I. ÉTUDE D'UNE SUITE RÉCURRENTE

I.A.1 Afin de prouver la croissance de la suite (u_n) , montrons, par récurrence sur $n \in \mathbb{N}$, que, pour tout $n \in \mathbb{N}$, la propriété

$$\mathscr{P}(n): u_n \leqslant u_{n+1}$$

est vraie.

- $\mathcal{P}(0)$: par définition, $u_0 = 0$ et, par hypothèse, f est à valeurs dans [0;1], $\overline{\text{donc}} u_1 = f(u_0) \in [0;1]$, d'où $u_0 \leq u_1$.
- $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: on a $u_{n+2} = f(u_{n+1})$ et $u_{n+1} = f(u_n)$. D'après l'énoncé, f' est positive, donc f est croissante. Par hypothèse de récurrence, $u_n \leqslant u_{n+1}$ donc $u_{n+1} = f(u_n) \leqslant f(u_{n+1}) = u_{n+2}$ en composant par f.
- Conclusion: $\forall n \geqslant 0 \qquad u_n \leqslant u_{n+1}$

Comme f est à valeurs dans [0;1], la suite (u_n) est également à valeurs dans [0;1]. Elle est ainsi croissante et majorée, donc elle est convergente. Par suite,

La suite (u_n) est croissante et convergente.

I.A.2 Notons E l'ensemble $\{x \in [0;1] \mid f(x) = x\}$. Cet ensemble est non vide car il contient 1 et il est minoré par 0; il admet donc une borne inférieure. En outre, en posant $g \colon x \longmapsto f(x) - x$ l'application de [0;1] dans \mathbb{R} , g est continue et l'ensemble E est l'image réciproque par g de l'ensemble $\{0\}$, qui est fermé. On en déduit que E est fermé. Sa borne inférieure est donc son minimum.

L'équation
$$f(x) = x$$
 admet une plus petite solution.

On aurait également pu résoudre cette question en raisonnant avec des suites. En effet, si l'on note α la borne inférieure de E, alors il existe une suite (x_n) d'éléments de E qui converge vers α . En outre, pour tout entier $n, f(x_n) = x_n$ et f est continue. En passant à la limite, on en déduit que $f(\alpha) = \alpha$, puis que $\alpha \in E$: c'est donc bien un minimum.

I.A.3 Pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. En outre, f est continue donc, en passant à la limite quand n tend vers l'infini, $f(\ell) = \ell$. Le réel ℓ est ainsi solution de l'équation f(x) = x.

Montrons à présent que $\ell \leqslant x_f$. Comme f est croissante sur $[0; x_f]$,

$$f([0; x_f]) = [f(0); f(x_f)] = [0; x_f]$$

En outre, $u_0 = 0 \in [0; x_f]$ donc, par récurrence immédiate, $u_n \in [0; x_f]$ pour tout entier n. En passant une nouvelle fois à la limite, il vient $\ell \leq x_f$.

Par minimalité de la solution x_f de l'équation f(x) = x, on obtient

$$\ell = x_f$$

I.B] Considérons la fonction dérivable $g: x \mapsto f(x) - x$ définie dans la question I.A.2. Pour tout $x \in [0;1]$, g'(x) = f'(x) - 1. D'après l'énoncé, g'(1) > 0 et g(1) = 0, donc il existe $x_0 \in [0;1]$ tel que $g(x_0) < 0$. En outre, on a l'inégalité

 $g(0) = f(0) = u_1 \geqslant u_0 = 0$. D'après le théorème des valeurs intermédiaires, il existe donc $x_1 \in [0; x_0]$ tel que $g(x_1) = 0$. Comme $x_f \leqslant x_1$, par minimalité de x_f ,

$$x_f \in [0;1[$$

I.C En notant toujours g la fonction $g: x \mapsto f(x) - x$, on sait que $g(0) \ge 0$, g(1) = 0 et que g est deux fois dérivable. On veut donc montrer que g ne s'annule pas sur [0; 1[, c'est-à-dire que, pour tout $x \in [0; 1[$, g(x) > 0.

Pour tout $x \in [0;1]$, g'(x) = f'(x)-1 et $g'(1) \le 0$. De même, pour tout $x \in [0;1]$, $g''(x) = f''(x) \ge 0$ et g''(1) = f''(1) > 0. On déduit de cette deuxième propriété que g'' est strictement positive sur un voisinage de 1, puis que g' est croissante sur [0;1] et même strictement sur un voisinage de 1. De la première propriété, il vient alors que g' est strictement négative sur [0;1].

Ceci montre que g est strictement décroissante, et l'on déduit de l'égalité g(1) = 0 que, pour tout $x \in [0; 1[, g(x) > 0.$ Finalement, comme x_f est le plus petit réel x positif vérifiant g(x) = 0,

$$x_f = 1$$

Comme la fonction f est de classe \mathscr{C}^2 et f''(1) > 0, la fonction f'' est strictement positive sur un voisinage]a;1] de 1, puis la fonction f' est strictement croissante sur ce voisinage. Puisque f' est positive, ceci impose que f'(1) > 0. Ainsi, la fonction f est strictement croissante sur un voisinage]b;1] de 1. S'il existait un entier $n \in \mathbb{N}^*$ tel que $u_n = 1$, on aurait alors $f(u_{n-1}) = 1$ donc, par croissance stricte de f, $u_{n-1} = 1 = u_n$. De proche en proche, on obtiendrait $u_0 = 1$, ce qui est en contradiction avec l'énoncé. Par suite,

$$\forall n \in \mathbb{N} \qquad u_n \neq 1$$

 $| \mathbf{I.D.1} |$ Soit $n \in \mathbb{N}$. On a

$$\varepsilon_{n+1} = 1 - u_{n+1} = 1 - f(u_n) = 1 - f(1 - \varepsilon_n)$$
$$f(1 - \varepsilon_n) = 1 - \varepsilon_{n+1}$$

soit encore

D'après la question précédente, la suite (ε_n) tend vers zéro en l'infini d'où, en utilisant la formule de Taylor-Young à l'ordre 2,

$$f(1 - \varepsilon_n) = f(1) + \frac{f'(1)}{1!}(-\varepsilon_n) + \frac{f''(1)}{2!}(-\varepsilon_n)^2 + o(\varepsilon_n^2)$$

Or, f(1) = 1 et f'(1) = m = 1, d'où

$$\varepsilon_{n+1} = \varepsilon_n - \frac{f''(1)}{2}\varepsilon_n^2 + o(\varepsilon_n^2)$$

D'après la question I.C, la suite (ε_n) ne s'annule pas, donc, en passant à l'inverse

$$\frac{1}{\varepsilon_{n+1}} = \frac{1}{\varepsilon_n} \frac{1}{1 - (f''(1)/2)\varepsilon_n + o(\varepsilon_n)}$$

$$= \frac{1}{\varepsilon_n} \left(1 + \frac{f''(1)}{2} \varepsilon_n + o(\varepsilon_n) \right)$$
puis
$$\frac{1}{\varepsilon_{n+1}} - \frac{1}{\varepsilon_n} = \frac{f''(1)}{2} + o(1)$$

$$\lim_{n \to +\infty} \left(\frac{1}{\varepsilon_{n+1}} - \frac{1}{\varepsilon_n} \right) = \frac{f''(1)}{2}$$
d'où

I.D.2 Utilisons le lemme de Cesaro en posant, pour $n \ge 1$,

$$a_n = \frac{1}{\varepsilon_n} - \frac{1}{\varepsilon_{n-1}}$$
 et $\ell = \frac{f''(1)}{2}$

Il vient

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{1}{\varepsilon_k} - \frac{1}{\varepsilon_{k-1}} \right) = \frac{f''(1)}{2}$$

On reconnaît dans le terme de gauche une somme télescopique donc

$$\lim_{n \to +\infty} \frac{1}{n} \left(\frac{1}{\varepsilon_n} - \frac{1}{\varepsilon_0} \right) = \frac{f''(1)}{2}$$

puis, étant donné que $\varepsilon_0 = 1$, et en remplaçant ε_n par $1 - u_n$,

$$\lim_{n \to +\infty} \frac{1}{n} \frac{1}{1 - u_n} = \frac{f''(1)}{2}$$

d'où l'on déduit que

$$\frac{1}{n}\frac{1}{1-u_n} \sim \frac{f''(1)}{2}$$

car f''(1) est non nul puis, en passant à l'inverse dans l'équivalent et en multipliant des deux côtés par 1/n,

$$\boxed{1 - u_n \sim \frac{2}{f''(1)n}}$$

I.E.1 Le calcul de la question I.D.1 se réécrit dans ce cas

$$\varepsilon_{n+1} = m\varepsilon_n - \frac{f''(1)}{2}\varepsilon_n^2 + o(\varepsilon_n^2)$$

puis

$$\varepsilon_{n+1} = \varepsilon_n \left(m - \frac{f''(1)}{2} \varepsilon_n + o(\varepsilon_n) \right)$$

Comme la suite (ε_n) ne s'annule pas et qu'elle tend vers 0 d'après la question I.C, on en déduit que

$$\lim_{n\to +\infty} \left| \frac{\varepsilon_{n+1}}{\varepsilon_n} \right| = m < 1$$

ce qui permet de conclure, d'après la règle de d'Alembert, que

La série de terme général ε_n est absolument convergente.

De plus,

$$\ln\left(\frac{m^{-(n+1)}\varepsilon_{n+1}}{m^{-n}\varepsilon_n}\right) = \ln\left(\frac{\varepsilon_{n+1}}{m\varepsilon_n}\right)$$
$$= \ln\left(1 - \frac{f''(1)}{2m}\varepsilon_n + o(\varepsilon_n)\right)$$
$$\ln\left(\frac{m^{-(n+1)}\varepsilon_{n+1}}{m^{-n}\varepsilon_n}\right) = O(\varepsilon_n)$$

d'où l'on tire que

La série de terme général $\ln\left(\frac{m^{-(n+1)}\varepsilon_{n+1}}{m^{-n}\varepsilon_n}\right)$ est absolument convergente.

I.E.2 Notons S la somme de la dernière série étudiée dans la question précédente :

$$S = \sum_{k=0}^{+\infty} \ln \left(\frac{m^{-(k+1)} \varepsilon_{k+1}}{m^{-k} \varepsilon_k} \right) = \sum_{k=0}^{+\infty} \ln \left(\frac{\varepsilon_{k+1}}{m \varepsilon_k} \right)$$

Soit $n \in \mathbb{N}^*$. On en déduit que

$$S + o(1) = \sum_{k=0}^{n-1} \left[\ln(\varepsilon_{k+1}) - \ln(\varepsilon_k) - \ln(m) \right] = \ln(\varepsilon_n) - \ln(\varepsilon_0) - n \ln(m)$$

Comme $\varepsilon_n = 1 - u_n$ et $\varepsilon_0 = 1$, il vient

$$S + o(1) = \ln\left(\frac{1 - u_n}{m^n}\right)$$

En posant $c = e^{S}$, on a c > 0 et $S = \ln c$, puis

$$c \sim \frac{1 - u_n}{m^n}$$

Finalement,

Il existe
$$c > 0$$
 tel que $1 - u_n \sim c \, m^n$.