \in \mathbb{N}}$ stationne donc à partir d'un certain rang en 0 et converge ainsi vers 0. Le cas $x_0 \le 0$ se traite de manière analogue. En conclusion,

$$\boxed{\forall x_0 \in \mathbb{R} \quad \forall \tau > 0 \qquad x_n \xrightarrow[n \to +\infty]{} 0}$$

23 Soit $n \in \mathbb{N}$. Puisque $x_{n+1} = p_f(x_n)$ est l'unique minimiseur de F_{x_n} , on a

$$F_{x_n}(x_{n+1}) \leqslant F_{x_n}(x_n)$$

c'est-à-dire
$$\frac{1}{2}|x_{n+1} - x_n|^2 + \tau f(x_{n+1}) \le \tau f(x_n)$$

En particulier, pour n = 0, on trouve que

$$\frac{1}{2}|x_1 - x_0|^2 + \tau f(x_1) \leqslant \tau f(x_0)$$

Soient $N > M \ge 0$ deux entiers. L'inégalité ci-dessus se réécrit

$$\frac{1}{2}|x_n - x_{n-1}|^2 \leqslant \tau \big(f(x_{n-1}) - f(x_n) \big)$$

En sommant ces inégalités pour n variant entre $\mathcal{M}+1$ et $\mathcal{N},$ il vient

$$\sum_{n=M+1}^{N} \frac{1}{2} |x_n - x_{n-1}|^2 \leqslant \sum_{n=M+1}^{N} \tau (f(x_{n-1}) - f(x_n))$$

En reconnaissant une somme télescopique, on obtient

$$\boxed{\frac{1}{2} \sum_{n=M+1}^{N} |x_n - x_{n-1}|^2 \leqslant \tau (f(x_M) - f(x_N))}$$

Fixons M=0 dans l'inégalité ci-dessus pour obtenir

$$\frac{1}{2} \sum_{n=1}^{N} |x_n - x_{n-1}|^2 \le \tau (f(x_0) - f(x_N))$$

puis

$$\frac{1}{2} \sum_{n=0}^{N-1} |x_{n+1} - x_n|^2 \leqslant \tau (f(x_0) - f(x_*))$$

via un changement d'indice et car $-f(x_N) \leq -f(x_*)$ pour tout $N \in \mathbb{N}$. Les sommes partielles de la série à termes positifs $\sum |x_{n+1} - x_n|^2$ sont donc majorées uniformément, si bien que la série converge et son terme général tend par conséquent vers 0. Par conséquent,

$$\boxed{|x_{n+1} - x_n| \xrightarrow[n \to +\infty]{} 0}$$

24 Soient N > M $\geqslant 0$ deux entiers. L'inégalité triangulaire et l'inégalité de Cauchy-Schwarz donnent

$$|x_{N} - x_{M}| = \left| \sum_{k=M}^{N-1} (x_{k+1} - x_{k}) \right|$$

$$\leqslant \sum_{k=M}^{N-1} |x_{k+1} - x_{k}| \cdot 1$$

$$\leqslant \sqrt{\sum_{k=M}^{N-1} |x_{k+1} - x_{k}|^{2}} \sqrt{\sum_{k=M}^{N-1} 1^{2}} \qquad \text{(Cauchy-Schwarz)}$$

$$|x_{N} - x_{M}| \leqslant \sqrt{\sum_{k=M+1}^{N} |x_{k} - x_{k-1}|^{2}} \sqrt{N - M}$$

L'inégalité de la question précédente implique que

$$|x_{\rm N} - x_{\rm M}| \le \sqrt{2\tau (f(x_{\rm M}) - f(x_{\rm N}))} \sqrt{N - M} = \sqrt{2\tau |N - M|} \sqrt{|f(x_{\rm M}) - f(x_{\rm N})|}$$

L'inégalité ainsi écrite est symétrique en N et M. On en déduit qu'elle est encore valable si $M > N \ge 0$. Le cas N = M est évidemment vrai. En conclusion,

$$\forall N, M \in \mathbb{N}$$
 $|x_N - x_M| \leq \sqrt{2\tau |N - M|} \sqrt{|f(x_M) - f(x_N)|}$

25 Soient $x, v, t \in \mathbb{R}$. Puisque $\widetilde{x} = p_f(x)$ est l'unique minimiseur de F_x , on obtient $F_x(\widetilde{x}) \leqslant F_x(\widetilde{x} + tv)$, c'est-à-dire

$$\forall x, v, t \in \mathbb{R} \qquad \frac{1}{2} |\widetilde{x} - x|^2 + \tau f(\widetilde{x}) \leqslant \tau f(\widetilde{x} + tv) + \frac{1}{2} |\widetilde{x} + tv - x|^2$$

Soit $y \in \mathbb{R}$. L'inégalité ci-dessus appliquée à y, v et -t donne

$$\frac{1}{2}|\widetilde{y}-y|^2+\tau f(\widetilde{y})\leqslant \tau f(\widetilde{y}-tv)+\frac{1}{2}|\widetilde{y}-tv-y|^2$$

Sommons les deux inégalités pour obtenir

$$\begin{split} \frac{1}{2}|\widetilde{x}-x|^2 + \tau f(\widetilde{x}) + \frac{1}{2}|\widetilde{y}-y|^2 + \tau f(\widetilde{y}) &\leqslant \tau f(\widetilde{x}+tv) + \frac{1}{2}|\widetilde{x}+tv-x|^2 \\ + \tau f(\widetilde{y}-tv) + \frac{1}{2}|\widetilde{y}-tv-y|^2 \end{split}$$

En multipliant par 2 et en réorganisant les termes, on obtient

$$2\tau \left(f(\widetilde{x}) + f(\widetilde{y}) - f(\widetilde{x} + tv) - f(\widetilde{y} - tv) \right) \leqslant |\widetilde{x} + tv - x|^2 + |\widetilde{y} - tv - y|^2 - |\widetilde{x} - x|^2 - |\widetilde{y} - y|^2$$

26 Notons I(x, y, t, v) le membre de droite de l'inégalité précédente. Il est égal à

$$\begin{split} \mathbf{I}(x,y,t,v) &= |\widetilde{x} + tv - x|^2 + |\widetilde{y} - tv - y|^2 - |\widetilde{x} - x|^2 - |\widetilde{y} - y|^2 \\ &= \left((\widetilde{x} - x) + tv \right)^2 + \left((\widetilde{y} - y) - tv \right)^2 - (\widetilde{x} - x)^2 - (\widetilde{y} - y)^2 \\ &= (\widetilde{x} - x)^2 + 2tv(\widetilde{x} - x) + t^2v^2 \\ &\quad + (\widetilde{y} - y)^2 - 2tv(\widetilde{y} - y) + t^2v^2 - (\widetilde{x} - x)^2 - (\widetilde{y} - y)^2 \\ &= 2tv(\widetilde{x} - x) - 2tv(\widetilde{y} - y) + 2t^2v^2 \end{split}$$

Ainsi,
$$I(x, y, t, v) = 2tv(\widetilde{x} - x + y - \widetilde{y}) + \underset{t \to 0}{\text{o}}(t)$$

Le terme de droite de l'inégalité (6) admet pour développement limité $2tv(\widetilde{x}-x+y-\widetilde{y})+\mathop{\mathrm{o}}_{t\to 0}(t)$ quand t tend vers 0.

27 Soit $t \in [0;1]$. Si l'on fixe $v = \tilde{y} - \tilde{x}$, le membre de gauche de l'inégalité (6), que l'on note J, devient

$$J = 2\tau \Big(f(\widetilde{x}) + f(\widetilde{y}) - f(\widetilde{x} + t(\widetilde{y} - \widetilde{x})) - f(\widetilde{y} - t(\widetilde{y} - \widetilde{x})) \Big)$$

$$= 2\tau \Big((1 - t + t)f(\widetilde{x}) + (1 - t + t)f(\widetilde{y}) - f((1 - t)\widetilde{x} + t\widetilde{y}) - f((1 - t)\widetilde{y} + t\widetilde{x}) \Big)$$

$$J = 2\tau \Big((1 - t)f(\widetilde{x}) + tf(\widetilde{y}) - f((1 - t)\widetilde{x} + t\widetilde{y}) \Big)$$

$$+2\tau \Big((1 - t)f(\widetilde{y}) + tf(\widetilde{x}) - f((1 - t)\widetilde{y} + t\widetilde{x}) \Big)$$

On constate que $J \ge 0$ par convexité de f. Ainsi,

Le membre de gauche de (6) est positif pour tout $t \in [0;1]$.

On a alors pour $t \in]0;1]$ d'après la question précédente que

$$0 \leqslant 2t(\widetilde{y} - \widetilde{x})(\widetilde{x} - x + y - \widetilde{y}) + \underset{t \to 0}{\text{o}}(t)$$

En divisant par t > 0 et en faisant tendre t vers 0, on trouve que

$$0 \leqslant (\widetilde{y} - \widetilde{x})(\widetilde{x} - x + y - \widetilde{y})$$
$$0 \leqslant (\widetilde{y} - \widetilde{x})(\widetilde{x} - \widetilde{y}) + (\widetilde{y} - \widetilde{x})(y - x)$$
$$|\widetilde{x} - \widetilde{y}|^2 \leqslant (x - y)(\widetilde{x} - \widetilde{y})$$

d'où

28 Soient $x, y \in \mathbb{R}$. L'inégalité est évidemment vraie si $p_f(x) = p_f(y)$. Supposons donc maintenant que $p_f(x) \neq p_f(y)$. D'après la question précédente,

$$|p_f(x) - p_f(y)|^2 \le (x - y) (p_f(x) - p_f(y))$$

$$|p_f(x) - p_f(y)|^2 \le |x - y| |p_f(x) - p_f(y)|$$

$$\forall x, y \in \mathbb{R} \qquad |p_f(x) - p_f(y)| \le |x - y|$$

Soit $n \in \mathbb{N}$. Le point x_* est un minimiseur de f, donc $p_f(x_*) = x_*$ d'après la question 20. Cette remarque et le caractère 1-lipschitzien de p_f démontré ci-dessus conduisent à

$$|x_{n+1} - x_*| = |p_f(x_n) - p_f(x_*)| \le |x_n - x_*|$$

Autrement dit,

La suite
$$(|x_n - x_*|)_{n \in \mathbb{N}}$$
 est décroissante.

29 D'après la question 23, $|x_{n+1} - x_n|$ tend vers 0 quand n tend vers l'infini. En particulier,

$$|x_{\varphi(n)+1} - x_{**}| \le |x_{\varphi(n)+1} - x_{\varphi(n)}| + |x_{\varphi(n)} - x_{**}| \xrightarrow[n \to +\infty]{} 0$$

Ainsi,

$$x_{\varphi(n)+1} \xrightarrow[n \to +\infty]{} x_{**}$$

Puisque p_f est lipschitzienne, elle est également continue. Il vient alors que

$$x_{\varphi(n)+1} = p_f(x_{\varphi(n)}) \xrightarrow[n \to +\infty]{} p_f(x_{**})$$

et l'unicité de la limite permet de déduire que

$$p_f(x_{**}) = x_{**}$$

30 Sachant que $p_f(x_{**}) = x_{**}$ d'après la question précédente, la question 20 permet de déduire que

Le réel
$$x_{**}$$
 est un minimiseur de f .

La suite $(|x_n-x_{**}|)_{n\in\mathbb{N}}$ est par conséquent décroissante par le même raisonnement qu'à la question 28, ce dernier nécessitant juste que x_{**} soit un minimiseur de f. Comme cette suite est également positive, elle admet une limite $\ell \geqslant 0$ en tant que suite décroissante minorée. Or $|x_{\varphi(n)} - x_{**}|$ tend vers 0, par conséquent $\ell = 0$ par unicité de la limite. En conclusion,

$$x_n \xrightarrow[n \to +\infty]{} x_{**}$$

V. Optimisation sur la boule unité

31 La boule unité fermée est une partie fermée et bornée de \mathbb{R}^d . D'après le théorème des bornes atteintes, la fonction continue f y atteint ses bornes. Autrement dit,

La fonction f admet un minimiseur sur C.

[32] La boule ouverte $\mathring{\mathbf{C}} = \{x \in \mathbb{R}^d | ||x|| < 1\}$ de rayon 1 est un ouvert. Par hypothèse, la fonction f de classe \mathscr{C}^1 y atteint son minimum $f(x_*)$ en x_* . Le point x_* est ainsi un point critique de f. Par conséquent,

$$\nabla f(x_*) = 0$$

33.a Soient $x \neq y \in \mathbb{R}^d$ deux vecteurs distincts de norme 1. Notons v = x - y. On a alors

$$\langle x, v \rangle = \langle x, x \rangle - \langle x, y \rangle = ||x||^2 - \langle x, y \rangle = ||x|| ||y|| - \langle x, y \rangle \geqslant 0$$

d'après l'inégalité de Cauchy-Schwarz. Supposons par l'absurde qu'on est dans le cas d'égalité de Cauchy-Schwarz. Cela implique que x et y sont colinéaires, autrement dit qu'il existe $\gamma \in \mathbb{R}$ tel que $x = \gamma y$. On aurait alors

$$0 \leqslant ||x|| ||y|| = \langle x, y \rangle = \gamma \langle y, y \rangle = \gamma ||y||^2$$

d'où $\gamma = 1$ car ||x|| = ||y|| = 1. Cela signifie que x = y, ce qui est absurde. On a donc montré que $\langle x, y \rangle > 0$. Le cas de $\langle y, y \rangle$ se traite de manière similaire. En conclusion,

$$\label{eq:continuous_equation} \boxed{\langle x\,,\,v\rangle > 0 \qquad \text{et} \qquad \langle y\,,\,v\rangle < 0}$$

[33.b] Supposons par l'absurde que pour tout réel $\lambda \geq 0$, on a $\nabla f(x_*) \neq -\lambda x_*$. Ceci implique que

$$\nabla f(x_*) \neq 0$$
 et $\frac{\nabla f(x_*)}{\|\nabla f(x_*)\|} \neq -x_*$

On peut donc appliquer la question précédente à $x = \nabla f(x_*)/\|\nabla f(x_*)\|$ et $y = -x_*$ ce qui donne un vecteur

$$v = \frac{\nabla f(x_*)}{\|\nabla f(x_*)\|} + x_* \quad \text{tel que} \quad \left\langle \frac{\nabla f(x_*)}{\|\nabla f(x_*)\|}, v \right\rangle > 0 \quad \text{et} \quad \left\langle -x_*, v \right\rangle < 0$$
d'où
$$\boxed{\exists v \in \mathbb{R}^d \quad \left\langle v, \nabla f(x_*) \right\rangle > 0 \quad \text{et} \quad \left\langle v, x_* \right\rangle > 0}$$

Soit $t \geqslant 0$ un réel positif. On a d'un côté

$$||x_* - tv||^2 = ||x_*||^2 - 2\langle x_*, tv \rangle + ||tv||^2$$

$$= 1 - 2\langle x_*, v \rangle t + t^2 ||v||^2$$

$$= 1 - 2\langle x_*, v \rangle t + t\varepsilon_1(t) \quad \text{où} \quad \varepsilon_1(t) \xrightarrow[t \to 0]{} 0$$

$$||x_* - tv||^2 = 1 - t(2\langle x_*, v \rangle - \varepsilon_1(t))$$

D'un autre côté, un développement limité en x_* de la fonction f de classe \mathscr{C}^1 donne

$$f(x_* - tv) = f(x_*) + \langle \nabla f(x_*), -tv \rangle + t\varepsilon_2(t) \quad \text{où} \quad \varepsilon_2(t) \xrightarrow[t \to 0]{} 0$$
$$= f(x_*) - t(\langle \nabla f(x_*), v \rangle + \varepsilon_2(t))$$

On peut donc trouver $\tilde{t} > 0$ tel que

$$\langle x_*, v \rangle - \varepsilon_1(\widetilde{t}) > 0$$
 et $\langle \nabla f(x_*), v \rangle + \varepsilon_2(\widetilde{t}) > 0$

car $\langle x_*, v \rangle > 0$ et $\langle \nabla f(x_*), v \rangle > 0$. On a alors

$$||x_* - \widetilde{t}v||^2 = 1 - \widetilde{t}(2\langle x_*, v \rangle - \varepsilon_1(\widetilde{t})) < 1$$

et
$$f(x_* - \widetilde{t}v) = f(x_*) - \widetilde{t}(\langle \nabla f(x_*), v \rangle + \varepsilon_2(\widetilde{t})) < f(x_*)$$

si bien que $x_* - \tilde{t}v$ appartient à C et que $f(x_* - \tilde{t}v) < f(x_*)$. Ceci est absurde car $f(x_*)$ est le minimum de f sur C. Par conséquent,

$$\exists \lambda \geqslant 0 \qquad \nabla f(x_*) = -\lambda x_*$$

Un minimiseur x_* n'est plus en général un point critique car on ne minimise plus sur un ouvert mais sous la contrainte fermée $||x|| \le 1$. Quand on sature cette contrainte, c'est-à-dire si $||x_*|| = 1$, on ne peut plus se déplacer infinitésimalement dans toutes les directions autour de x_* et cela empêche de conclure que $\nabla f(x_*) = 0$.

34 Soient $x, h \in \mathbb{R}^d$. Grâce à la bilinéarité du produit scalaire,

$$f(x+h) = -\frac{1}{2}\langle x+h, M(x+h)\rangle$$
$$= -\frac{1}{2}\langle x, Mx\rangle - \frac{1}{2}\langle h, Mx\rangle - \frac{1}{2}\langle x, Mh\rangle - \frac{1}{2}\langle h, Mh\rangle$$

La symétrie de M donne alors

$$f(x+h) = f(x) - \frac{1}{2}\langle h, Mx \rangle - \frac{1}{2}\langle Mx, h \rangle - \frac{1}{2}\langle h, Mh \rangle$$
$$= f(x) - \langle Mx, h \rangle - \frac{1}{2}\langle h, Mh \rangle$$
$$f(x+h) = f(x) - \langle Mx, h \rangle + \underset{h \to 0}{\text{o}}(\|h\|)$$

car $|\langle h, Mh \rangle| \leq ||h|| ||Mh||$ par Cauchy-Schwarz et ||Mh|| tend vers 0 quand h tend vers 0 par continuité des applications linéaires en dimension finie. L'application

$$h \mapsto -\langle Mx, h \rangle$$

étant linéaire, on en déduit que f est différentiable en x, de différentielle

$$df(x): h \mapsto \langle -Mx, h \rangle$$

On en déduit, en identifiant le gradient de f en x, que

$$\nabla f(x) = -\mathbf{M}x$$

35 L'application $x \mapsto -Mx$ est linéaire en dimension finie donc continue. Par suite, la fonction f est de classe \mathscr{C}^1 sur \mathbb{R}^d . Elle admet ainsi au moins un minimiseur x_* sur C d'après la question 31. On va montrer que le minimum de f est strictement négatif, puis que ses minimiseurs sont des vecteurs propres de M associés à sa valeur propre maximale et inclus dans la sphère unité.

La matrice M étant symétrique réelle, elle est donc diagonalisable en base orthonormée d'après le théorème spectral. Notons $(e_i)_{i\in \llbracket 1\,;\,d\rrbracket}$ une telle base de vecteurs propres et $(\lambda_i)_{i\in \llbracket 1\,;\,d\rrbracket}$ les valeurs propres associées. Soit $i\in \llbracket 1\,;d\rrbracket$. La condition

$$\forall x \in \mathbb{R}^d \qquad \langle x \,,\, \mathbf{M} x \rangle \geqslant 0$$

donne, lorsqu'elle est appliquée en e_i , que

$$0 \leqslant \langle e_i, Me_i \rangle = \langle e_i, \lambda e_i \rangle = \lambda_i \langle e_i, e_i \rangle = \lambda_i ||e_i||^2 = \lambda_i$$

Les valeurs propres de M sont donc toutes positives. La matrice M étant non nulle et diagonalisable, elle possède par conséquent une valeur propre non nulle. Quitte à renuméroter, supposons que $\lambda_1>0$. On a alors

$$f(e_1) = -\frac{1}{2} \langle e_1, Me_1 \rangle = -\frac{\lambda_1}{2} ||e_1||^2 = -\frac{\lambda_1}{2} \langle e_1, Me_1 \rangle$$

et le minimum de f sur C est donc strictement négatif.

Soit x_* un minimiseur de f sur C. Supposons que $\|x_*\| < 1$. La question 32 implique alors que

$$0 = \nabla f(x_*) = -Mx_*$$
 d'où $f(x_*) = \frac{1}{2} \langle x_*, 0 \rangle = 0$

Ceci est en contradiction avec le fait que le minimum de f sur C est strictement négatif. Les minimiseurs de f sont donc tous de norme 1. On tire alors de la question 33 qu'il existe $\lambda \geqslant 0$ tel que

$$\nabla f(x_*) = -\lambda x_*$$
 d'où $-Mx_* = -\lambda x_*$ donc $Mx_* = \lambda x_*$

Autrement dit, x_* est un vecteur propre de M associé à la valeur λ et donc

$$f(x_*) = -\frac{1}{2} \langle x_*, Mx_* \rangle = -\frac{\lambda}{2} ||x_*||^2 = -\frac{\lambda}{2}$$

Il est alors clair que λ doit être la plus grande valeur propre de M. En effet, s'il existait $\lambda' > \lambda$ une valeur propre de M avec z un vecteur propre de norme 1 associé, on aurait

$$f(z) = -\frac{\lambda'}{2} < -\frac{\lambda}{2} = f(x_*)$$

ce qui serait absurde. En résumé,

L'ensemble des minimiseurs de f est l'ensemble des vecteurs propres de M de norme 1 associés à la plus grande valeur propre de M.

36.a Soit $x \in \mathbb{R}^d$ tel que $||x|| \ge 1$. Montrons qu'alors $||x - \tau \nabla f(x)|| \ge 1$. On a

$$||x - \tau \nabla f(x)||^2 = ||x||^2 + \tau^2 ||\nabla f(x)||^2 - 2\tau \langle x, \nabla f(x) \rangle$$
$$= ||x||^2 + \tau^2 ||-Mx||^2 - 2\tau \langle x, -Mx \rangle$$
$$||x - \tau \nabla f(x)||^2 = ||x||^2 + \tau^2 ||Mx||^2 + 2\tau \langle x, Mx \rangle$$

Or $\langle x , Mx \rangle \ge 0$ par hypothèse sur M et on en déduit que $||x-\tau \nabla f(x)||^2 \ge ||x||^2 \ge 1$. En résumé,

$$\forall x \in \mathbb{R}^d \qquad ||x|| \geqslant 1 \quad \Longrightarrow \quad ||x - \tau \nabla f(x)|| \geqslant 1 \tag{*}$$

Montrons par récurrence que la propriété

$$\mathscr{P}(n): \quad x_n = \frac{(\mathbf{I}_d + \tau \mathbf{M})^n x_0}{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|}$$

est vraie pour tout $n \ge 1$.

• $\mathscr{P}(0)$: Puisque $||x_0|| \ge 1$, l'inégalité ci-dessus implique que $||x_0 - \tau \nabla f(x_0)|| \ge 1$ et par suite que

$$x_1 = P_{\mathcal{C}}(x_0 - \tau \nabla f(x_0)) = \frac{x_0 - \tau \nabla f(x_0)}{\|x_0 - \tau \nabla f(x_0)\|} = \frac{x_0 + \tau M x_0}{\|x_0 + \tau M x_0\|} = \frac{(I_d + \tau M) x_0}{\|(I_d + \tau M) x_0\|}$$

• $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: Supposons que la propriété est vraie au rang n et montrons qu'elle est vraie au rang n+1. D'après l'hypothèse de récurrence,

$$||x_n|| = \left\| \frac{(\mathbf{I}_d + \tau \mathbf{M})^n x_0}{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|} \right\| = \frac{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|}{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|} = 1$$

et le fait (*) démontré ci-dessus conduit à $||x_n - \tau \nabla f(x_n)|| \ge 1$. Par conséquent,

$$x_{n+1} = P_{\mathcal{C}}(x_n - \tau \nabla f(x_n)) = \frac{x_n - \tau \nabla f(x_n)}{\|x_n - \tau \nabla f(x_n)\|} = \frac{x_n + \tau M x_n}{\|x_n + \tau M x_n\|} = \frac{(I_d + \tau M) x_n}{\|(I_d + \tau M) x_n\|}$$

d'où
$$x_{n+1} = \frac{(\mathbf{I}_d + \tau \mathbf{M}) \frac{(\mathbf{I}_d + \tau \mathbf{M})^n x_0}{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|}}{\|(\mathbf{I}_d + \tau \mathbf{M}) \frac{(\mathbf{I}_d + \tau \mathbf{M})^n x_0}{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|}\|} = \frac{(\mathbf{I}_d + \tau \mathbf{M})^{n+1} x_0}{\|(\mathbf{I}_d + \tau \mathbf{M})^{n+1} x_0\|}$$

Ainsi, $\mathcal{P}(n+1)$ est vraie.

36.b Suivons les indications de l'énoncé et écrivons

$$x_0 = \sum_{i=1}^{d} \alpha_i e_i$$

où $(e_i)_{i\in [\![1\,];d]\![}$ est une base orthonormée de vecteurs propres de M dont les valeurs propres associées sont $(\lambda_i)_{i\in [\![1\,];d]\![}$ de M. L'existence d'une telle base est garantie par le théorème spectral appliqué à la matrice réelle symétrique M. Rappelons qu'il a été vu à la question 35 que les valeurs propres $(\lambda_i)_{i\in [\![1\,];d]\![}$ de M sont toutes positives. Introduisons l'ensemble I et la valeur propre λ définies par

$$\mathbf{I} = \{ i \in [1; d] \mid \alpha_i \neq 0 \} \qquad \text{et} \qquad \lambda = \max \{ \lambda_i \mid i \in \mathbf{I} \}$$

ainsi que l'ensemble I' et le vecteur x_0' définis par

$$I' = \{i \in I \mid \lambda_i = \lambda\}$$
 et $x'_0 = \sum_{i \in I'} \alpha_i e_i$

Remarquons dans un premier temps que I est non vide. Le vecteur x_0 est non nul et il existe par conséquent au moins un $i \in [1;d]$ tel que $\alpha_i \neq 0$ car $(e_i)_{i \in [1;d]}$ est une base. Puisque les $(\lambda_i)_{i \in [1;d]}$ sont des valeurs propres de M, la formule de la question précédente donne

$$x_{n} = \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}\|} = \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n} \sum_{i=1}^{d} \alpha_{i} e_{i}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{n} \sum_{i=1}^{d} \alpha_{i} e_{i}\|} = \frac{\sum_{i \in \mathbf{I}} (1 + \tau \lambda_{i})^{n} \alpha_{i} e_{i}}{\|\sum_{i \in \mathbf{I}} (1 + \tau \lambda_{i})^{n} \alpha_{i} e_{i}\|}$$

Or

$$\left\| \sum_{i \in \mathcal{I}} (1 + \tau \lambda_i)^n \alpha_i e_i \right\|^2 = \sum_{i \in \mathcal{I}} (1 + \tau \lambda_i)^{2n} |\alpha_i|^2$$

car la base $(e_i)_{i \in [\![1]; d]\!]}$ est orthonormée. Ainsi

$$x_n = \frac{\sum_{i \in I} (1 + \tau \lambda_i)^n \alpha_i e_i}{\sqrt{\sum_{i \in I} (1 + \tau \lambda_i)^{2n} |\alpha_i|^2}} = \frac{\sum_{i \in I} \frac{(1 + \tau \lambda_i)^n}{(1 + \tau \lambda_i)^n} \alpha_i e_i}{\sqrt{\sum_{i \in I} \frac{(1 + \tau \lambda_i)^{2n}}{(1 + \tau \lambda_i)^{2n}} |\alpha_i|^2}}$$

Par définition, $\lambda > \lambda_i$ pour tout $i \in I \setminus I'$, si bien que

$$\forall i \in \mathbf{I'} \qquad \frac{(1+\tau\lambda_i)^n}{(1+\tau\lambda)^n} = 1 \qquad \text{et} \qquad \forall i \in \mathbf{I} \setminus \mathbf{I'} \qquad \frac{(1+\tau\lambda_i)^n}{(1+\tau\lambda)^n} \xrightarrow[n \to +\infty]{} 0$$

$$\sum \alpha_i e_i \qquad \sum \alpha_i e_i$$

ainsi

$$x_n \xrightarrow[n \to +\infty]{} \frac{\sum_{i \in I'} \alpha_i e_i}{\sqrt{\sum_{i \in I'} |\alpha_i|^2}} = \frac{\sum_{i \in I'} \alpha_i e_i}{\left\| \sum_{i \in I'} \alpha_i e_i \right\|}$$

En conclusion,

$$x_n \xrightarrow[n \to +\infty]{} \frac{x_0'}{\|x_0'\|}$$

Reprenons les notations de la question précédente et séparons deux cas selon que x_0 appartient à Ker M ou non. Si $x_0 \in \text{Ker M}$, alors

$$x_1 = x_0 - \tau \nabla f(x_0) = x_0 + \tau M x_0 = x_0$$

et la suite $(x_n)_{n\in\mathbb{N}}$ est par conséquent constante égale à x_0 .

Supposons maintenant que $x_0 \notin \text{Ker M}$. En particulier, le vecteur x_0 est non nul et il existe donc un indice $i \in [1; d]$ tel que $\alpha_i \neq 0$ et l'ensemble I est non vide. La valeur propre λ est également non nulle car sinon x_0 appartiendrait à Ker M. Notons

$$m = \inf \left\{ n \in \mathbb{N} \mid ||x_n|| = 1 \right\}$$

Supposons que $m = +\infty$, ce qui implique que $||x_n|| < 1$ pour tout entier naturel n car $x_n \in \mathbb{C}$. Il vient alors que

$$x_{n+1} = P_{\mathcal{C}}(x_n - \tau \nabla f(x_n)) = P_{\mathcal{C}}((I_d + \tau M)x_n)$$

Supposons que $\|(\mathbf{I}_d + \tau \mathbf{M})x_n\| \ge 1$, on aurait alors

$$||x_{n+1}|| = ||P_{\mathcal{C}}((I_d + \tau M)x_n)|| = \left\| \frac{(I_d + \tau M)x_n}{||(I_d + \tau M)x_n||} \right\| = 1$$

ce qui est absurde. Ainsi, $\|(\mathbf{I}_d + \tau \mathbf{M})x_n\| < 1$ et $x_{n+1} = (\mathbf{I}_d + \tau \mathbf{M})x_n$. Une récurrence immédiate conduit alors à

$$\forall n \in \mathbb{N}$$
 $x_n = (\mathbf{I}_d + \tau \mathbf{M})^n x_0 = (\mathbf{I}_d + \tau \mathbf{M})^n \sum_{i=1}^d \alpha_i e_i = \sum_{i=1}^d (1 + \tau \lambda_i)^n \alpha_i e_i$

et
$$||x_n||^2 = \sum_{i \in \mathcal{I}} (1 + \tau \lambda_i)^{2n} |\alpha_i|^2 = (1 + \tau \lambda)^{2n} \left(\sum_{i \in \mathcal{I}'} |\alpha_i|^2 + \sum_{i \in \mathcal{I} \setminus \mathcal{I}'} \frac{(1 + \tau \lambda_i)^{2n}}{(1 + \tau \lambda)^{2n}} |\alpha_i|^2 \right)$$

or
$$(1+\tau\lambda)^{2n} \xrightarrow[n\to+\infty]{} +\infty$$
 et $\forall i \in I \setminus I'$ $\frac{(1+\tau\lambda_i)^{2n}}{(1+\tau\lambda)^{2n}} \xrightarrow[n\to+\infty]{} 0$

par conséquent

$$||x_n||^2 \xrightarrow[n \to +\infty]{} +\infty$$

ce qui est en contradiction avec $||x_n|| < 1$ pour tout entier n. En conclusion,

L'entier
$$m = \inf \{ n \in \mathbb{N} \mid ||x_n|| = 1 \}$$
 est fini.

Le fait (*) démontré au début de la question 36.a implique que s'il existe un entier $N \in \mathbb{N}$ tel que $||x_N|| = 1$ alors $||x_n|| = 1$ pour tout entier $n \ge N$. Par suite, il vient que

$$\forall n < m \qquad ||x_n|| < 1 \qquad \text{et} \qquad \forall n \geqslant m \qquad ||x_n|| = 1$$

Remarquons également que le raisonnement ci-dessus donne aussi que

$$\forall n < m$$
 $x_n = (I_d + \tau M)^n x_0$ et $x_m = \frac{(I_d + \tau M)^m x_0}{\|(I_d + \tau M)^m x_0\|}$

La question 36.a appliquée à $\widetilde{x_0} = \frac{(\mathrm{I}_d + \tau \mathrm{M})^m x_0}{\|(\mathrm{I}_d + \tau \mathrm{M})^m x_0\|}$ donne pour tout $n \geqslant m$ que

$$x_{n} = \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n-m} \widetilde{x_{0}}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{n-m} \widetilde{x_{0}}\|} = \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n-m} \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{m} x_{0}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{m} x_{0}\|}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{n-m} \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{m} x_{0}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{m} x_{0}\|}} = \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{m} x_{0}\|} = \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}\|}$$
En résumé,
$$x_{n} = \begin{cases} (\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0} & \text{si } n < m \\ \frac{(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}}{\|(\mathbf{I}_{d} + \tau \mathbf{M})^{n} x_{0}\|} & \text{si } n \geqslant m \end{cases}$$

$$x_n = \begin{cases} (\mathbf{I}_d + \tau \mathbf{M})^n x_0 & \text{si } n < m \\ \frac{(\mathbf{I}_d + \tau \mathbf{M})^n x_0}{\|(\mathbf{I}_d + \tau \mathbf{M})^n x_0\|} & \text{si } n \geqslant m \end{cases}$$

Le même raisonnement qu'à la question 36.b conduit alors à

$$x_n \xrightarrow[n \to +\infty]{} \frac{x_0'}{\|x_0'\|}$$

En conclusion

$$x_n \xrightarrow[n \to +\infty]{} \begin{cases} x_0 & \text{si } x_0 \in \text{Ker M} \\ \frac{x'_0}{\|x'_0\|} & \text{sinon} \end{cases}$$

|38| Notons λ_{\max} la plus grande valeur propre de M. On sait qu'elle est strictement positive. Quitte à renuméroter les vecteurs $(e_i)_{i \in [1, d]}$, on peut supposer que e_1 est un vecteur propre de valeur propre λ_{\max} . Notons H le supplémentaire orthogonal de $Vect(e_1)$. D'après la formule de Grassmann, H est un hyperplan de \mathbb{R}^d . Puisque $(e_i)_{i\in [1], d}$ est une base orthonormée de \mathbb{R}^d , on trouve que l'hyperplan H = Vect (e_2, \ldots, e_d) . Soit $x_0 = \sum_{i=1}^d \alpha_i e_i$ un vecteur de $\mathbb{R}^d \setminus$ H. On trouve que $\alpha_1 \neq 0$, car sinon x_0 serait dans Vect (e_2, \ldots, e_d) , c'est-à-dire H. En particulier, $x_0 \notin \text{Ker M}$ et les deux questions précédentes impliquent que

$$x_n \xrightarrow[n \to +\infty]{} \frac{x_0'}{\|x_0'\|}$$
 où $x_0' = \sum_{i \in \mathcal{I}_{\max}} \alpha_i e_i$ et $\mathcal{I}_{\max} = \{i \in [1; d] \mid \lambda_i = \lambda_{\max}\}$

car λ_{\max} est la plus grande valeur propre dont un vecteur propre est présent dans la décomposition de x_0 , via le vecteur $\alpha_1 e_1$. Le vecteur x'_0 est en particulier un vecteur propre de M associé à la valeur propre λ_{\max} . La limite $x'_0/\|x'_0\|$ de la suite $(x_n)_{n\in\mathbb{N}}$ est par conséquent un vecteur propre de norme 1 associé à la plus grande valeur propre de M et donc un minimiseur de f sur C d'après la question 35. Par continuité de f, la suite $\big(f(x_n)\big)_{n\in\mathbb{N}}$ converge vers $f(x_0'/\|x_0'\|)$ qui est ainsi égal au minimum de f sur C. En conclusion,

Il existe un hyperplan H tel que, pour tout
$$x \in \mathbb{R}^d \setminus H$$

$$f(x_n) \xrightarrow[n \to +\infty]{} \min \{ f(x) \mid x \in \mathbf{C} \}$$

Notons \widetilde{H} la somme des espaces propres associés aux valeurs propres différentes de $\lambda_{\max},$ c'est-à-dire

$$\widetilde{\mathbf{H}} = \bigoplus_{\lambda_i \neq \lambda_{\text{max}}} \operatorname{Ker} \left(\mathbf{M} - \lambda_i \mathbf{I}_d \right)$$

On peut démontrer de manière similaire que la convergence vers un minimum de f a lieu dès lors que $x_0 \notin \widetilde{\mathbf{H}}$. Ce résultat est plus fort que celui de l'énoncé si l'espace propre $\mathrm{Ker}\,(\mathbf{M}-\lambda_{\mathrm{max}}\mathbf{I}_d)$ est de dimension au moins 2, autrement dit si la valeur propre maximale de \mathbf{M} n'est pas simple.